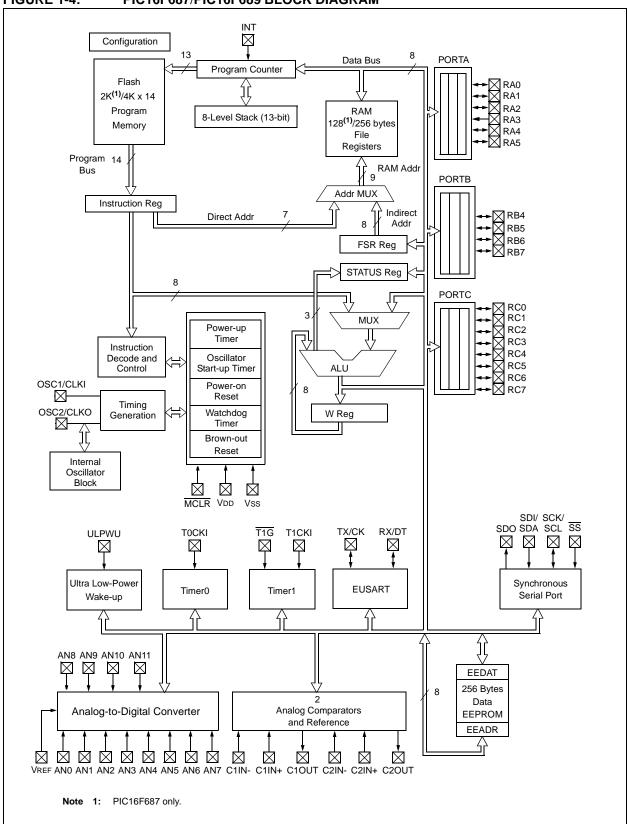
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	18
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f631-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 1-4: PIC16F687/PIC16F689 BLOCK DIAGRAM

Name	Function	Input Type	Output Type	Description
RB7	RB7	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
RC0/AN4/C2IN+	RC0	ST	CMOS	General purpose I/O.
	AN4	AN	—	A/D Channel 4 input.
	C2IN+	AN	—	Comparator C2 non-inverting input.
RC1/AN5/C12IN1-	RC1	ST	CMOS	General purpose I/O.
	AN5	AN	—	A/D Channel 5 input.
	C12IN1-	AN	—	Comparator C1 or C2 inverting input.
RC2/AN6/C12IN2-	RC2	ST	CMOS	General purpose I/O.
	AN6	AN	—	A/D Channel 6 input.
	C12IN2-	AN	—	Comparator C1 or C2 inverting input.
RC3/AN7/C12IN3-	RC3	ST	CMOS	General purpose I/O.
	AN7	AN	—	A/D Channel 7 input.
	C12IN3-	AN	—	Comparator C1 or C2 inverting input.
RC4/C2OUT	RC4	ST	CMOS	General purpose I/O.
	C2OUT	—	CMOS	Comparator C2 output.
RC5	RC5	ST	CMOS	General purpose I/O.
RC6/AN8/SS	RC6	ST	CMOS	General purpose I/O.
	AN8	AN	—	A/D Channel 8 input.
	SS	ST	—	Slave Select input.
RC7/AN9/SDO	RC7	ST	CMOS	General purpose I/O.
	AN9	AN	—	A/D Channel 9 input.
	SDO	—	CMOS	SPI data output.
Vss	Vss	Power	_	Ground reference.
Vdd	Vdd	Power	_	Positive supply.

TABLE 1-2: PINOUT DESCRIPTION – PIC16F677 (CONTINUED)

Legend: AN = Analog input or output

TTL = TTL compatible input

HV = High Voltage

XTAL= Crystal

CMOS=CMOS compatible input or output

ST= Schmitt Trigger input with CMOS levels

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank	0										
00h	INDF	Addressing	this location	uses conten	ts of FSR to a	address data	memory (no	t a physical r	egister)	xxxx xxxx	43,200
01h	TMR0	Timer0 Mod	lule Register							xxxx xxxx	79,200
02h	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	43,200
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	35,200
04h	FSR	Indirect Dat	a Memory A	ddress Pointe	ər					xxxx xxxx	43,200
05h	PORTA ⁽⁷⁾	_	_	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	57,200
06h	PORTB ⁽⁷⁾	RB7	RB6	RB5	RB4	_	_	_	_	xxxx	67,200
07h	PORTC ⁽⁷⁾	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	74,200
08h	—	Unimpleme	nted							—	—
09h	—	Unimpleme	nted							—	—
0Ah	PCLATH		_		Write Buffer	for upper 5 l	oits of Progra	am Counter		0 0000	43,200
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RABIE	TOIF	INTF	RABIF ⁽¹⁾	0000 000x	37,200
0Ch	PIR1	_	ADIF ⁽⁴⁾	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF ⁽⁵⁾	CCP1IF ⁽³⁾	TMR2IF ⁽³⁾	TMR1IF	-000 0000	40,200
0Dh	PIR2	OSFIF	C2IF	C1IF	EEIF	—	—	_	_	0000	41,200
0Eh	TMR1L	Holding Re	gister for the	Least Signifi	cant Byte of	the 16-bit TM	R1 Register			xxxx xxxx	85,200
0Fh	TMR1H	Holding Re	gister for the	Most Signific	cant Byte of t	he 16-bit TM	R1 Register			xxxx xxxx	85,200
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	87,200
11h	TMR2 ⁽³⁾	Timer2 Mod	ule Register							0000 0000	89,200
12h	T2CON ⁽³⁾	-	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	90,200
13h	SSPBUF ⁽⁵⁾	Synchronou	us Serial Port	Receive But	ffer/Transmit	Register				xxxx xxxx	178,200
14h	SSPCON ^(5, 6)	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	177,200
15h	CCPR1L ⁽³⁾	Capture/Co	mpare/PWM	Register 1 (I	LSB)					xxxx xxxx	126,200
16h	CCPR1H ⁽³⁾	Capture/Co	mpare/PWM	Register 1 (I	MSB)					xxxx xxxx	126,200
17h	CCP1CON ⁽³⁾	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	125,200
18h	RCSTA ⁽²⁾	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	158,200
19h	TXREG ⁽²⁾	EUSART T	EUSART Transmit Data Register 0000 00						0000 0000	150	
1Ah	RCREG ⁽²⁾	EUSART Receive Data Register 000						0000 0000	155		
1Bh	_	Unimplemented —						_	_		
1Ch	PWM1CON ⁽³⁾	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000 0000	143,200
1Dh	ECCPAS ⁽³⁾	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000 0000	140,200
1Eh	ADRESH ⁽⁴⁾	A/D Result	Register Hig	h Byte						xxxx xxxx	113,200
1Fh	ADCON0 ⁽⁴⁾	ADFM	VCFG	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	0000 0000	111,200

TABLE 2-1:	PIC16F631/677/685/687/689/690 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0
------------	---

Legend:- = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplementedNote1:MCLR and WDT Reset do not affect the previous value data latch. The RABIF bit will be cleared upon Reset but will set again if the

mismatch exists.

2: PIC16F687/PIC16F689/PIC16F690 only.

3: PIC16F685/PIC16F690 only.

4: PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.

5: PIC16F677/PIC16F687/PIC16F689/PIC16F690 only.

6: When SSPCON register bits SSPM<3:0> = 1001, any reads or writes to the SSPADD SFR address are accessed through the SSPMSK register. See Registers 13-2 and 13-3 for more detail.

7: Port pins with analog functions controlled by the ANSEL and ANSELH registers will read '0' immediately after a Reset even though the data latches are either undefined (POR) or unchanged (other Resets).

2.2.2.2 OPTION Register

The OPTION register, shown in Register 2-2, is a readable and writable register, which contains various control bits to configure:

- Timer0/WDT prescaler
- External RA2/INT interrupt
- Timer0
- Weak pull-ups on PORTA/PORTB

Note: To achieve a 1:1 prescaler assignment for Timer0, assign the prescaler to the WDT by setting PSA bit of the OPTION register to '1'. See Section 6.3 "Timer1 Prescaler".

REGISTER 2-2: OPTION_REG: OPTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RABPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit 0

Legend:									
R = Reada	ble bit	VV = V	Writable bit		U = Unimplemented bit, read as '0'				
-n = Value	at POR	'1' =	Bit is set		'0' = Bit is cleared	x = Bit is unknown			
bit 7			ORTB Pull-up		t				
			pull-ups are pull-ups are		y individual PORT latch	values			
bit 6	INTED	G: Interrupt E	Edge Select b	it					
			ng edge of RA						
bit 5	T0CS:	Timer0 Clocl	Source Sele	ect bit					
	1 = Tra	1 = Transition on RA2/T0CKI pin							
	0 = Inte	rnal instructi	on cycle clocl	k (Fosc/4)					
bit 4	T0SE:	Timer0 Sour	ce Edge Sele	ct bit					
			•		RA2/T0CKI pin RA2/T0CKI pin				
bit 3		rescaler Ass	-						
			igned to the V igned to the T		dule				
bit 2-0	PS<2:0	PS<2:0>: Prescaler Rate Select bits							
		Bit Value	Timer0 Rate	WDT Rate	9				
		000	1:2	1:1	-				
		001	1:4	1:2					
		010 011	1:8 1:16	1:4 1:8					
				1					

100

101

110 111 1:32

1 : 64 1 : 128

1:256

1:16 1:32

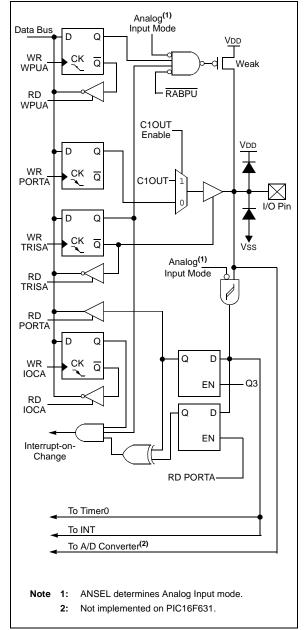
1:64

1:128

4.2.5.2 RA1/AN1/C12IN0-/VREF/ICSPCLK

Figure 4-2 shows the diagram for this pin. The RA1/ AN1/C12IN0-/VREF/ICSPCLK pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- an analog input to Comparator C1 or C2
- a voltage reference input for the ADC
- In-Circuit Serial Programming clock

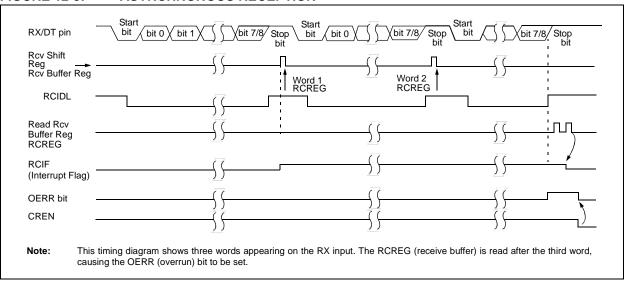

BLOCK DIAGRAM OF RA1 FIGURE 4-2: Analog(1) Input Mode Data Bus D Q VDD WR CK Q Weak WPU RABPU RD WPU/ Vdd D Q WR СК Q PORTA I/O Pin D G Vss WR СК Q TRIS Analog⁽¹⁾ Input Mode RD TRIS/ RD PORT/ D Q D Q WR Q IOCA ΕN Q3 RD IOCA Q D ΕN Interrupt-on-Change **RD PORTA** To Comparator To A/D Converter(2) ANSEL determines Analog Input mode. Note 1: Not implemented on PIC16F631. 2:

4.2.5.3 RA2/AN2/T0CKI/INT/C1OUT

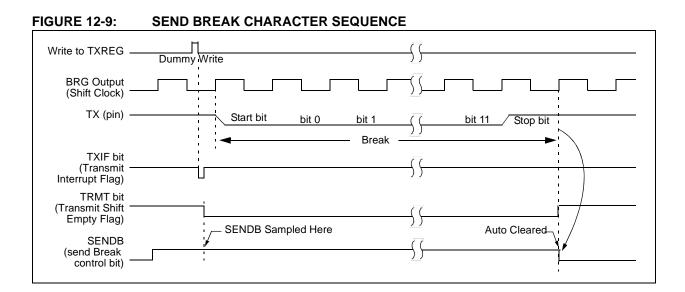
Figure 4-3 shows the diagram for this pin. The RA2/AN2/ T0CKI/INT/C1OUT pin is configurable to function as one of the following:

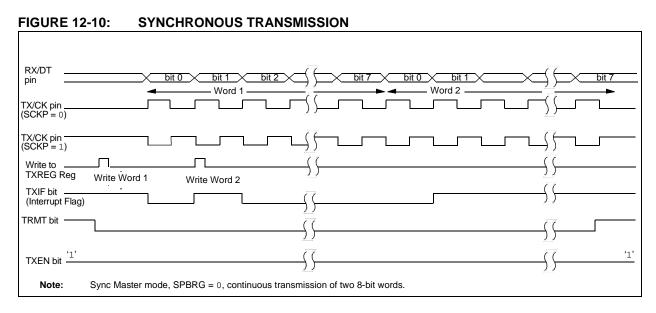
- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- the clock input for Timer0
- an external edge triggered interrupt
- a digital output from Comparator C1

FIGURE 4-3: BLOCK DIAGRAM OF RA2


12.1.2.8 Asynchronous Reception Set-up:

- Initialize the SPBRGH, SPBRG register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 12.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Enable reception by setting the CREN bit.
- 6. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 7. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 8. Get the received 8 Least Significant data bits from the receive buffer by reading the RCREG register.
- 9. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.


12.1.2.9 9-bit Address Detection Mode Set-up


This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGH, SPBRG register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 12.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. Enable 9-bit reception by setting the RX9 bit.
- 5. Enable address detection by setting the ADDEN bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 8. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

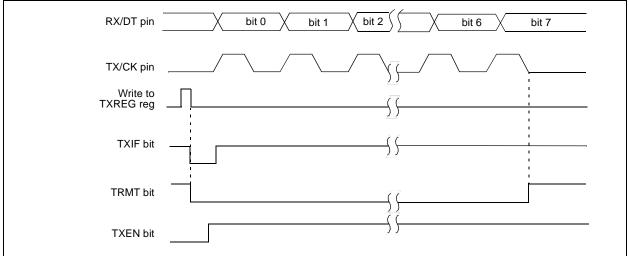


FIGURE 12-5: ASYNCHRONOUS RECEPTION

TABLE 12-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
BAUDCTL	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	01-0 0-00
INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF	0000 000x	0000 000x
PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
RCREG	EUSART F	Receive Da	ta Register						0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
SPBRGH	BRG15	BRG14	BRG13	BRG12	BRG11	BRG10	BRG9	BRG8	0000 0000	0000 0000
TRISB	TRISB7	TRISB6	TRISB5	TRISB4					1111	1111
TXREG	EUSART Transmit Data Register								0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
Logond:	erand:upknownupknownupknown									

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Master Transmission.

14.2 Reset

The PIC16F631/677/685/687/689/690 differentiates between various kinds of Reset:

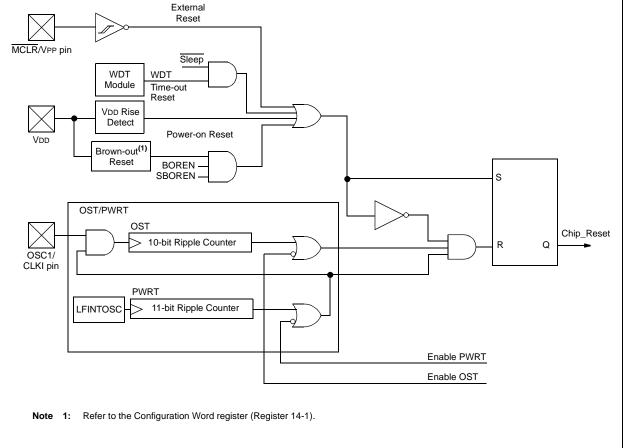
- a) Power-on Reset (POR)
- b) WDT Reset during normal operation
- WDT Reset during Sleep C)
- MCLR Reset during normal operation d)
- e) MCLR Reset during Sleep
- f) Brown-out Reset (BOR)

Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on:

- · Power-on Reset
- MCLR Reset
- MCLR Reset during Sleep
- WDT Reset

FIGURE 14-1:

Brown-out Reset (BOR)


They are not affected by a WDT Wake-up since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different Reset situations, as indicated in Table 14-2. These bits are used in software to determine the nature of the Reset. See Table 14-4 for a full description of Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 14-1.

The MCLR Reset path has a noise filter to detect and ignore small pulses. See Section 17.0 "Electrical Specifications" for pulse-width specifications.

External Reset MCLR/VPP pin

SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

14.2.1 POWER-ON RESET (POR)

The on-chip POR circuit holds the chip in Reset until VDD has reached a high enough level for proper operation. A maximum rise time for VDD is required. See **Section 17.0 "Electrical Specifications"** for details. If the BOR is enabled, the maximum rise time specification does not apply. The BOR circuitry will keep the device in Reset until VDD reaches VBOR (see **Section 14.2.4** "**Brown-out Reset (BOR)**").

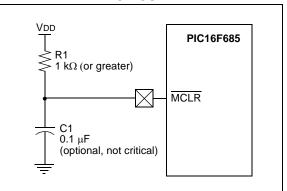
Note: The POR circuit does not produce an internal Reset when VDD declines. To reenable the POR, VDD must reach Vss for a minimum of 100 μs.

When the device starts normal operation (exits the Reset condition), device operating parameters (i.e., voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

For additional information, refer to Application Note AN607, *"Power-up Trouble Shooting"* (DS00607).

14.2.2 MCLR

 $\mathsf{PIC16F631}/677/685/687/689/690$ has a noise filter in the $\overline{\mathsf{MCLR}}$ Reset path. The filter will detect and ignore small pulses.


It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

The behavior of the ESD protection on the MCLR pin has been altered from early devices of this family. Voltages applied to the pin that exceed its specification can result in both MCLR Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the MCLR pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 14-2, is suggested.

An internal $\overline{\text{MCLR}}$ option is enabled by clearing the $\overline{\text{MCLRE}}$ bit in the Configuration Word register. When $\overline{\text{MCLRE}} = 0$, the Reset signal to the chip is generated internally. When the $\overline{\text{MCLRE}} = 1$, the RA3/MCLR pin becomes an external Reset input. In this mode, the RA3/MCLR pin has a weak pull-up to VDD. However, for robustness in noisy environments, the circuit shown in Figure 14-2 is still recommended.

FIGURE 14-2:

14.2.3 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 64 ms (nominal) time-out on power-up only, from POR or Brown-out Reset. The Power-up Timer operates from the 31 kHz LFINTOSC oscillator. For more information, see **Section 3.5 "Internal Clock Modes"**. The chip is kept in Reset as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A Configuration bit, PWRTE, can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should be enabled when Brown-out Reset is enabled, although it is not required.

The Power-up Timer delay will vary from chip-to-chip and vary due to:

- VDD variation
- Temperature variation
- Process variation

See DC parameters for details (Section 17.0 "Electrical Specifications").

Register	Address	Power-on Reset	MCLR Reset WDT Reset Brown-out Reset ⁽¹⁾	Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out
W	—	XXXX XXXX	uuuu uuuu	uuuu uuuu
INDF	00h/80h/ 100h/180h	XXXX XXXX	XXXX XXXX	սսսս սսսս
TMR0	01h/101h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	02h/82h/ 102h/182h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h/83h/ 103h/183h	0001 1xxx	000q quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾
FSR	04h/84h/ 104h184h	XXXX XXXX	սսսս սսսս	นนนน นนนน
PORTA	05h/105h	xx xxxx	uu uuuu	uu uuuu
PORTB	06h/106h	xxxx	uuuu	uuuu
PORTC	07h/107h	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCLATH	0Ah/8Ah/ 10Ah/18Ah	0 0000	0 0000	u uuuu
INTCON	0Bh/8Bh/ 10Bh/18Bh	0000 000x	0000 000u	uuuu uuuu ⁽²⁾
PIR1	0Ch	-000 0000	-000 0000	-uuu uuuu ⁽²⁾
PIR2	0Dh	0000	0000	uuuu (2)
TMR1L	0Eh	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR1H	0Fh	XXXX XXXX	uuuu uuuu	uuuu uuuu
T1CON	10h	0000 0000	uuuu uuuu	<u>uuuu</u> uuuu
TMR2	11h	0000 0000	0000 0000	uuuu uuuu
T2CON	12h	-000 0000	-000 0000	-uuu uuuu
SSPBUF	13h	xxxx xxxx	uuuu uuuu	uuuu uuuu
SSPCON	14h	0000 0000	0000 0000	uuuu uuuu
CCPR1L	15h	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR1H	16h	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP1CON	17h	0000 0000	0000 0000	սսսս սսսս
RCSTA	18h	0000 000x	0000 000x	uuuu uuuu
TXREG	19h	0000 0000	0000 0000	սսսս սսսս
RCREG	1Ah	0000 0000	0000 0000	սսսս սսսս
PWM1CON	1Ch	0000 0000	0000 0000	սսսս սսսս
ECCPAS	1Dh	0000 0000	0000 0000	սսսս սսսս
ADRESH	1Eh	xxxx xxxx	uuuu uuuu	սսսս սսսս
ADCON0	1Fh	0000 0000	0000 0000	սսսս սսսս
OPTION_REG	81h/181h	1111 1111	1111 1111	սսսս սսսս
TRISA	85h/185h	11 1111	11 1111	uu uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 14-5 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

6: Accessible only when SSPM < 3:0 > = 1001.

Condition	Program Counter	Status Register	PCON Register
Power-on Reset	000h	0001 1xxx	010x
MCLR Reset during normal operation	000h	000u uuuu	0uuu
MCLR Reset during Sleep	000h	0001 Ouuu	0uuu
WDT Reset	000h	0000 uuuu	0uuu
WDT Wake-up	PC + 1	uuu0 Ouuu	uuuu
Brown-out Reset	000h	0001 luuu	01u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Interrupt Enable bit, GIE, is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

14.3 Interrupts

The PIC16F631/677/685/687/689/690 have multiple sources of interrupt:

- External Interrupt RA2/INT
- TMR0 Overflow Interrupt
- PORTA/PORTB Change Interrupts
- 2 Comparator Interrupts
- A/D Interrupt (except PIC16F631)
- Timer1 Overflow Interrupt
- Timer2 Match Interrupt (PIC16F685/PIC16F690 only)
- EEPROM Data Write Interrupt
- Fail-Safe Clock Monitor Interrupt
- Enhanced CCP Interrupt (PIC16F685/PIC16F690 only)
- EUSART Receive and Transmit interrupts (PIC16F687/PIC16F689/PIC16F690 only)

The Interrupt Control register (INTCON) and Peripheral Interrupt Request Register 1 (PIR1) record individual interrupt requests in flag bits. The INTCON register also has individual and global interrupt enable bits.

A Global Interrupt Enable bit, GIE (INTCON<7>), enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in the INTCON, PIE1 and PIE2 registers, respectively. GIE is cleared on Reset.

The Return from Interrupt instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables unmasked interrupts.

The following interrupt flags are contained in the INTCON register:

- INT Pin Interrupt
- PORTA/PORTB Change Interrupts
- TMR0 Overflow Interrupt

The peripheral interrupt flags are contained in the PIR1 and PIR2 registers. The corresponding interrupt enable bits are contained in PIE1 and PIE2 registers.

The following interrupt flags are contained in the PIR1 register:

- A/D Interrupt
- EUSART Receive and Transmit Interrupts
- Timer1 Overflow Interrupt
- Synchronous Serial Port (SSP) Interrupt
- Enhanced CCP1 Interrupt
- Timer1 Overflow Interrupt
- Timer2 Match Interrupt

The following interrupt flags are contained in the PIR2 register:

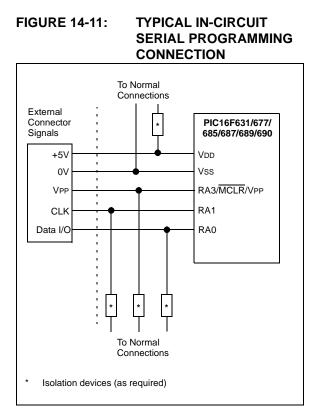
- Fail-Safe Clock Monitor Interrupt
- 2 Comparator Interrupts
- EEPROM Data Write Interrupt

When an interrupt is serviced:

- The GIE is cleared to disable any further interrupt.
- The return address is pushed onto the stack.
- The PC is loaded with 0004h.

For external interrupt events, such as the INT pin, PORTA/PORTB change interrupts, the interrupt latency will be three or four instruction cycles. The exact latency depends upon when the interrupt event occurs (see Figure 14-8). The latency is the same for one or 2-cycle instructions. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests.

Note 1: Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit or the GIE bit.


2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The interrupts, which were ignored, are still pending to be serviced when the GIE bit is set again.

For additional information on Timer1, Timer2, comparators, A/D, data EEPROM, EUSART, SSP or Enhanced CCP modules, refer to the respective peripheral section.

14.3.1 RA2/INT INTERRUPT

External interrupt on RA2/INT pin is edge-triggered; either rising if the INTEDG bit (OPTION_REG<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RA2/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The RA2/INT interrupt can wake-up the processor from Sleep, if the INTE bit was set prior to going into Sleep. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up (0004h). See Section 14.6 "Power-Down Mode (Sleep)" for details on Sleep and Figure 14-10 for timing of wake-up from Sleep through RA2/INT interrupt.

Note: The ANSEL and CM2CON0 registers must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'.

SUBWF	Subtract W	from f			
Syntax:	[label] SU	JBWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(f) - (W) \rightarrow (destination)				
Status Affected:	C, DC, Z				
Description:	Subtract (2's complement method W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				
	C = 0	W > f			

C = 1

DC = 0

DC = 1

 $W \leq f$

W<3:0> > f<3:0>

W<3:0> ≤ f<3:0>

XORLW	Exclusive OR literal with W				
Syntax:	[<i>label</i>] XORLW k				
Operands:	$0 \le k \le 255$				
Operation:	(W) .XOR. $k \rightarrow (W)$				
Status Affected:	Z				
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.				

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

XORWF	Exclusive OR W with f						
Syntax:	[label] XORWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	(W) .XOR. (f) \rightarrow (destination)						
Status Affected:	Z						
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.						

17.3 DC Characteristics: PIC16F631/677/685/687/689/690-E (Extended)

DC CHARACTERISTICS			rd Opera ng tempe		ditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended			
Param	Device Characteristics	Min.	Тур†	Max.	Units	Conditions		
No.						Vdd	Note	
D020E	Power-down Base		0.05	9	μA	2.0	WDT, BOR, Comparators, VREF and	
	Current(IPD) ⁽²⁾		0.15	11	μA	3.0	T1OSC disabled	
			0.35	15	μA	5.0		
			90	500	nA	3.0	$-40^{\circ}C \le TA \le +25^{\circ}C$	
D021E		_	1.0	17.5	μA	2.0	WDT Current ⁽¹⁾	
			2.0	19	μA	3.0		
		—	3.0	22	μA	5.0		
D022E		_	42	65	μA	3.0	BOR Current ⁽¹⁾	
			85	127	μA	5.0		
D023E		—	32	45	μA	2.0	Comparator Current ⁽¹⁾ , both	
		—	60	78	μA	3.0	comparators enabled	
		—	120	160	μA	5.0		
D024E		—	30	70	μA	2.0	CVREF Current ⁽¹⁾ (high range)	
		—	45	90	μΑ	3.0		
		—	75	120	μΑ	5.0		
D024AE*		—	39	91	μA	2.0	CVREF Current ⁽¹⁾ (low range)	
		—	59	117	μΑ	3.0		
		—	98	156	μA	5.0		
D025E			2.0	18	μΑ	2.0	T1OSC Current	
			2.5	21	μΑ	3.0		
			3.0	24	μA	5.0		
D026E			0.30	12	μΑ	3.0	A/D Current ⁽¹⁾ , no conversion in	
		—	0.36	16	μA	5.0	progress	
D027E		—	90	130	μA	3.0	VP6 Current	
		_	125	170	μΑ	5.0		

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

5: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

17.4 DC Characteristics: PIC16F631/677/685/687/689/690-I (Industrial) PIC16F631/677/685/687/689/690-E (Extended)

DC CHARACTERISTICS		Standard Operat	ditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended				
Param No.	Sym Characteristic		Min.	Тур†	Max.	Units	Conditions
	VIL	Input Low Voltage					
		I/O Port:					
D030		with TTL buffer	Vss	—	0.8	V	$4.5V \leq V \text{DD} \leq 5.5V$
D030A			Vss	—	0.15 Vdd	V	$2.0V \leq V\text{DD} \leq 4.5V$
D031		with Schmitt Trigger buffer	Vss	—	0.2 Vdd	V	$2.0V \le VDD \le 5.5V$
D032		MCLR, OSC1 (RC mode) ⁽¹⁾	Vss	—	0.2 Vdd	V	
D033		OSC1 (XT and LP modes)	Vss	_	0.3	V	
D033A		OSC1 (HS mode)	Vss	—	0.3 Vdd	V	
	VIH	Input High Voltage					
		I/O Ports:		_			
D040		with TTL buffer	2.0	_	Vdd	V	$4.5V \le VDD \le 5.5V$
D040A			0.25 VDD + 0.8	—	Vdd	V	$2.0V \le VDD \le 4.5V$
D041		with Schmitt Trigger buffer	0.8 Vdd	_	Vdd	V	$2.0V \le VDD \le 5.5V$
D042		MCLR	0.8 Vdd	_	Vdd	V	
D043		OSC1 (XT and LP modes)	1.6	_	Vdd	V	
D043A		OSC1 (HS mode)	0.7 Vdd	—	Vdd	V	
D043B		OSC1 (RC mode)	0.9 Vdd	_	Vdd	V	(Note 1)
	lı∟	Input Leakage Current ⁽²⁾					
D060		I/O ports	_	± 0.1	± 1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance
D061		MCLR ⁽³⁾	—	± 0.1	± 5	μA	$VSS \leq VPIN \leq VDD$
D063		OSC1	_	± 0.1	± 5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP oscillator configuration
D070*	IPUR	PORTA Weak Pull-up Current	50	250	400	μΑ	VDD = 5.0V, VPIN = VSS
	Vol	Output Low Voltage ⁽⁵⁾					
D080		I/O ports	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V (Ind.)
	Voh	Output High Voltage ⁽⁵⁾					
D090		I/O ports	Vdd - 0.7	-	—	V	IOH = -3.0 mA, VDD = 4.5V (Ind.)
D100	IULP	Ultra Low-Power Wake-up Current	_	200	_	nA	See Application Note AN879, "Using the Microchip Ultra Low-Power Wake-up Module" (DS00879)
		Capacitive Loading Specs on Output Pins					

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

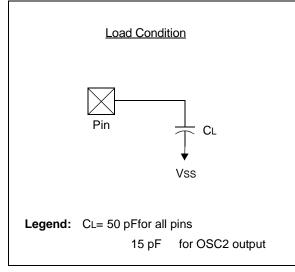
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: See Section 10.2.1 "Using the Data EEPROM" for additional information.

5: Including OSC2 in CLKOUT mode.


17.6 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

2. Tpp5		i		
т				
F	Frequency	Т	Time	
Lowerc	case letters (pp) and their meanings:			
рр				
сс	CCP1	OSC	OSC1	
ck	CLKOUT	rd	RD	
CS	CS	rw	RD or WR	
di	SDI	sc	SCK	
do	SDO	SS	SS	
dt	Data in	tO	TOCKI	
io	I/O Port	t1	T1CKI	
mc	MCLR	wr	WR	
Upperc	case letters and their meanings:			
S				
F	Fall	Р	Period	
н	High	R	Rise	
I	Invalid (High-impedance)	V	Valid	
L	Low	Z	High-impedance	

FIGURE 17-3: LOAD CONDITIONS

TABLE 17-2: OSCILLATOR PARAMETERS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions
OS06	TWARM	Internal Oscillator Switch when running ⁽³⁾	—			2	Tosc	Slowest clock
OS07	Tsc	Fail-Safe Sample Clock Period ⁽¹⁾	—	_	21	—	ms	LFINTOSC/64
OS08	HFosc	Internal Calibrated	±1%	7.92	8.0	8.08	MHz	VDD = 3.5V, 25°C
	HFINTOSC Frequency ⁽²⁾	±2%	7.84	8.0	8.16	MHz	$2.5V \le VDD \le 5.5V$, $0^{\circ}C \le TA \le +85^{\circ}C$	
			±5%	7.60	8.0	8.40	MHz	$ \begin{array}{l} 2.0V \leq V D D \leq 5.5V, \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ (Ind.)}, \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ (Ext.)} \end{array} $
OS09*	LFosc	Internal Uncalibrated LFINTOSC Frequency	—	15	31	45	kHz	
OS10*	TIOSC ST	HFINTOSC Oscillator	_	5.5	12	24	μs	VDD = 2.0V, -40°C to +85°C
	Wake-up from Sleep	—	3.5	7	14	μs	VDD = 3.0V, -40°C to +85°C	
		Start-up Time	—	3	6	11	μs	VDD = 5.0V, -40°C to +85°C

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at 'min' values with an external clock applied to the OSC1 pin. When an external clock input is used, the 'max' cycle time limit is 'DC' (no clock) for all devices.

2: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 µF and 0.01 µF values in parallel are recommended.

3: By design.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support