

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	18
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f631-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F631/677/685/687/689/690 Pin Diagram (QFN)

Name	Function	Input Type	Output Type	Description
RB7	RB7	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
RC0/AN4/C2IN+	RC0	ST	CMOS	General purpose I/O.
	AN4	AN	_	A/D Channel 4 input.
	C2IN+	AN		Comparator C2 non-inverting input.
RC1/AN5/C12IN1-	RC1	ST	CMOS	General purpose I/O.
	AN5	AN		A/D Channel 5 input.
	C12IN1-	AN		Comparator C1 or C2 inverting input.
RC2/AN6/C12IN2-	RC2	ST	CMOS	General purpose I/O.
	AN6	AN	_	A/D Channel 6 input.
	C12IN2-	AN		Comparator C1 or C2 inverting input.
RC3/AN7/C12IN3-	RC3	ST	CMOS	General purpose I/O.
	AN7	AN	_	A/D Channel 7 input.
	C12IN3-	AN		Comparator C1 or C2 inverting input.
RC4/C2OUT	RC4	ST	CMOS	General purpose I/O.
	C2OUT	—	CMOS	Comparator C2 output.
RC5	RC5	ST	CMOS	General purpose I/O.
RC6/AN8/SS	RC6	ST	CMOS	General purpose I/O.
	AN8	AN		A/D Channel 8 input.
	SS	ST		Slave Select input.
RC7/AN9/SDO	RC7	ST	CMOS	General purpose I/O.
	AN9	AN		A/D Channel 9 input.
	SDO	—	CMOS	SPI data output.
Vss	Vss	Power		Ground reference.
Vdd	Vdd	Power		Positive supply.

TABLE 1-2: PINOUT DESCRIPTION – PIC16F677 (CONTINUED)

Legend: AN = Analog input or output

TTL = TTL compatible input

HV = High Voltage

CMOS=CMOS compatible input or output

ST= Schmitt Trigger input with CMOS levels XTAL= Crystal

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank 3											
180h	INDF	Addressing	this location	n uses conte	ents of FSR to	o address da	ata memory	(not a physi	cal register)	xxxx xxxx	43,200
181h	OPTION_REG	RABPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	36,200
182h	PCL	Program C	ounter's (PC	C) Least Sig	nificant Byte					0000 0000	43,200
183h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	35,200
184h	FSR	Indirect Da	ta Memory A		xxxx xxxx	43,200					
185h	TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	57,200
186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	_	_	_	_	1111	68,201
187h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	74,201
188h	_	Unimpleme	ented		-						
189h	_	Unimpleme	ented		-						
18Ah	PCLATH	_	_	—	Write Buffer	for the uppe	er 5 bits of th	ne Program	Counter	0 0000	43,200
18Bh	INTCON	GIE	PEIE	TOIE	INTE	RABIE	TOIF	INTF	RABIF ⁽¹⁾	0000 000x	37,200
18Ch	EECON1	EEPGD ⁽²⁾		RD	x x000	119,201					
18Dh	EECON2	EEPROM (Control Regi			117,201					
18Eh	—	Unimpleme	ented		_	_					
18Fh	—	Unimpleme	ented		_	_					
190h	_	Unimpleme	ented							_	_
191h	_	Unimpleme	ented							_	_
192h	_	Unimpleme	ented							_	_
193h		Unimpleme	ented							_	_
194h	—	Unimpleme	ented							—	—
195h	_	Unimpleme	ented							—	—
196h	—	Unimpleme	ented							—	_
197h	—	Unimpleme	ented							—	_
198h	—	Unimpleme	ented							_	_
199h	—	Unimpleme	ented							_	_
19Ah	—	Unimpleme	ented							_	
19Bh	—	Unimpleme	ented							_	
19Ch	-	Unimpleme	ented		1					—	_
19Dh	PSTRCON ⁽²⁾	—	—	—	STRSYNC	STRD	STRC	STRB	STRA	0 0001	144,201
19Eh	SRCON	SR1	SR0	C1SEN	C2REN	PULSS	PULSR	—	—	0000 00	101,201
19Fh	_	Unimpleme	ented							_	—

TABLE 2-4: PIC16F631/677/685/687/689/690 SPECIAL FUNCTION REGISTERS SUMMARY BANK 3

Legend: -= Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: MCLR and WDT Reset does not affect the previous value data latch. The RABIF bit will be cleared upon Reset but will set again if the mismatch exists.

2: PIC16F685/PIC16F690 only.

4.4.3.4 RB7/TX/CK

Figure 4-10 shows the diagram for this pin. The RB7/ $TX/CK^{(1)}$ pin is configurable to function as one of the following:

- a general purpose I/O
- an asynchronous serial output
- a synchronous clock I/O

Note 1: TX and CK are available on PIC16F687/ PIC16F689/PIC16F690 only.

FIGURE 4-10: BLOCK DIAGRAM OF RB7

REGISTER 10-4: EEADRH: EEPROM ADDRESS HIGH BYTE REGISTER⁽¹⁾ (CONTINUED)

Note 1: PIC16F685/PIC16F689/PIC16F690 only.

REGISTER 10-5: EECON1: EEPROM CONTROL REGISTER

R/W-x	U-0	U-0	U-0	R/W-x	R/W-0	R/S-0	R/S-0				
EEPGD ⁽¹⁾	—	—		WRERR	WREN	WR	RD				
bit 7							bit 0				
Legend:											
S = Bit can only be set											
R = Readable	bit	W = Writable b	bit	U = Unimplen	nented bit, read	d as '0'					
-n = Value at P	n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	iown				
bit 7	bit 7 EEPGD: Program/Data EEPROM Select bit ⁽¹⁾ 1 = Accesses program memory 0 = Accesses data memory										
bit 6-4	Unimplemented: Read as '0'										
bit 3	bit 3 WRERR: EEPROM Error Flag bit 1 = A write operation is prematurely terminated (any MCLR Reset, any WDT Reset during normal operation or BOR Reset)										
	0 = The write	operation com	pleted								
bit 2	WREN: EEPR 1 = Allows wri 0 = Inhibits wr	ROM Write Enal te cycles rite to the data I	ble bit EEPROM								
bit 1	WR: Write Co	ntrol bit									
hit 0	 <u>EEPGD = 1</u>: This bit is ignored <u>EEPGD = 0</u>: 1 = Initiates a write cycle (The bit is cleared by hardware once write is complete. The WR bit can only be set, not cleared, in software.) 0 = Write cycle to the data EEPROM is complete 										
ΟΙΤ U	 ND: Read Coll 1 = Initiates a software.) 0 = Does not 	 Read Control bit I = Initiates a memory read (the RD is cleared in hardware and can only be set, not cleared, in software.) 0 = Does not initiate a memory read 									

Note 1: PIC16F685/PIC16F689/PIC16F690 only.

11.3.1 PWM PERIOD

The PWM period is specified by the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 11-1.

EQUATION 11-1: PWM PERIOD

$$PWM Period = [(PR2) + 1] \bullet 4 \bullet TOSC \bullet$$
$$(TMR2 \ Prescale \ Value)$$
Note: TOSC = 1/FOSC

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is latched from CCPR1L into CCPR1H.

Note: The Timer2 postscaler (see Section 7.1 "Timer2 Operation") is not used in the determination of the PWM frequency.

11.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPR1L register and DC1B<1:0> bits of the CCP1CON register. The CCPR1L contains the eight MSbs and the DC1B<1:0> bits of the CCP1CON register contain the two LSbs. CCPR1L and DC1B<1:0> bits of the CCP1CON register can be written to at any time. The duty cycle value is not latched into CCPR1H until after the period completes (i.e., a match between PR2 and TMR2 registers occurs). While using the PWM, the CCPR1H register is read-only.

Equation 11-2 is used to calculate the PWM pulse width.

Equation 11-3 is used to calculate the PWM duty cycle ratio.

EQUATION 11-2: PULSE WIDTH

 $Pulse Width = (CCPR1L:CCP1CON < 5:4>) \bullet$

TOSC • (TMR2 Prescale Value)

EQUATION 11-3: DUTY CYCLE RATIO

$$Duty Cycle Ratio = \frac{(CCPR1L:CCP1CON < 5:4>)}{4(PR2 + 1)}$$

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPR1H and 2-bit latch, then the CCP1 pin is cleared (see Figure 11-3).

11.3.3 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 11-4.

EQUATION 11-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 11-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 11-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

© 2005-2015 Microchip Technology Inc.

11.3.4 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCP1 pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

11.3.5 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 3.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for additional details.

11.3.6 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

11.3.7 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Disable the PWM pin (CCP1) output driver by setting the associated TRIS bit.
- 2. Set the PWM period by loading the PR2 register.
- Configure the CCP module for the PWM mode by loading the CCP1CON register with the appropriate values.
- Set the PWM duty cycle by loading the CCPR1L register and DC1B<1:0> bits of the CCP1CON register.
- 5. Configure and start Timer2:
 - •Clear the TMR2IF interrupt flag bit of the PIR1 register.

•Set the Timer2 prescale value by loading the T2CKPS bits of the T2CON register.

•Enable Timer2 by setting the TMR2ON bit of the T2CON register.

6. Enable PWM output after a new PWM cycle has started:

•Wait until Timer2 overflows (TMR2IF bit of the PIR1 register is set).

• Enable the CCP1 pin output driver by clearing the associated TRIS bit.

11.4 PWM (Enhanced Mode)

The Enhanced PWM Mode can generate a PWM signal on up to four different output pins with up to ten bits of resolution. It can do this through four different PWM Output modes:

- Single PWM
- Half-Bridge PWM
- Full-Bridge PWM, Forward mode
- Full-Bridge PWM, Reverse mode

To select an Enhanced PWM mode, the P1M bits of the CCP1CON register must be set appropriately.

The PWM outputs are multiplexed with I/O pins and are designated P1A, P1B, P1C and P1D. The polarity of the PWM pins is configurable and is selected by setting the CCP1M bits in the CCP1CON register appropriately.

Table 11-4 shows the pin assignments for each Enhanced PWM mode.

Figure 11-5 shows an example of a simplified block diagram of the Enhanced PWM module.

Note: To prevent the generation of an incomplete waveform when the PWM is first enabled, the ECCP module waits until the start of a new PWM period before generating a PWM signal.

			 ' ' 1		
00	(Single Output)	PTA Modulated	 l		1
		P1A Modulated		Delav ⁽¹⁾	
10	(Half-Bridge)	P1B Modulated			
		P1A Active	 1 1 1	· · ·	
01	(Full-Bridge,	P1B Inactive	 - - - -	 	 I I
	i oiwaid)	P1C Inactive	 1 1 1		
		P1D Modulated	 	I	
		P1A Inactive	 1 1 1	 	
11	(Full-Bridge,	P1B Modulated	 		
	Reverse)	P1C Active	 ı	1 	
		P1D Inactive	 1 1 1	 	
Relat	ionships:			,	•

FIGURE 11-7: EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)

© 2005-2015 Microchip Technology Inc.

11.4.4 ENHANCED PWM AUTO-SHUTDOWN MODE

The PWM mode supports an Auto-Shutdown mode that will disable the PWM outputs when an external shutdown event occurs. Auto-Shutdown mode places the PWM output pins into a predetermined state. This mode is used to help prevent the PWM from damaging the application.

The auto-shutdown sources are selected using the ECCPASx bits of the ECCPAS register. A shutdown event may be generated by:

- A logic '0' on the INT pin
- Comparator C1
- Comparator C2
- Setting the ECCPASE bit in firmware

A shutdown condition is indicated by the ECCPASE (Auto-Shutdown Event Status) bit of the ECCPAS register. If the bit is a '0', the PWM pins are operating normally. If the bit is a '1', the PWM outputs are in the shutdown state.

When a shutdown event occurs, two things happen:

The ECCPASE bit is set to '1'. The ECCPASE will remain set until cleared in firmware or an auto-restart occurs (see Section 11.4.5 "Auto-Restart Mode").

The enabled PWM pins are asynchronously placed in their shutdown states. The PWM output pins are grouped into pairs [P1A/P1C] and [P1B/P1D]. The state of each pin pair is determined by the PSSAC and PSSBD bits of the ECCPAS register. Each pin pair may be placed into one of three states:

- Drive logic '1'
- Drive logic '0'
- Tri-state (high-impedance)

FIGURE 11-14: AUTO-SHUTDOWN BLOCK DIAGRAM

11.4.6 PROGRAMMABLE DEAD-BAND DELAY MODE

In Half-Bridge applications where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (*shoot-through current*) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable deadband delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 11-8 for illustration. The lower seven bits of the associated PWM1CON register (Register 11-3) sets the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

FIGURE 11-17: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 11-18: EXAMPLE OF HALF-BRIDGE APPLICATIONS

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fosc = 20.000 MHz		Fosc = 18.432 MHz			Fosc = 11.0592 MHz			Fosc = 8.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215	300.0	0.00	6666
1200	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303	1200	-0.02	1666
2400	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151	2401	0.04	832
9600	9597	-0.03	520	9600	0.00	479	9600	0.00	287	9615	0.16	207
10417	10417	0.00	479	10425	0.08	441	10433	0.16	264	10417	0	191
19.2k	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143	19.23k	0.16	103
57.6k	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47	57.14k	-0.79	34
115.2k	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23	117.6k	2.12	16

			/NC = 1,	BRG16 = 1								
BAUD	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.01	3332	300.0	0.00	3071	299.9	-0.02	1666	300.1	0.04	832
1200	1200	0.04	832	1200	0.00	767	1199	-0.08	416	1202	0.16	207
2400	2398	0.08	416	2400	0.00	383	2404	0.16	207	2404	0.16	103
9600	9615	0.16	103	9600	0.00	95	9615	0.16	51	9615	0.16	25
10417	10417	0.00	95	10473	0.53	87	10417	0.00	47	10417	0.00	23
19.2k	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	25	19.23k	0.16	12
57.6k	58.82k	2.12	16	57.60k	0.00	15	55.56k	-3.55	8	—	—	—
115.2k	111.1k	-3.55	8	115.2k	0.00	7	_	_	_	—	_	_

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

13.2 Operation

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

The SSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the eight bits of data have been received, that byte is moved to the SSPBUF register. Then, the Buffer Full Status bit BF of the SSPSTAT register, and the interrupt flag bit SSPIF, are set. This double-buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored and the Write Collision Detect bit, WCOL of the SSPCON register, will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. Buffer Full bit BF of the SSPSTAT register indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the SSP interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 13-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register. Additionally, the SSP Status register (SSPSTAT) indicates the various status conditions.

I OADING THE SSPRUE	(SSPSR) REGISTER

	BSF	STATUS, RPO	;Bank 1
	BCF	STATUS, RP1	;
LOOP	BTFSS	SSPSTAT, BF	;Has data been received(transmit complete)?
	GOTO	LOOP	'No
	BCF	STATUS, RPO	;Bank 0
	MOVF	SSPBUF, W	;WREG reg = contents of SSPBUF
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
	MOVF	TXDATA, W	;W reg = contents of TXDATA
	MOVWF	SSPBUF	;New data to xmit
1			

13.12.1 ADDRESSING

Once the SSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the eight bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF of the PIR1 register is set (interrupt is generated if enabled) on the falling edge of the ninth SCL pulse.

In 10-bit Address mode, two address bytes need to be received by the slave (Figure 13-8). The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address.

The sequence of events for 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of address (bits SSPIF, BF and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of address (bits SSPIF, BF and UA are set).
- 5. Update the SSPADD register with the first (high) byte of address; if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated Start condition.
- 8. Receive first (high) byte of address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

TABLE 13-3: DATA TRANSFER RECEIVED BYTE ACTIONS

Status Bits as Data Transfer is Received		$SSPSR \to SSPBUF$	Generate ACK	Set bit SSPIF (SSP Interrupt occurs			
BF	SSPOV		r uise	if enabled)			
0	0	Yes	Yes	Yes			
1	0	No	No	Yes			
1	1	No	No	Yes			
0	1	No	No	Yes			

Note: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

FIGURE 14-5: TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 2

FIGURE 14-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD)

© 2005-2015 Microchip Technology Inc.

TABLE 14-4:	INITIALIZATION CONDITION FOR REGISTER
-------------	---------------------------------------

Register	Address	Power-on Reset	MCLR Reset WDT Reset Brown-out Reset ⁽¹⁾	Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out			
W	—	xxxx xxxx	uuuu uuuu	uuuu uuuu			
INDF	00h/80h/ 100h/180h	XXXX XXXX	XXXX XXXX	սսսս սսսս			
TMR0	01h/101h	xxxx xxxx	uuuu uuuu	uuuu uuuu			
PCL	02h/82h/ 102h/182h	0000 0000	0000 0000	PC + 1 ⁽³⁾			
STATUS	03h/83h/ 103h/183h	0001 1xxx	000g quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾			
FSR	04h/84h/ 104h184h	XXXX XXXX	uuuu uuuu	սսսս սսսս			
PORTA	05h/105h	xx xxxx	uu uuuu	uu uuuu			
PORTB	06h/106h	xxxx	uuuu	uuuu			
PORTC	07h/107h	xxxx xxxx	uuuu uuuu	uuuu uuuu			
PCLATH	0Ah/8Ah/ 10Ah/18Ah	0 0000	0 0000	u uuuu			
INTCON	0Bh/8Bh/ 10Bh/18Bh	0000 000x	0000 000u	uuuu uuuu ⁽²⁾			
PIR1	0Ch	-000 0000	-000 0000	-uuu uuuu ⁽²⁾			
PIR2	0Dh	0000	0000	uuuu (2)			
TMR1L	0Eh	xxxx xxxx	นนนน นนนน	սսսս սսսս			
TMR1H	0Fh	xxxx xxxx	uuuu uuuu	uuuu uuuu			
T1CON	10h	0000 0000	սսսս սսսս	սսսս սսսս			
TMR2	11h	0000 0000	0000 0000	uuuu uuuu			
T2CON	12h	-000 0000	-000 0000	-uuu uuuu			
SSPBUF	13h	xxxx xxxx	uuuu uuuu	uuuu uuuu			
SSPCON	14h	0000 0000	0000 0000	սսսս սսսս			
CCPR1L	15h	xxxx xxxx	uuuu uuuu	սսսս սսսս			
CCPR1H	16h	xxxx xxxx	uuuu uuuu	uuuu uuuu			
CCP1CON	17h	0000 0000	0000 0000	uuuu uuuu			
RCSTA	18h	0000 000x	0000 000x	սսսս սսսս			
TXREG	19h	0000 0000	0000 0000	uuuu uuuu			
RCREG	1Ah	0000 0000	0000 0000	uuuu uuuu			
PWM1CON	1Ch	0000 0000	0000 0000	սսսս սսսս			
ECCPAS	1Dh	0000 0000	0000 0000	<u>uuuu</u> uuuu			
ADRESH	1Eh	xxxx xxxx	uuuu uuuu	uuuu uuuu			
ADCON0	1Fh	0000 0000	0000 0000	uuuu uuuu			
OPTION_REG	81h/181h	1111 1111	1 1111 1111 uuuu uuuu				
TRISA	85h/185h	11 1111	11 1111	uu uuuu			

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 14-5 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

6: Accessible only when SSPM < 3:0 > = 1001.

Mnemonic, Operands		Description	Cycles	14-Bit Opcode				Status	Natas	
		Description		MSb			LSb	Affected	Notes	
BYTE-ORIENTED FILE REGISTER OPERATIONS										
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	1, 2	
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1, 2	
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2	
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z		
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1, 2	
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1, 2	
DECFSZ	f, d	Decrement f, Skip if 0	1 (2)	00	1011	dfff	ffff		1, 2, 3	
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1, 2	
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2, 3	
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1, 2	
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1, 2	
MOVWF	f	Move W to f	1	00	0000	lfff	ffff			
NOP	-	No Operation	1	00	0000	0xx0	0000			
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1, 2	
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1, 2	
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	1, 2	
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1, 2	
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1, 2	
		BIT-ORIENTED FILE REGIST	ER OPER	RATIO	NS					
BCF	f. b	Bit Clear f	1	01	00bb	bfff	ffff		1.2	
BSF	f. b	Bit Set f	1	01	01bb	bfff	ffff		1.2	
BTFSC	f. b	Bit Test f. Skip if Clear	1 (2)	01	10bb	bfff	ffff		3	
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3	
	,	LITERAL AND CONTROL	OPERAT	IONS						
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C. DC. Z		
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk			
CLRWDT	_	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk	,		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z		
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk			
RETFIE	-	Return from interrupt	2	00	0000	0000	1001			
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk			
RETURN	-	Return from Subroutine	2	00	0000	0000	1000			
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD		
SUBLW	k	Subtract w from literal	1	11	110x	kkkk	kkkk	C, DC, Z		
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z		
		1		L						

TABLE 15-2: PIC16F684 INSTRUCTION SET

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF GPIO, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

FIGURE 17-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 17-7: COMPARATOR SPECIFICATIONS

Comparator Specifications			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments		
CM01	Vos	Input Offset Voltage	—	± 5.0	± 10	mV			
CM02	VCM	Input Common Mode Voltage	0	—	Vdd - 1.5	V			
CM03*	CMRR	Common Mode Rejection Ratio	+55	—	_	db			
CM04*	Trt	Response Time Falling		—	150	600	ns	(Note 1)	
		Rising		—	200	1000	ns		
CM05*	Тмс2coV	Comparator Mode Change to Output Valid		—	—	10	μS		

* These parameters are characterized but not tested.

Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV.

TABLE 17-8: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Sym.	Characteristics	Min.	Тур†	Max.	Units	Comments			
CV01*	Clsb	Step Size ⁽²⁾	_	Vdd/24 Vdd/32		V V	Low Range (VRR = 1) High Range (VRR = 0)			
CV02*	CACC	Absolute Accuracy	_		± 1/2 ± 1/2	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)			
CV03*	CR	Unit Resistor Value (R)	—	2k	—	Ω				
CV04*	CST	Settling Time ⁽¹⁾	_		10	μS				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'.

2: See Section 8.10 "Comparator Voltage Reference" for more information.

TABLE 17-9: VOLTAGE (VR) REFERENCE SPECIFICATIONS

VR Voltage Reference Specifications		$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +125^{\circ}C \end{array}$					
Param No.	Symbol	Characteristics	Characteristics Min. Typ. Max.				Comments
VR01	Vrout	VR voltage output	0.5	0.6	0.7	V	
VR02*	—	10	100*	μS			

These parameters are characterized but not tested.

FIGURE 18-43: TYPICAL VP6 REFERENCE VOLTAGE vs. VDD (25°C)

