Microchip Technology - PIC16F631T-I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	18
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f631t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	9
2.0	Memory Organization	24
3.0	Oscillator Module (With Fail-Safe Clock Monitor)	45
4.0	I/O Ports	
5.0	Timer0 Module	79
6.0	Timer1 Module with Gate Control	82
7.0	Timer2 Module	89
8.0	Comparator Module	91
9.0	Analog-to-Digital Converter (ADC) Module	
10.0	Data EEPROM and Flash Program Memory Control	117
11.0	Enhanced Capture/Compare/PWM Module	125
12.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	148
13.0	SSP Module Overview	175
14.0	Special Features of the CPU	193
15.0	Instruction Set Summary	212
16.0	Development Support	
17.0	Electrical Specifications	
18.0	DC and AC Characteristics Graphs and Tables	258
19.0	Packaging Information	285
The M	Vicrochip Web Site	295
	omer Change Notification Service	
Custo	omer Support	295
Produ	uct Identification System	296

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via Email at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

• Microchip's Worldwide Web site; http://www.microchip.com

Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank	0										
00h	INDF	Addressing	this location	uses conten	ts of FSR to a	address data	memory (no	t a physical r	egister)	xxxx xxxx	43,200
01h	TMR0	Timer0 Mod	lule Register							xxxx xxxx	79,200
02h	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	43,200
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	35,200
04h	FSR	Indirect Dat	a Memory A	ddress Pointe	ər					xxxx xxxx	43,200
05h	PORTA ⁽⁷⁾	_	_	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	57,200
06h	PORTB ⁽⁷⁾	RB7	RB6	RB5	RB4	_	_	_	_	xxxx	67,200
07h	PORTC ⁽⁷⁾	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	74,200
08h	—	Unimpleme	nted							—	—
09h	—	Unimpleme	nted							—	—
0Ah	PCLATH		_		Write Buffer	for upper 5 l	oits of Progra	am Counter		0 0000	43,200
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RABIE	TOIF	INTF	RABIF ⁽¹⁾	0000 000x	37,200
0Ch	PIR1	_	ADIF ⁽⁴⁾	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF ⁽⁵⁾	CCP1IF ⁽³⁾	TMR2IF ⁽³⁾	TMR1IF	-000 0000	40,200
0Dh	PIR2	OSFIF	C2IF	C1IF	EEIF	—	—	_	_	0000	41,200
0Eh	TMR1L	Holding Re	gister for the	Least Signifi	cant Byte of	the 16-bit TM	R1 Register			xxxx xxxx	85,200
0Fh	TMR1H	Holding Re	gister for the	Most Signific	cant Byte of t	he 16-bit TM	R1 Register			xxxx xxxx	85,200
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	87,200
11h	TMR2 ⁽³⁾	Timer2 Mod	ule Register							0000 0000	89,200
12h	T2CON ⁽³⁾	-	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	90,200
13h	SSPBUF ⁽⁵⁾	Synchronou	us Serial Port	Receive But	ffer/Transmit	Register				xxxx xxxx	178,200
14h	SSPCON ^(5, 6)	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	177,200
15h	CCPR1L ⁽³⁾	Capture/Co	mpare/PWM	Register 1 (I	LSB)					xxxx xxxx	126,200
16h	CCPR1H ⁽³⁾	Capture/Co	mpare/PWM	Register 1 (I	MSB)					xxxx xxxx	126,200
17h	CCP1CON ⁽³⁾	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	125,200
18h	RCSTA ⁽²⁾	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	158,200
19h	TXREG ⁽²⁾	EUSART T	ransmit Data	Register						0000 0000	150
1Ah	RCREG ⁽²⁾	EUSART R	eceive Data	Register						0000 0000	155
1Bh	_	Unimpleme	nted							_	_
1Ch	PWM1CON ⁽³⁾	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000 0000	143,200
1Dh	ECCPAS ⁽³⁾	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000 0000	140,200
1Eh	ADRESH ⁽⁴⁾	A/D Result	Register Hig	h Byte						xxxx xxxx	113,200
1Fh	ADCON0 ⁽⁴⁾	ADFM	VCFG	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	0000 0000	111,200

TABLE 2-1:	PIC16F631/677/685/687/689/690 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0
------------	---

Legend:- = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplementedNote1:MCLR and WDT Reset do not affect the previous value data latch. The RABIF bit will be cleared upon Reset but will set again if the

mismatch exists.

2: PIC16F687/PIC16F689/PIC16F690 only.

3: PIC16F685/PIC16F690 only.

4: PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.

5: PIC16F677/PIC16F687/PIC16F689/PIC16F690 only.

6: When SSPCON register bits SSPM<3:0> = 1001, any reads or writes to the SSPADD SFR address are accessed through the SSPMSK register. See Registers 13-2 and 13-3 for more detail.

7: Port pins with analog functions controlled by the ANSEL and ANSELH registers will read '0' immediately after a Reset even though the data latches are either undefined (POR) or unchanged (other Resets).

3.5.2.1 OSCTUNE Register

-n = Value at POR

The HFINTOSC is factory calibrated but can be adjusted in software by writing to the OSCTUNE register (Register 3-2).

The default value of the OSCTUNE register is '0'. The value is a 5-bit two's complement number.

When the OSCTUNE register is modified, the HFINTOSC frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

x = Bit is unknown

REGISTER 3-2: OSCTUNE: OSCILLATOR TUNING REGISTER

'1' = Bit is set

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—	TUN4	TUN3	TUN2	TUN1	TUN0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					

'0' = Bit is cleared

bit 7-5	Unimplemented: Read as '0'
bit 4-0	TUN<4:0>: Frequency Tuning bits
	01111 = Maximum frequency
	01110 =
	•
	•
	•
	00001 =
	00000 = Oscillator module is running at the factory-calibrated frequency.
	11111 =
	•
	•
	•
	10000 = Minimum frequency

U-0	U-0	R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1
_	_	WPUA5	WPUA4		WPUA2	WPUA1	WPUA0
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 7-6 bit 5-4	-	nented: Read as '(
DIL 5-4	1 = Pull-up 0 = Pull-up		Register bit				
bit 3	Unimplem	nented: Read as 'o)'				
bit 2-0 WPUA<2:0>: Weak Pull-up Register bit 1 = Pull-up enabled 0 = Pull-up disabled							
Note 1: 2:		bit of the OPTION	•				bled.

WPUA: PORTA REGISTER **REGISTER 4-5:**

3: The RA3 pull-up is enabled when configured as MCLR and disabled as an I/O in the Configuration Word.

4: WPUA<5:4> always reads '1' in XT, HS and LP Oscillator modes.

REGISTER 4-6: IOCA: INTERRUPT-ON-CHANGE PORTA REGISTER

Logondi							
bit 7							bit 0
_	—	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

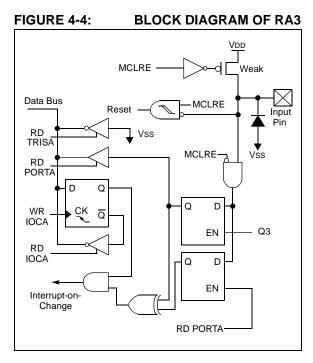
Legena.							
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 7-6 Unimplemented: Read as '0'

bit 5-0 IOCA<5:0>: Interrupt-on-change PORTA Control bit

1 = Interrupt-on-change enabled

0 = Interrupt-on-change disabled

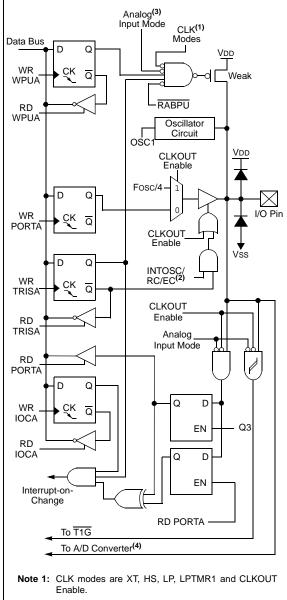

Note 1: Global Interrupt Enable (GIE) must be enabled for individual interrupts to be recognized.

2: IOCA<5:4> always reads '1' in XT, HS and LP Oscillator modes.

4.2.5.4 RA3/MCLR/VPP

Figure 4-4 shows the diagram for this pin. The RA3/ MCLR/VPP pin is configurable to function as one of the following:

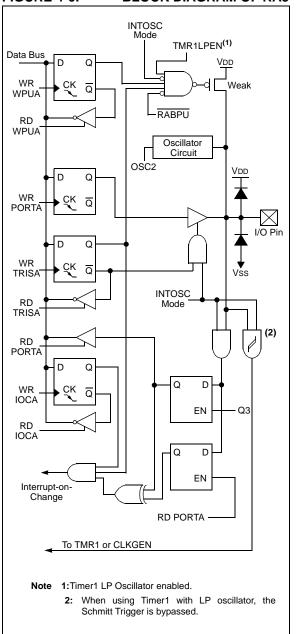
- a general purpose input
- as Master Clear Reset with weak pull-up



4.2.5.5 RA4/AN3/T1G/OSC2/CLKOUT

Figure 4-5 shows the diagram for this pin. The RA4/ AN3/T1G/OSC2/CLKOUT pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- a Timer1 gate input
- a crystal/resonator connection
- · a clock output



- 2: With CLKOUT option.
- 3: ANSEL determines Analog Input mode.
- 4: Not implemented on PIC16F631.

4.2.5.6 RA5/T1CKI/OSC1/CLKIN

Figure 4-6 shows the diagram for this pin. The RA5/ T1CKI/OSC1/CLKIN pin is configurable to function as one of the following:

- a general purpose I/O
- a Timer1 clock input
- a crystal/resonator connection
- a clock input

FIGURE 4-6: BLOCK DIAGRAM OF RA5

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CM2CON1	MC10UT	MC2OUT	—	—	—	—	T1GSS	C2SYNC	10	10
INTCON	GIE	PEIE	T0IE	INTE	RABIE	T0IF	INTF	RABIF	0000 0000	0000 0000
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
TMR1H	Holding Reg	gister for the	Most Signific	ant Byte of th	he 16-bit TMI	R1 Register		•	xxxx xxxx	uuuu uuuu
TMR1L	Holding Reg	gister for the		xxxx xxxx	uuuu uuuu					
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	uuuu uuuu

TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

REGISTER 10-1: EEI	DAT: EEPROM DATA REGISTER
--------------------	---------------------------

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
EEDAT7	EEDAT6	EEDAT5	EEDAT4	EEDAT3	EEDAT2	EEDAT1	EEDAT0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			t	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unkno			vn	

bit 7-0

EEDAT<7:0>: Eight Least Significant Address bits to Write to or Read from data EEPROM or Read from program memory

REGISTER 10-2: EEADR: EEPROM ADDRESS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EEADR7 ⁽¹⁾	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0
bit 7							bit 0
Legend:							

Legena.					
R = Readable bit	W = Writable bit	Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-0 **EEADR<7:0>**: Eight Least Significant Address bits for EEPROM Read/Write Operation⁽¹⁾ or Read from program memory

Note 1: PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.

REGISTER 10-3: EEDATH: EEPROM DATA HIGH BYTE REGISTER⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	EEDATH5	EEDATH4	EEDATH3	EEDATH2	EEDATH1	EEDATH0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	'0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 EEDATH<5:0>: Six Most Significant Data bits from program memory

Note 1: PIC16F685/PIC16F689/PIC16F690 only.

REGISTER 10-4: EEADRH: EEPROM ADDRESS HIGH BYTE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	EEADRH3	EEADRH2	EEADRH1	EEADRH0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	'0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 Unimplemented: Read as '0'

bit 3-0 **EEADRH<3:0>**: Specifies the four Most Significant Address bits or high bits for program memory reads

11.3 PWM Mode

The PWM mode generates a Pulse-Width Modulated signal on the CCP1 pin. The duty cycle, period and resolution are determined by the following registers:

- PR2
- T2CON
- CCPR1L
- CCP1CON

In Pulse-Width Modulation (PWM) mode, the CCP module produces up to a 10-bit resolution PWM output on the CCP1 pin. Since the CCP1 pin is multiplexed with the PORT data latch, the TRIS for that pin must be cleared to enable the CCP1 pin output driver.

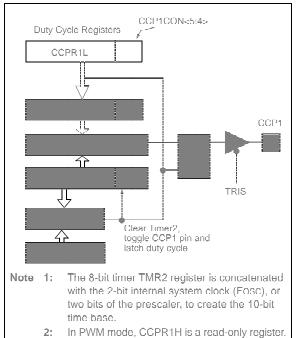
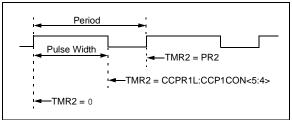
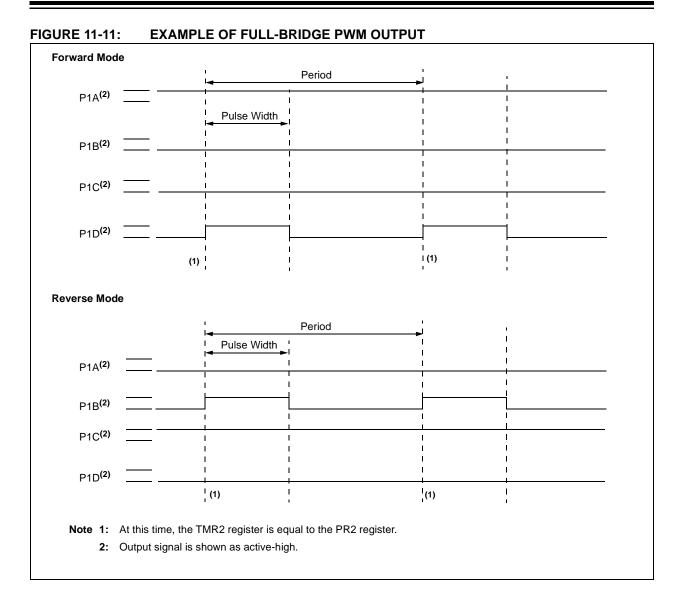

Note:	Clearing	the	CCP1CON	register	will
	relinquish	n CCF	1 control of t	he CCP1	pin.

Figure 11-3 shows a simplified block diagram of PWM operation.

Figure 11-4 shows a typical waveform of the PWM signal.


For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 11.3.7** "Setup for PWM Operation".


FIGURE 11-3: SIMPLIFIED PWM BLOCK DIAGRAM

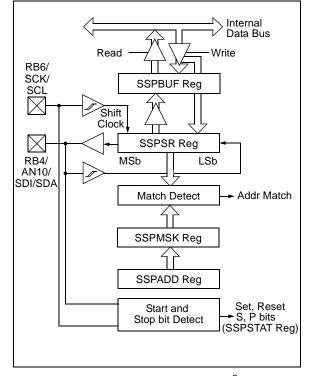
The PWM output (Figure 11-4) has a time base (period) and a time that the output stays high (duty cycle).

FIGURE 11-4: CCP PWM OUTPUT

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			nown

REGISTER 11-3: PWM1CON: ENHANCED PWM CONTROL REGISTER

bit 7	 PRSEN: PWM Restart Enable bit 1 = Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event goes away; the PWM restarts automatically 0 = Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM
bit 6-0	PDC<6:0>: PWM Delay Count bits PDCn =Number of Fosc/4 (4 * Tosc) cycles between the scheduled time when a PWM signal should transition active and the actual time it transitions active


13.11 SSP I²C Operation

The SSP module in l^2 C mode, fully implements all slave functions, except general call support, and provides interrupts on Start and Stop bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the Standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer. These are the RB6/ SCK/SCL pin, which is the clock (SCL), and the RB4/ AN10/SDI/SDA pin, which is the data (SDA).

The SSP module functions are enabled by setting SSP enable bit SSPEN (SSPCON<5>).

FIGURE 13-7: SSP BLOCK DIAGRAM (I²C™ MODE)

The SSP module has six registers for the I^2C operation, which are listed below.

- SSP Control register (SSPCON)
- SSP Status register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift register (SSPSR) Not directly accessible
- SSP Address register (SSPADD)
- SSP Mask register (SSPMSK)

The SSPCON register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with Start and Stop bit interrupts enabled to support Firmware Master mode
- I²C Slave mode (10-bit address), with Start and Stop bit interrupts enabled to support Firmware Master mode
- I²C Start and Stop bit interrupts enabled to support Firmware Master mode; Slave is idle

Selection of any I^2C mode with the SSPEN bit set forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISB bits. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I^2C module.

13.12 Slave Mode

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISB<6,4> are set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overline{ACK}) pulse, and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this ACK pulse. They include (either or both):

- a) The Buffer Full bit BF of the SSPSTAT register was set before the transfer was received.
- b) The overflow bit SSPOV of the SSPCON register was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF of the PIR1 register is set. Table 13-3 shows the results of when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

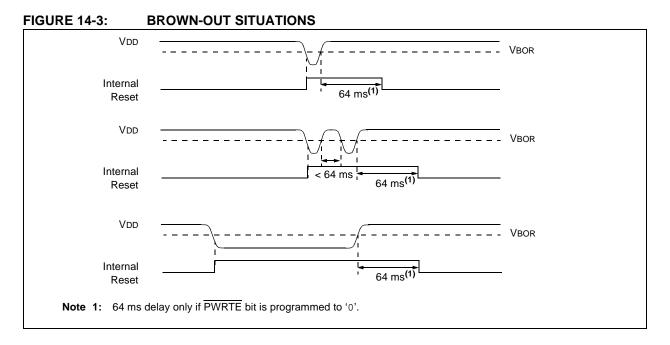
The SCL clock input must have a minimum high and low for proper operation. For high and low times of the I^2C specification, as well as the requirements of the SSP module, see **Section 17.0 "Electrical Specifications"**.

REGISTER 14-1: CONFIG: CONFIGURATION WORD REGISTER

Reserved	Reserved	FCMEN	IESO	BOREN1 ⁽¹⁾	BOREN0 ⁽¹⁾	CPD(2
bit 13	Reserved	FCIVIEIN	IES0	BORENT	BORENU	bit 7
bit 13						Dit 7
CP ⁽³⁾	MCLRE ⁽⁴⁾	PWRTE	WDTE	FOSC2	FOSC1	FOSC0
bit 6						bit 0
Legend:						
R = Readable bit		W = Writable bit		P = Programmable	,	U = Unimplemented bit, read as '0'
-n = Value at POR	8	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown
bit 13-12	Reserved: Reserve	d bite. Do Not Lloo				
bit 11		Clock Monitor Enable	ed hit			
DICTI	1 = Fail-Safe Clock 0 = Fail-Safe Clock	Monitor is enabled				
bit 10		rnal Switchover bit al Switchover mode i al Switchover mode i				
bit 9-8	11 = BOR enabled 10 = BOR enabled	wn-out Reset Selecti during operation and d by SBOREN bit of	d disabled in Sleep			
bit 7	CPD: Data Code P	rotection bit ⁽²⁾				
		ode protection is dis ode protection is ena				
bit 6	CP : Code Protectio 1 = Program memo	•	disabled			
bit 5	$1 = \overline{\text{MCLR}}$ pin funct	n Function Select bit ⁽ ion is MCLR ion is digital input, M		to VDD		
bit 4	PWRTE: Power-up 1 = PWRT disabled 0 = PWRT enabled					
bit 3	WDTE: Watchdog 1 = WDT enabled 0 = WDT disabled	Fimer Enable bit				
bit 2-0	110 =RCIO oscillat 101 =INTOSC oscill I/O function 100 = INTOSCIO o I/O function 011 =EC: I/O function 010 =HS oscillator: 001 = XT oscillator	CLKOUT function o or: I/O function on R lator: CLKOUT function on RA5/OSC1/CLKI scillator: I/O function on RA5/OSC1/CLK on on RA4/OSC2/CI High-speed crystal/ : Crystal/resonator o	A4/OSC2/CLKOUT on on RA4/OSC2/C n on RA4/OSC2/CL IN LKOUT pin, CLKIN resonator on RA4/C n RA4/OSC2/CLKC		SC1/CLKIN IN RA5/OSC1/CLKIN /CLKIN	
2: The	bling Brown-out Rese entire data EEPROM entire program memo	I will be erased wher	the code protection	on is turned off.		

4: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.

14.2.4 BROWN-OUT RESET (BOR)


The BOREN0 and BOREN1 bits in the Configuration Word register select one of four BOR modes. Two modes have been added to allow software or hardware control of the BOR enable. When BOREN<1:0> = 01, the SBOREN bit (PCON<4>) enables/disables the BOR allowing it to be controlled in software. By selecting BOREN<1:0>, the BOR is automatically disabled in Sleep to conserve power and enabled on wake-up. In this mode, the SBOREN bit is disabled. See Register 14-2 for the Configuration Word definition.

If VDD falls below VBOR for greater than parameter (TBOR) (see **Section 17.0 "Electrical Specifications"**), the Brown-out situation will reset the device. This will occur regardless of VDD slew rate. A Reset is not insured to occur if VDD falls below VBOR for less than parameter (TBOR).

On any Reset (Power-on, Brown-out Reset, Watchdog Timer, etc.), the chip will remain in Reset until VDD rises above VBOR (see Figure 14-3). The Power-up Timer will now be invoked, if enabled and will keep the chip in Reset an additional 64 ms.

Note: The Power-up Timer is enabled by the PWRTE bit in the Configuration Word register.

If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOR, the Power-up Timer will execute a 64 ms Reset.

16.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

16.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

16.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

16.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

16.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

17.2 DC Characteristics: PIC16F631/677/685/687/689/690-I (Industrial) PIC16F631/677/685/687/689/690-E (Extended)

DC CHA	RACTERISTICS		rd Opera ng tempe		ditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended			
Param	Device Characteristics	Min.	Тур†	Max.	Units		Conditions	
No.	Device Characteristics	IVIIII.	וקעי	Wax.	onits	Vdd	Note	
D010	Supply Current (IDD) ^(1, 2)	—	13	19	μA	2.0	Fosc = 32 kHz	
		—	22	30	μA	3.0	LP Oscillator mode	
		—	33	60	μA	5.0		
D011*		—	140	240	μA	2.0	Fosc = 1 MHz	
		—	220	380	μA	3.0	XT Oscillator mode	
			380	550	μA	5.0		
D012		—	260	360	μA	2.0	Fosc = 4 MHz	
		—	420	650	μA	3.0	XT Oscillator mode	
			0.8	1.1	mA	5.0		
D013*		_	130	220	μA	2.0	Fosc = 1 MHz	
			215	360	μA	3.0	EC Oscillator mode	
		—	360	520	μA	5.0		
D014		_	220	340	μA	2.0	Fosc = 4 MHz	
			375	550	μA	3.0	EC Oscillator mode	
			0.65	1.0	mA	5.0		
D015		_	8	20	μA	2.0	Fosc = 31 kHz	
			16	40	μA	3.0	LFINTOSC mode	
		—	31	65	μA	5.0		
D016*		—	340	450	μA	2.0	Fosc = 4 MHz	
		—	500	700	μA	3.0	HFINTOSC mode	
			0.8	1.2	mA	5.0		
D017		_	410	650	μA	2.0	Fosc = 8 MHz	
		—	700	950	μA	3.0	HFINTOSC mode	
			1.30	1.65	mA	5.0		
D018		_	230	400	μA	2.0	Fosc = 4 MHz	
		—	400	680	μA	3.0	EXTRC mode ⁽³⁾	
			0.63	1.1	mA	5.0		
D019		—	3.8	5.0	mA	4.5	Fosc = 20 MHz	
		—	4.0	5.45	mA	5.0	HS Oscillator mode	

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

5: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

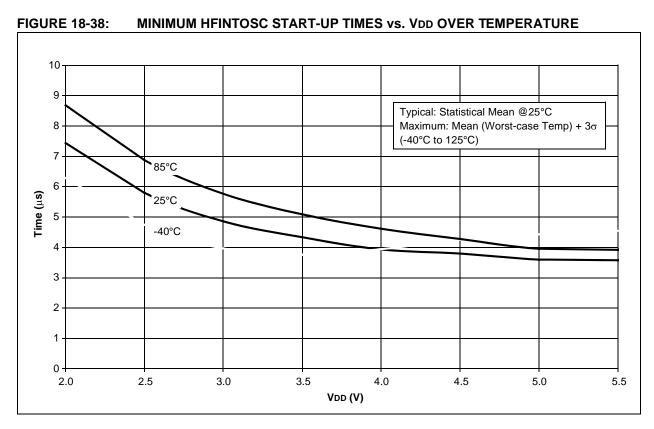
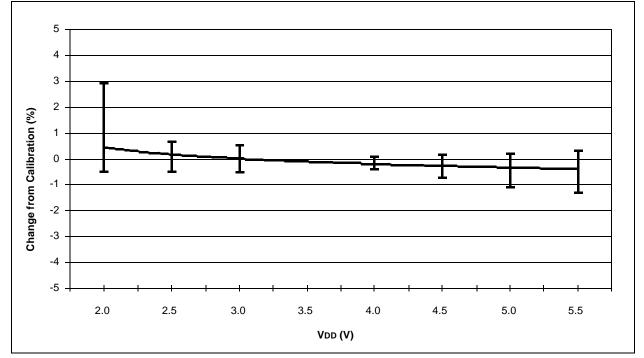



FIGURE 18-39: TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (25°C)

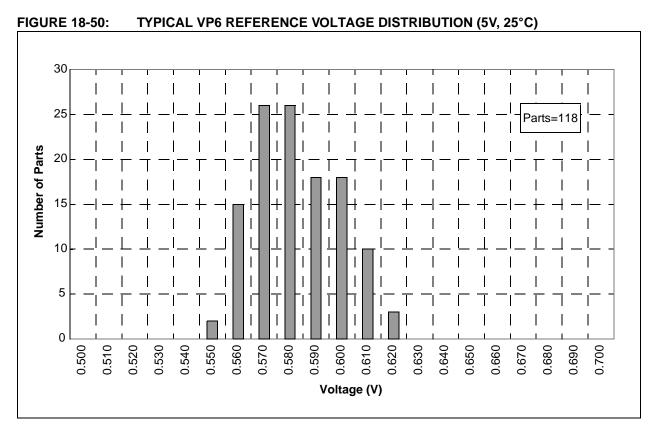
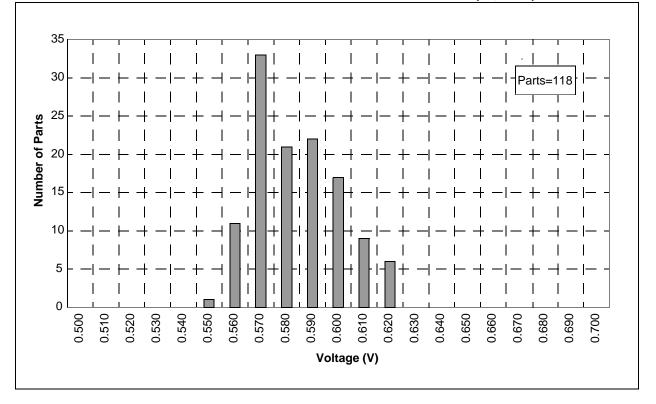
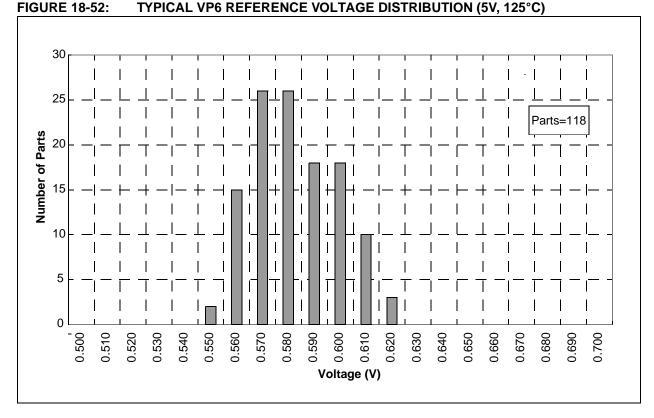
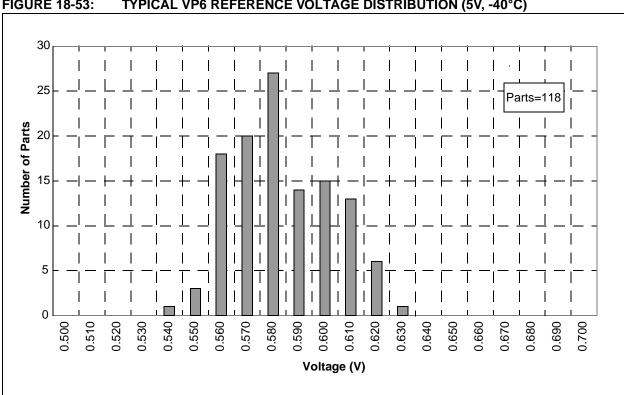
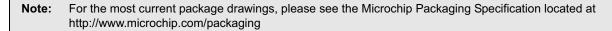
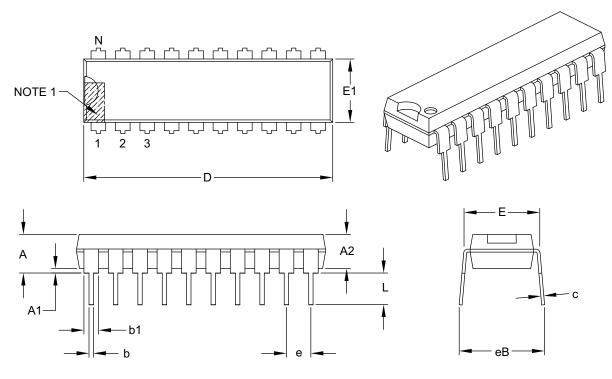





FIGURE 18-51: TYPICAL VP6 REFERENCE VOLTAGE DISTRIBUTION (5V, 85°C)




FIGURE 18-53: TYPICAL VP6 REFERENCE VOLTAGE DISTRIBUTION (5V, -40°C)

19.2 Package Details

The following sections give the technical details of the packages.

20-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

	Units			
Dimens	sion Limits	MIN	NOM	MAX
Number of Pins	Ν		20	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.300	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.980	1.030	1.060
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-019B