

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	18
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f631t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 1-2: PIC16F677 BLOCK DIAGRAM

FIGURE 2-6: PIC16F685 SPECIAL FUNCTION REGISTERS

	File		File		File		File
	Address		Address		Address		Address
Indirect addr. (1)	00h	Indirect addr. (1)	80h	Indirect addr. (1)	100h	Indirect addr. (1)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h	PORTA	105h	TRISA	185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h	PORTC	107h	TRISC	187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDAT	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2 ⁽¹⁾	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh		18Eh
TMR1H	0Fh	OSCCON	8Fh	EEADRH	10Fh		18Fh
T1CON	10h	OSCTUNE	90h		110h		190h
TMR2	11h		91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
	13h		93h		113h		193h
	14h		94h		114h		194h
CCPR1L	15h	WPUA	95h	WPUB	115h		195h
CCPR1H	16h	IOCA	96h	IOCB	116h		196h
CCP1CON	17h	WDTCON	97h		117h		197h
	18h		98h	VRCON	118h		198h
	19h		99h	CM1CON0	119h		199h
	1Ah		9Ah	CM2CON0	11Ah		19Ah
	1Bh		9Bh	CM2CON1	11Bh		19Bh
PWM1CON	1Ch		9Ch		11Ch		19Ch
ECCPAS	1Dh		9Dh		11Dh	PSTRCON	19Dh
ADRESH	1Eh	ADRESL	9Eh	ANSEL	11Eh	SRCON	19Eh
ADCON0	1Fh	ADCON1	9Fh	ANSELH	11Fh		19Fh
	20h		A0h		120h		1A0h
		- ·					
Canaral		General		General			
General		Purpose		Purpose			
Register		Register		itegister			
rtogiotor		80 Bytes		80 Bytes			
96 Bytes			EFh	5	16Fh		
		accesses	F0h	accesses	170h	accesses	1F0h
	7Fh	70h-7Fh	FFh	70h-7Fh	17Fh	70h-7Fh	1FFh
Bank 0	J	Bank 1	I	Bank 2		Bank 3	I
🔲 Unimp	lemented of	data memory locat	ions, read	as '0'.			

Note 1: Not a physical register.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank	2										
100h	INDF	Addressing	this location	uses conten	ts of FSR to	address data	memory (no	t a physical i	register)	xxxx xxxx	43,200
101h	TMR0	Timer0 Mod	ule Register							xxxx xxxx	79,200
102h	PCL	Program Co	unter's (PC)	Least Signif	icant Byte					0000 0000	43,200
103h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	35,200
104h	FSR	Indirect Data	a Memory Ad	Idress Pointe	er					xxxx xxxx	43,200
105h	PORTA ⁽⁴⁾	—	-	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	57,200
106h	PORTB ⁽⁴⁾	RB7	RB6	RB5	RB4	—	—		—	xxxx	67,200
107h	PORTC ⁽⁴⁾	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	74,200
108h	_	Unimplemen	nted							—	_
109h		Unimplemen	nted							—	—
10Ah	PCLATH	—	—	_	Write Bu	ffer for the up	oper 5 bits of	the Program	Counter	0 0000	43,200
10Bh	INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF ⁽¹⁾	0000 000x	37,200
10Ch	EEDAT	EEDAT7	EEDAT6	EEDAT5	EEDAT4	EEDAT3	EEDAT2	EEDAT1	EEDAT0	0000 0000	118,201
10Dh	EEADR	EEADR7 ⁽³⁾	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0	0000 0000	118,201
10Eh	EEDATH ⁽²⁾	_	_	EEDATH5	EEDATH4	EEDATH3	EEDATH2	EEDATH1	EEDATH0	00 0000	118,201
10Fh	EEADRH ⁽²⁾	_	_	_	_	EEADRH3	EEADRH2	EEADRH1	EEADRH0	0000	118,201
110h	—	Unimplemen	nted							_	_
111h	—	Unimplemen	nted							_	_
112h	—	Unimplemen	nted							_	_
113h	—	Unimplemen	nted							_	_
114h	—	Unimplemen	nted							—	—
115h	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	—	—		—	1111	68,201
116h	IOCB	IOCB7	IOCB6	IOCB5	IOCB4	—	—		—	0000	68,201
117h	—	Unimplemen	nted							—	—
118h	VRCON	C1VREN	C2VREN	VRR	VP6EN	VR3	VR2	VR1	VR0	0000 0000	103,201
119h	CM1CON0	C10N	C1OUT	C10E	C1POL	—	C1R	C1CH1	C1CH0	0000 -000	96,201
11Ah	CM2CON0	C2ON	C2OUT	C2OE	C2POL	—	C2R	C2CH1	C2CH0	0000 -000	97,201
11Bh	CM2CON1	MC1OUT	MC2OUT	—	—	—	—	T1GSS	C2SYNC	0010	99,201
11Ch		Unimplemen	nted							—	—
11Dh	_	Unimplemen	nted							_	_
11Eh	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3 ⁽³⁾	ANS2 ⁽³⁾	ANS1	ANS0	1111 1111	59,201
11Fh	ANSELH ⁽³⁾	—	—	—	—	ANS11	ANS10	ANS9	ANS8	1111	113,201

TABLE 2-3: PIC16F631/677/685/687/689/690 SPECIAL FUNCTION REGISTERS SUMMARY BANK 2

Legend: -= Unimplemented locations read as '0', u = unchanged, x = unknown, g = value depends on condition, shaded = unimplemented Note 1: MCLR and WDT Reset does not affect the previous value data latch. The RABIF bit will be cleared upon Reset but will set again if the mismatch exists.

2: PIC16F685/PIC16F689/PIC16F690 only.

3: PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.

4: Port pins with analog functions controlled by the ANSEL and ANSELH registers will read '0' immediately after a Reset even though the data latches are either undefined (POR) or unchanged (other Resets).

3.7.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCCON register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Word register (CONFIG), or the internal oscillator.

FIGURE 3-7:	TWO-SPEED START-UP	
HFINTOSC /		
OSC1	←Tost	
OSC2		
Program Counter	PC-N (PC	XPC + 1X
System Clock		

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets ⁽¹⁾
CONFIG ⁽²⁾	CPD	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	_	_
OSCCON	—	IRCF2	IRCF1	IRCF0	OSTS	HTS	LTS	SCS	-110 x000	-110 x000
OSCTUNE	—	—	—	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	u uuuu
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by oscillators.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

2: See Configuration Word register (Register 14-1) for operation of all register bits.

4.0 I/O PORTS

There are as many as eighteen general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

4.1 **PORTA and the TRISA Registers**

PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 4-2). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). The exception is RA3, which is input only and its TRIS bit will always read as '1'. Example 4-1 shows how to initialize PORTA.

Reading the PORTA register (Register 4-1) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write

REGISTER 4-1: PORTA: PORTA REGISTER

operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch. RA3 reads '0' when MCLRE = 1.

The TRISA register controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

The ANSEL register must be initialized to Note: configure an analog channel as a digital input. Pins configured as analog inputs will read '0'.

EXAMPLE 4-1: **INITIALIZING PORTA**

BCF	STATUS, RP	0;Bank 0
BCF	STATUS, RP	1;
CLRF	PORTA	;Init PORTA
BSF	STATUS, RP	1;Bank 2
CLRF	ANSEL	;digital I/O
BSF	STATUS, RP	0;Bank 1
BCF	STATUS, RP	1;
MOVLW	0Ch	;Set RA<3:2> as inputs
MOVWF	TRISA	;and set RA<5:4,1:0>
		;as outputs
BCF	STATUS, RP	0;Bank 0
	BCF BCF CLRF BSF BCF MOVLW MOVWF BCF	BCFSTATUS, RPBCFSTATUS, RPCLRFPORTABSFSTATUS, RPCLRFANSELBSFSTATUS, RPBCFSTATUS, RPMOVLWOChMOVWFTRISABCFSTATUS, RP

U-0	U-0	R/W-x	R/W-x	R-x	R/W-x	R/W-x	R/W-x
—	—	RA5	RA4	RA3	RA2	RA1	RA0
bit 7							bit 0
Logond							

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	'0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5-0	RA<5:0>: PORTA I/O Pin bit
	1 = Port pin is > VIн
	0 = Port pin is < VIL

REGISTER 4-2: TRISA: PORTA TRI-STATE REGISTER

U-0	U-0	R/W-1	R/W-1	R-1	R/W-1	R/W-1	R/W-1
—	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

TRISA<5:0>: PORTA Tri-State Control bit

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

Note 1: TRISA<3> always reads '1'.

bit 5-0

TRISA<5:4> always reads '1' in XT, HS and LP Oscillator modes. 2:

4.2.5.4 RA3/MCLR/VPP

Figure 4-4 shows the diagram for this pin. The RA3/ MCLR/VPP pin is configurable to function as one of the following:

- a general purpose input
- as Master Clear Reset with weak pull-up

4.2.5.5 RA4/AN3/T1G/OSC2/CLKOUT

Figure 4-5 shows the diagram for this pin. The RA4/ AN3/T1G/OSC2/CLKOUT pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- a Timer1 gate input
- a crystal/resonator connection
- · a clock output

- 2: With CLKOUT option.
- 3: ANSEL determines Analog Input mode.
- 4: Not implemented on PIC16F631.

4.4.3.2 RB5/AN11/RX/DT^(1, 2)

Figure 4-8 shows the diagram for this pin. The RB5/ AN11/RX/DT pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- an asynchronous serial input
- a synchronous serial data I/O

Note 1: RX and DT are available on PIC16F687/ PIC16F689/PIC16F690 only.

2: AN11 is not implemented on PIC16F631.

FIGURE 4-8:

BLOCK DIAGRAM OF RB5

4.4.3.4 RB7/TX/CK

Figure 4-10 shows the diagram for this pin. The RB7/ $TX/CK^{(1)}$ pin is configurable to function as one of the following:

- a general purpose I/O
- an asynchronous serial output
- a synchronous clock I/O

Note 1: TX and CK are available on PIC16F687/ PIC16F689/PIC16F690 only.

FIGURE 4-10: BLOCK DIAGRAM OF RB7

6.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected the TMR1H:TMR1L register pair will increment on multiples of Fosc as determined by the Timer1 prescaler.

6.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When counting, Timer1 is incremented on the rising edge of the external clock input T1CKI. In addition, the Counter mode clock can be synchronized to the microcontroller system clock or run asynchronously.

If an external clock oscillator is needed (and the microcontroller is using the INTOSC without CLKOUT), Timer1 can use the LP oscillator as a clock source.

Note 1:	In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after any one or more of the following conditions:
	•Timer1 enabled after POR reset
	•Timer1 is disabled
	•Timer1 is disabled (TMR1ON 0) when T1CKI is high then Timer1 is enabled (TMR1ON=1) when T1CKI is low.
2:	See Figure 6-2

6.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

6.4 Timer1 Oscillator

A low-power 32.768 kHz crystal oscillator is built-in between pins OSC1 (input) and OSC2 (amplifier output). The oscillator is enabled by setting the T1OSCEN control bit of the T1CON register. The oscillator will continue to run during Sleep.

The Timer1 oscillator is shared with the system LP oscillator. Thus, Timer1 can use this mode only when the primary system clock is derived from the internal oscillator or when the oscillator is in the LP mode. The user must provide a software time delay to ensure proper oscillator start-up.

TRISA5 and TRISA4 bits are set when the Timer1 oscillator is enabled. RA5 and RA4 bits read as '0' and TRISA5 and TRISA4 bits read as '1'.

Note:	The oscillator requires a start-up and
	stabilization time before use. Thus,
	T1OSCEN should be set and a suitable
	delay observed prior to enabling Timer1.

6.5 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 6.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note:	When switching from synchronous to
	asynchronous operation, it is possible to
	skip an increment. When switching from
	asynchronous to synchronous operation,
	it is possible to produce an additional
	increment.

6.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

6.6 Timer1 Gate

The Timer1 gate (when enabled) allows Timer1 to count when Timer1 gate is active. Timer1 gate source is software configurable to be the T1G pin or the output of Comparator C2. This allows the device to directly time external events using T1G or analog events using Comparator C2. See the CM2CON1 register (Register 8-3) for selecting the Timer1 gate source. This feature can simplify the software for a Delta-Sigma A/D converter and many other applications.

9.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESL and ADRESH).

Note: The ADC module applies to PIC16F677/ PIC16F685/PIC16F687/PIC16F689/ PIC16F690 devices only.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

FIGURE 9-1: ADC BLOCK DIAGRAM

Figure 9-1 shows the block diagram of the ADC.

10.1.4 READING THE FLASH PROGRAM MEMORY (PIC16F685/PIC16F689/ PIC16F690)

To read a program memory location, the user must write the Least and Most Significant address bits to the EEADR and EEADRH registers, set the EEPGD control bit of the EECON1 register, and then set control bit RD. Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF EECON1, RD" instruction to be ignored. The data is available in the very next cycle, in the EEDAT and EEDATH registers; therefore, it can be read as two bytes in the following instructions. EEDAT and EEDATH registers will hold this value until another read or until it is written to by the user.

- Note 1: The two instructions following a program memory read are required to be NOPS. This prevents the user from executing a 2-cycle instruction on the next instruction after the RD bit is set.
 - If the WR bit is set when EEPGD = 1, it will be immediately reset to '0' and no operation will take place.

EXAMPLE 10-3: FLASH PROGRAM READ

	BANKSEL	EEADR		;
	MOVF	MS_PROG_EE_ADDR, W	J	;
	MOVWF	EEADRH		;MS Byte of Program Address to read
	MOVF	LS_PROG_EE_ADDR, W	1	i
	MOVWF	EEADR		;LS Byte of Program Address to read
	BANKSEL	EECON1	;	
	BSF	EECON1, EEPGD		;Point to PROGRAM memory
- @	BSF	EECON1, RD		;EE Read
irec				
nbə	NOP			;First instruction after BSF EECON1,RD executes normally
ъ "				
	NOP			;Any instructions here are ignored as program
				;memory is read in second cycle after BSF EECON1,RD
;				
	BANKSEL	EEDAT	;	
	MOVF	EEDAT, W		;W = LS Byte of Program Memory
	MOVWF	LOWPMBYTE		i
	MOVF	EEDATH, W		;W = MS Byte of Program EEDAT
	MOVWF	HIGHPMBYTE		i
	BANKSEL	0x00	;Bar	nk 0

11.3 PWM Mode

The PWM mode generates a Pulse-Width Modulated signal on the CCP1 pin. The duty cycle, period and resolution are determined by the following registers:

- PR2
- T2CON
- CCPR1L
- CCP1CON

In Pulse-Width Modulation (PWM) mode, the CCP module produces up to a 10-bit resolution PWM output on the CCP1 pin. Since the CCP1 pin is multiplexed with the PORT data latch, the TRIS for that pin must be cleared to enable the CCP1 pin output driver.

Note:	Clearing	the	CCP1CON	register	will
	relinquish	CCF	1 control of t	he CCP1	pin.

Figure 11-3 shows a simplified block diagram of PWM operation.

Figure 11-4 shows a typical waveform of the PWM signal.

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 11.3.7** "Setup for PWM Operation".

FIGURE 11-3: SIMPLIFIED PWM BLOCK DIAGRAM

The PWM output (Figure 11-4) has a time base (period) and a time that the output stays high (duty cycle).

FIGURE 11-4: CCP PWM OUTPUT

11.4.1 HALF-BRIDGE MODE

In Half-Bridge mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the CCP1/P1A pin, while the complementary PWM output signal is output on the P1B pin (see Figure 11-6). This mode can be used for Half-Bridge applications, as shown in Figure 11-9, or for Full-Bridge applications, where four power switches are being modulated with two PWM signals.

In Half-Bridge mode, the programmable dead-band delay can be used to prevent shoot-through current in Half-Bridge power devices. The value of the PDC<6:0> bits of the PWM1CON register sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **Section 11.4.6 "Programmable Dead-Band Delay mode"** for more details of the dead-band delay operations. Since the P1A and P1B outputs are multiplexed with the PORT data latches, the associated TRIS bits must be cleared to configure P1A and P1B as outputs.

FIGURE 11-9: EXAMPLE OF HALF-BRIDGE APPLICATIONS

		SYNC = 0, BRGH = 0, BRG16 = 0													
BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz			Fosc = 8.000 MHz					
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)			
300	_	_	_	_	_	_	_	_	_	_	_	_			
1200	1221	1.73	255	1200	0.00	239	1200	0.00	143	1202	0.16	103			
2400	2404	0.16	129	2400	0.00	119	2400	0.00	71	2404	0.16	51			
9600	9470	-1.36	32	9600	0.00	29	9600	0.00	17	9615	0.16	12			
10417	10417	0.00	29	10286	-1.26	27	10165	-2.42	16	10417	0.00	11			
19.2k	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8	_	_	_			
57.6k	—	_	_	57.60k	0.00	7	57.60k	0.00	2	—	—				
115.2k	—	_	_	—	_	_	—	_	_	—	_	_			

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES

BAUD	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300	0.16	207	300	0.00	191	300	0.16	103	300	0.16	51
1200	1202	0.16	51	1200	0.00	47	1202	0.16	25	1202	0.16	12
2400	2404	0.16	25	2400	0.00	23	2404	0.16	12	—	—	—
9600	—	—	_	9600	0.00	5	—	—	_	—	—	—
10417	10417	0.00	5	—	_	—	10417	0.00	2	—	—	—
19.2k	—	—	_	19.20k	0.00	2	—	—	_	—	—	—
57.6k	—	—	—	57.60k	0.00	0	—	—	—	—	—	—
115.2k	—	_	—	—	_	—	—	_	—	—	_	—

		SYNC = 0, BRGH = 1, BRG16 = 0												
BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz			Fosc = 8.000 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	—	_	_	_	_	_	_	_	_	_	—	—		
1200	—	—	—	—	_	—	—	—	—	—	—	—		
2400	—	—	—	—	—	—	_	_	_	2404	0.16	207		
9600	9615	0.16	129	9600	0.00	119	9600	0.00	71	9615	0.16	51		
10417	10417	0.00	119	10378	-0.37	110	10473	0.53	65	10417	0.00	47		
19.2k	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	19231	0.16	25		
57.6k	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	55556	-3.55	8		
115.2k	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	—	_	_		

12.5 EUSART Operation During Sleep

The EUSART WILL remain active during Sleep only in the Synchronous Slave mode. All other modes require the system clock and therefore cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Slave mode uses an externally generated clock to run the Transmit and Receive Shift registers.

12.5.1 SYNCHRONOUS RECEIVE DURING SLEEP

To receive during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for Synchronous Slave Reception (see Section 12.4.2.4 "Synchronous Slave Reception Set-up:").
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- The RCIF interrupt flag must be cleared by reading RCREG to unload any pending characters in the receive buffer.

Upon entering Sleep mode, the device will be ready to accept data and clocks on the RX/DT and TX/CK pins, respectively. When the data word has been completely clocked in by the external device, the RCIF interrupt flag bit of the PIR1 register will be set. Thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the GIE Global Interrupt Enable bit of the INTCON register is also set, then the Interrupt Service Routine at address 004h will be called.

12.5.2 SYNCHRONOUS TRANSMIT DURING SLEEP

To transmit during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for Synchronous Slave Transmission (see Section 12.4.2.2 "Synchronous Slave Transmission Set-up:").
- The TXIF interrupt flag must be cleared by writing the output data to the TXREG, thereby filling the TSR and transmit buffer.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the PEIE bit of the INTCON register.
- Interrupt enable bits TXIE of the PIE1 register and PEIE of the INTCON register must set.

Upon entering Sleep mode, the device will be ready to accept clocks on TX/CK pin and transmit data on the RX/DT pin. When the data word in the TSR has been completely clocked out by the external device, the pending byte in the TXREG will transfer to the TSR and the TXIF flag will be set. Thereby, waking the processor from Sleep. At this point, the TXREG is available to accept another character for transmission, which will clear the TXIF flag.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the GIE Global Interrupt Enable bit is also set then the Interrupt Service Routine at address 0004h will be called.

REGISTER 13-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER⁽¹⁾

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
SMP	CKE	D/A	Р	S	R/W	UA	BF			
bit 7		·					bit 0			
Legend:										
R = Readable bit	t _	W = Writable bit		U = Unimplem	ented bit, read as	s 'O'				
-n = Value at PO	R	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknow	wn			
bit 7	bit 7 SMP: SPI Data Input Sample Phase bit SPI Master mode: 1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time (Microwire) SPI Slave mode: SMP must be cleared when SPI is used in Slave mode I ² C TM mode: This hit must be maintained along.									
bit 6	I his bit must be maintained clear CKE: SPI Clock Edge Select bit SPI mode. CKP = 0: 1 = Data transmitted on rising edge of SCK (Microwire alternate) 0 = Data transmitted on falling edge of SCK SPI mode. CKP = 1: 1 = Data transmitted on falling edge of SCK (Microwire default) 0 = Data transmitted on falling edge of SCK (Microwire default) 0 = Data transmitted on falling edge of SCK (Microwire default) 0 = Data transmitted on rising edge of SCK (Microwire default) 0 = Data transmitted on rising edge of SCK (Microwire default) 0 = Data transmitted on rising edge of SCK (Microwire default) 0 = Data transmitted on rising edge of SCK (Microwire default)									
bit 5	D/A : DATA/ADE 1 = Indicates th 0 = Indicates th	DRESS bit (I ² C m at the last byte re at the last byte re	node only) ⁽²⁾ eceived or trans eceived or trans	smitted was data smitted was add	a Iress					
bit 4	P: Stop bit (I ² C This bit is clear SSPEN is clear 1 = Indicates th 0 = Stop bit was	mode only) ed when the SSF ed. at a Stop bit has s not detected las	e module is disa been detected st	abled, or when t last (this bit is 'd	he Start bit is dete o' on Reset)	ected last.				
bit 3	S: Start bit (I^2C This bit is clear SSPEN is clear 1 = Indicates th 0 = Start bit was	mode only) ed when the SSF ed. at a Start bit has s not detected las	e module is disa been detected st	abled, or when t last (this bit is '	he Stop bit is dete 0' on Reset)	ected last.				
bit 2	R/W : READ/WF This bit holds th to the next Star 1 = Read 0 = Write	RITE bit Informati le R/W bit informa t bit, Stop bit or A	on (I ² C mode c <u>ttion</u> following th CK bit.	only) ne last address r	match. This bit is c	only valid from the a	address match			
bit 1	 UA: Update Address bit (10-bit I²C mode only) 1 = Indicates that the user needs to update the address in the SSPADD register 0 = Address does not need to be updated 									
bit 0 Note 1: PIC'	BF: Buffer Full Status bit <u>Receive (SPI and I²C modes):</u> 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty <u>Transmit (I²C mode only):</u> 1 = Transmit in progress, SSPBUF is full 0 = Transmit complete, SSPBUF is empty PIC16F687/PIC16F689/PIC16F690 only									

2: Does not update if receive was ignored.

Register	Address	Power-on Reset	MCLR Reset WDT Reset (Continued) Brown-out Reset ⁽¹⁾	Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out
TRISB	86h/186h	1111	1111	uuuu
TRISC	87h/187h	1111 1111	1111 1111	<u>uuuu</u> uuuu
PIE1	8Ch	-000 0000	-000 0000	-uuu uuuu
PIE2	8Dh	0000	0000	uuuu uuuu
PCON	8Eh	010x	0uuq ^{1,5)}	uuuu
OSCCON	8Fh	-110 q000	-110 q000	-uuu uuuu
OSCTUNE	90h	0 0000	u uuuu	u uuuu
PR2	92h	1111 1111	1111 1111	սսսս սսսս
SSPADD	93h	0000 0000	1111 1111	uuuu uuuu
SSPMSK ⁽⁶⁾	93h		1111 1111	սսսս սսսս
SSPSTAT	94h	0000 0000	1111 1111	սսսս սսսս
WPUA	95h	11 -111	11 -111	սսսս սսսս
IOCA	96h	00 0000	00 0000	uu uuuu
WDTCON	97h	0 1000	0 1000	u uuuu
TXSTA	98h	0000 0010	0000 0010	սսսս սսսս
SPBRG	99h	0000 0000	0000 0000	սսսս սսսս
SPBRGH	9Ah	0000 0000	0000 0000	սսսս սսսս
BAUDCTL	9Bh	01-0 0-00	01-0 0-00	uu-u u-uu
ADRESL	9Eh	XXXX XXXX	uuuu uuuu	uuuu uuuu
ADCON1	9Fh	-000	-000	-uuu
EEDAT	10Ch	0000 0000	0000 0000	uuuu uuuu
EEADR	10Dh	0000 0000	0000 0000	սսսս սսսս
EEDATH	10Eh	00 0000	00 0000	uu uuuu
EEADRH	10Fh	0000	0000	uuuu
WPUB	115h	1111	1111	uuuu
IOCB	116h	0000	0000	uuuu
VRCON	118h	0000 0000	0000 0000	uuuu uuuu
CM1CON0	119h	0000 -000	0000 -000	uuuu -uuu
CM2CON0	11Ah	0000 -000	0000 -000	uuuu -uuu
CM2CON1	11Bh	0000	0010	uuuu
ANSEL	11Eh	1111 1111	1111 1111	uuuu uuuu
ANSELH	11 Fh	1111	1111	uuuu
EECON1	18Ch	x x000	u q000	uuuu
EECON2	18Dh			
PSTRCON	19Dh	0 0001	0 0001	u uuuu
SRCON	19EH	0000 00	0000 00	uuuu uu

TABLE 14-4: INITIALIZATION CONDITION FOR REGISTER (CONTINUED)

 $\label{eq:logend: u = unchanged, x = unknown, - = unimplemented bit, reads as `0', q = value depends on condition.$

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 14-5 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

6: Accessible only when SSPM < 3:0 > = 1001.

TABLE 14-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

FIGURE 17-21: HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE

© 2005-2015 Microchip Technology Inc.

Param	Device	Min	True	Max	Unite		Condition
No.	Characteristics	win.	тур.	IVIAX.	Units	Vdd	Note
D001	Vdd	2.1	_	5.5	V	—	Fosc \leq 8 MHz: HFINTOSC, EC
		2.1	—	5.5	V	—	Fosc ≤ 4 MHz
D010	Supply Current (IDD)	_	_	47		2.1	E
		_	_	69	μA	3.0	-FOSC = 32 kHz
		_	_	108		5.0	
D011		_	_	357		2.1	E (14)
		_		533	μA	3.0	-Fosc = 1 MHz
		_	_	729		5.0	
D012		_	_	535	^	2.1	
		_		875	μΑ	3.0	Fosc = 4 MHz
		_	_	1.32	mA	5.0	
D013		_	_	336		2.1	
		_	—	477	μA	3.0	-Fosc = 1 MHz
		_	—	777		5.0	
D014		_	_	505		2.1	
		_		724	μΑ	3.0	Fosc = 4 MHz
		_	_	1.30	mA	5.0	
D015		_		51		2.1	
		_	_	92	μΛ	3.0	-FOSC = 31 kHz
		_		117	mA	5.0	
D016		_		665		2.1	
		_	_	970	μΛ	3.0	
		_		1.56	mA	5.0	
D017		_		936	μA	2.1	
		_		1.34	m۸	3.0	THOSC = 8 MHZ
		_	_	2.27		5.0	
D018		_		605		2.1	
		_		903	μΑ	3.0	-Fosc = 4 MHz
		_	—	1.43	mA	5.0	
D019		_	—	6.61	m۸	4.5	Fosc = 20 MHz
		_	—	7.81		5.0	HS Oscillator

TABLE 17-19: DC CHARACTERISTICS FOR IDD SPECIFICATIONS FOR PIC16F685/687/689/690-H (High Temp.)