

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	18
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f677-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F677 Pin Diagram

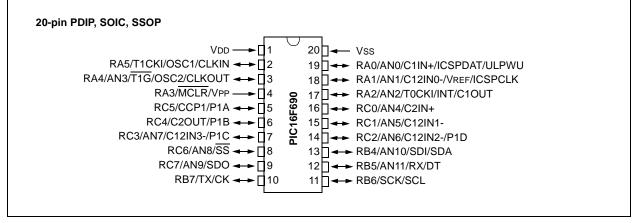

20-pin PDIP, SOIC, SSOP	
VDD	15 → RC1/AN5/C12IN1-

TABLE 2: PIC16F631 PIN SUMMARY

I/O	Pin	Analog	Comparators	Timers	Interrupt	Pull-up	Basic		
RA0	19	AN0/ULPWU	C1IN+	—	IOC	Y	ICSPDAT		
RA1	18	AN1	C12IN0-		IOC	Y	ICSPCLK		
RA2	17	—	C1OUT	T0CKI	IOC/INT	Y	—		
RA3	4	—	—	—	IOC	Y(1)	MCLR/VPP		
RA4	3	—	—	T1G	IOC	Y	OSC2/CLKOUT		
RA5	2	—	—	T1CKI	IOC	Y	OSC1/CLKIN		
RB4	13		—	—	IOC	Y	—		
RB5	12	_	—	—	IOC	Y	—		
RB6	11		—	—	IOC	Y	—		
RB7	10		—		IOC	Y	—		
RC0	16	AN4	C2IN+	—			—		
RC1	15	AN5	C12IN1-				—		
RC2	14	AN6	C12IN2-				—		
RC3	7	AN7	C12IN3-				—		
RC4	6	_	C2OUT	_	_	_	—		
RC5	5		—				—		
RC6	8		_	_		_	_		
RC7	9	_				—	—		
	1					-	Vdd		
_	20			_	_	_	Vss		

Note 1: Pull-up enabled only with external MCLR configuration.

PIC16F690 Pin Diagram (PDIP, SOIC, SSOP)

TABL	E 5:	PIC16F	690 PIN SUM	MARY						
I/O	Pin	Analog	Comparators	Timers	ECCP	EUSART	SSP	Interrupt	Pull-up	Basic
RA0	19	AN0/ULPWU	C1IN+	—	—	_	—	IOC	Y	ICSPDAT
RA1	18	AN1/VREF	C12IN0-	—	_	_	—	IOC	Y	ICSPCLK
RA2	17	AN2	C1OUT	T0CKI	_	_	—	IOC/INT	Y	
RA3	4	—	—	—	_		_	IOC	Y(1)	MCLR/VPP
RA4	3	AN3	—	T1G	_	—	—	IOC	Y	OSC2/CLKOUT
RA5	2	—	—	T1CKI	_	_	—	IOC	Y	OSC1/CLKIN
RB4	13	AN10	—	—	_	—	SDI/SDA	IOC	Y	—
RB5	12	AN11	—	—	_	RX/DT	—	IOC	Y	
RB6	11	—	—	—	_		SCL/SCK	IOC	Y	
RB7	10	—	—	—		TX/CK	_	IOC	Y	
RC0	16	AN4	C2IN+	_	_		_		_	
RC1	15	AN5	C12IN1-	—	_	_	—	_	_	_
RC2	14	AN6	C12IN2-	—	P1D		_		_	
RC3	7	AN7	C12IN3-	—	P1C	_	—	-	_	_
RC4	6		C2OUT	—	P1B	_	—	_	_	_
RC5	5		—	—	CCP1/P1A	_	—	_	_	_
RC6	8	AN8	—	—	—	—	SS	—	—	—
RC7	9	AN9		—	_	_	SDO	_	_	
	1			—	_	_	—	_		Vdd
_	20	_	_	—	_	_	—	_	—	Vss
Note 1	I: Pul	I-up activated on	ly with external I	MCLR co	nfiguration.					

2.2.2.2 OPTION Register

The OPTION register, shown in Register 2-2, is a readable and writable register, which contains various control bits to configure:

- Timer0/WDT prescaler
- External RA2/INT interrupt
- Timer0
- Weak pull-ups on PORTA/PORTB

Note: To achieve a 1:1 prescaler assignment for Timer0, assign the prescaler to the WDT by setting PSA bit of the OPTION register to '1'. See Section 6.3 "Timer1 Prescaler".

REGISTER 2-2: OPTION_REG: OPTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RABPU	PU INTEDG TOCS 1		TOSE	PSA	PS2	PS1	PS0
bit 7							bit 0

Legend:											
R = Reada	ble bit	VV = V	Writable bit		U = Unimplemented bit	, read as '0'					
-n = Value	at POR	'1' =	Bit is set		'0' = Bit is cleared	x = Bit is unknown					
bit 7			ORTB Pull-up		t						
			pull-ups are pull-ups are		y individual PORT latch	values					
bit 6	INTED	G: Interrupt E	Edge Select b	it							
			ng edge of RA								
bit 5	T0CS:	TOCS: Timer0 Clock Source Select bit									
	1 = Tra	1 = Transition on RA2/T0CKI pin									
	0 = Inte	0 = Internal instruction cycle clock (Fosc/4)									
bit 4	T0SE:	T0SE: Timer0 Source Edge Select bit									
		 1 = Increment on high-to-low transition on RA2/T0CKI pin 0 = Increment on low-to-high transition on RA2/T0CKI pin 									
bit 3		PSA: Prescaler Assignment bit									
	 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module 										
bit 2-0	PS<2:0	PS<2:0>: Prescaler Rate Select bits									
		Bit Value	Timer0 Rate	WDT Rate	e						
		000	1:2	1:1	-						
		001	1:4	1:2							
		010 011	1:8 1:16	1:4 1:8							
				1							

100

101

110 111 1:32

1 : 64 1 : 128

1:256

1 : 16 1 : 32

1:64

1:128

4.2 Additional Pin Functions

Every PORTA pin on this device family has an interrupton-change option and a weak pull-up option. RA0 also has an Ultra Low-Power Wake-up option. The next three sections describe these functions.

4.2.1 ANSEL AND ANSELH REGISTERS

The ANSEL and ANSELH registers are used to disable the input buffers of I/O pins, which allow analog voltages to be applied to those pins without causing excessive current. Setting the ANSx bit of a corresponding pin will cause all digital reads of that pin to return '0' and also permit analog functions of that pin to operate correctly.

The state of the ANSx bit has no effect on the digital output function of its corresponding pin. A pin with the TRISx bit clear and ANSx bit set will operate as a digital output, together with the analog input function of that pin. Pins with the ANSx bit set always read '0', which can cause unexpected behavior when executing read or write operations on the port due to the read-modifywrite sequence of all such operations.

4.2.2 WEAK PULL-UPS

Each of the PORTA pins, except RA3, has an individually configurable internal weak pull-up. Control bits WPUAx enable or disable each pull-up. Refer to Register 4-4. Each weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the RABPU bit of the OPTION register. A weak pull-up is automatically enabled for RA3 when configured as MCLR and disabled when RA3 is an I/O. There is no software control of the MCLR pull-up.

4.2.3 INTERRUPT-ON-CHANGE

Each PORTA pin is individually configurable as an interrupt-on-change pin. Control bits IOCAx enable or disable the interrupt function for each pin. Refer to Register 4-6. The interrupt-on-change is disabled on a Power-on Reset.

For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of PORTA. The 'mismatch' outputs of the last read are OR'd together to set the PORTA Change Interrupt Flag bit (RABIF) in the INTCON register (Register 2-6).

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, clears the interrupt by:

- a) Any read or write of PORTA. This will end the mismatch condition, then,
- b) Clear the flag bit RABIF.

A mismatch condition will continue to set flag bit RABIF. Reading PORTA will end the mismatch condition and allow flag bit RABIF to be cleared. The latch holding the last read value is not affected by a MCLR nor BOR Reset. After these Resets, the RABIF flag will continue to be set if a mismatch is present.

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RABIF interrupt flag may not get set.

4.3 PORTB and TRISB Registers

PORTB is a 4-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 4-6). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 4-3 shows how to initialize PORTB. Reading the PORTB register (Register 4-5) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch.

The TRISB register controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

EXAMPLE 4-3: INITIALIZING PORTB

BCF	STATUS, RPO	;Bank 0
BCF	STATUS, RP1	;
CLRF	PORTB	;Init PORTB
BSF	STATUS, RPO	;Bank 1
MOVLW	FFh	;Set RB<7:4> as inputs
MOVWF	TRISB	;
BCF	STATUS, RPO	;Bank 0

Note: The ANSELH register must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'.

4.4 Additional PORTB Pin Functions

PORTB pins RB<7:4> on the device family device have an interrupt-on-change option and a weak pull-up option. The following three sections describe these PORTB pin functions.

REGISTER 4-7: PORTB: PORTB REGISTER

4.4.1 WEAK PULL-UPS

Each of the PORTB pins has an individually configurable internal weak pull-up. Control bits WPUB<7:4> enable or disable each pull-up (see Register 4-9). Each weak pull up is automatically turned off when the port pin is configured as an output. <u>All pull-ups</u> are disabled on a Power-on Reset by the RABPU bit of the OPTION register.

4.4.2 INTERRUPT-ON-CHANGE

Four of the PORTB pins are individually configurable as an interrupt-on-change pin. Control bits IOCB<7:4> enable or disable the interrupt function for each pin. Refer to Register 4-10. The interrupt-on-change feature is disabled on a Power-on Reset.

For enabled interrupt-on-change pins, the present value is compared with the old value latched on the last read of PORTB to determine which bits have changed or mismatch the old value. The 'mismatch' outputs are OR'd together to set the PORTB Change Interrupt flag bit (RABIF) in the INTCON register (Register 2-3).

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, clears the interrupt by:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear the flag bit RABIF.

A mismatch condition will continue to set flag bit RABIF. Reading or writing PORTB will end the mismatch condition and allow flag bit RABIF to be cleared. The latch holding the last read value is not affected by a MCLR nor Brown-out Reset. After these Resets, the RABIF flag will continue to be set if a mismatch is present.

Note:	If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RABIF interrupt flag may not get set. Furthermore, since a read or write on a port affects all bits of that port, care must be taken when using multiple pins in Interrupt-on-Change mode. Changes on one pin may not be seen while servicing changes on another pin.

R/W-x	R/W-x	R/W-x	R/W-x	U-0	U-0	U-0	U-0		
RB7	RB6	RB5	RB4	—	—	—	_		
bit 7	•						bit (
Legend:									
R = Readable bi	t	W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at PO	R	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 7-4	RB<7:4> : PORT 1 = Port pin is > 0 = Port pin is <	Vih							
bit 3-0	Unimplemented	I Read as '0'							

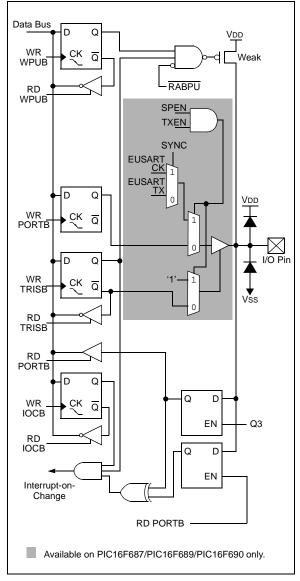

4.4.3.4 RB7/TX/CK

Figure 4-10 shows the diagram for this pin. The RB7/ $TX/CK^{(1)}$ pin is configurable to function as one of the following:

- a general purpose I/O
- an asynchronous serial output
- a synchronous clock I/O

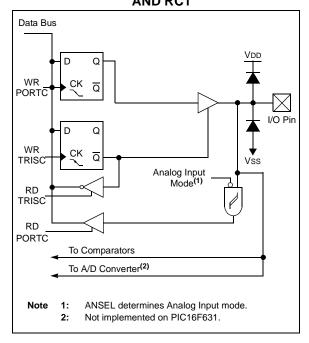
Note 1: TX and CK are available on PIC16F687/ PIC16F689/PIC16F690 only.

FIGURE 4-10: BLOCK DIAGRAM OF RB7

4.5.1 RC0/AN4/C2IN+

The RC0 is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- an analog input to Comparator C2


4.5.2 RC1/AN5/C12IN1-

The RC1 is configurable to function as one of the following:

- a general purpose I/O
- · an analog input for the ADC
- an analog input to Comparator C1 or C2

FIGURE 4-11:

BLOCK DIAGRAM OF RC0 AND RC1

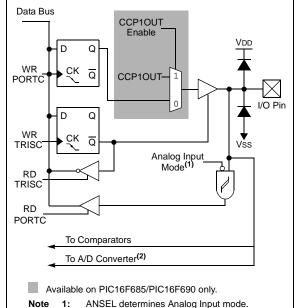
RC2/AN6/C12IN2-/P1D 4.5.3

The RC2/AN6/P1D⁽¹⁾ is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- · a PWM output
- an analog input to Comparator C1 or C2

Note 1: P1D is available on PIC16F685/ PIC16F690 only.

4.5.4 RC3/AN7/C12IN3-/P1C


The RC3/AN7/P1C⁽¹⁾ is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- · a PWM output
- · a PWM output
- an analog input to Comparator C1 or C2

Note 1: P1C is available on PIC16F685/ PIC16F690 only.

FIGURE 4-12:

BLOCK DIAGRAM OF RC2 AND RC3

1: ANSEL determines Analog Input mode.

2: Not implemented on PIC16F631.

TABLE 4-3:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTC
------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
ANSELH	_	_	_		ANS11	ANS10	ANS9	ANS8	1111	1111
CCP1CON ⁽²⁾	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	0000 0000
CM2CON0	C2ON	C2OUT	C2OE	C2POL	—	C2R	C2CH1	C2CH0	0000 -000	0000 -000
CM2CON1	MC10UT	MC2OUT	_	-	_	_	T1GSS	C2SYNC	0010	0010
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	uuuu uuuu
PSTRCON	_	_	_	STRSYNC	STRD	STRC	STRB	STRA	0 0001	0 0001
SRCON	SR1	SR0	C1SEN	C2REN	PULSS	PULSR	_	_	0000 00	0000 00
SSPCON ⁽¹⁾	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
VRCON	C1VREN	C2VREN	VRR	VP6EN	VR3	VR2	VR1	VR0	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

Note 1: PIC16F687/PIC16F689/PIC16F690 only.

2: PIC16F685/PIC16F690 only.

5.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A single software programmable prescaler is available for use with either Timer0 or the Watchdog Timer (WDT), but not both simultaneously. The prescaler assignment is controlled by the PSA bit of the OPTION register. To assign the prescaler to Timer0, the PSA bit must be cleared to a '0'.

There are eight prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be assigned to the WDT module.

The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, all instructions writing to the TMR0 register will clear the prescaler.

When the prescaler is assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT.

5.1.3.1 Switching Prescaler Between Timer0 and WDT Modules

As a result of having the prescaler assigned to either Timer0 or the WDT, it is possible to generate an unintended device Reset when switching prescaler values. When changing the prescaler assignment from Timer0 to the WDT module, the instruction sequence shown in Example 5-1, must be executed.

EXAMPLE 5-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)

BANKSEL	TMR0	;
CLRWDT		;Clear WDT
CLRF	TMR0	;Clear TMR0 and
		;prescaler
BANKSEL	OPTION_REG	;
BSF	OPTION_REG,	PSA;Select WDT
CLRWDT		;
		i
MOVLW	b'11111000'	; ;Mask prescaler
MOVLW ANDWF	b'11111000' OPTION_REG,	-
	OPTION_REG,	-
ANDWF	OPTION_REG,	W; bits ;Set WDT prescaler

When changing the prescaler assignment from the WDT to the Timer0 module, the following instruction sequence must be executed (see Example 5-2).

EXAMPLE 5-2: CHANGING PRESCALER (WDT \rightarrow TIMER0)

CLRWDT	;Clear WDT and
	;prescaler
BANKSEL	OPTION_REG ;
MOVLW	b'11110000';Mask TMR0 select and
ANDWF	OPTION_REG,W; prescaler bits
IORLW	b'00000011';Set prescale to 1:16
MOVWF	OPTION_REG ;

5.1.4 TIMER0 INTERRUPT

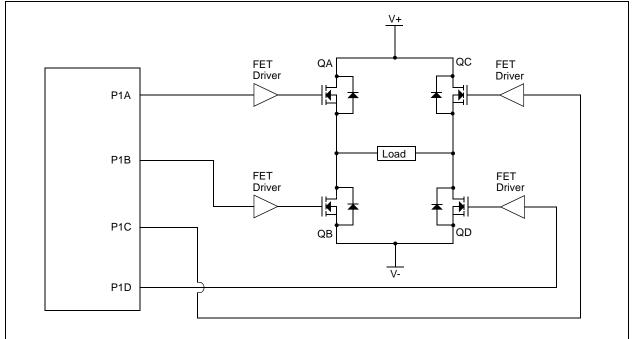
Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The T0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The T0IF bit must be cleared in software. The Timer0 interrupt enable is the T0IE bit of the INTCON register.

Note:	The Timer0 interrupt cannot wake the						
	processor from Sleep since the timer is						
	frozen during Sleep.						

5.1.5 USING TIMER0 WITH AN EXTERNAL CLOCK

When Timer0 is in Counter mode, the synchronization of the T0CKI input and the Timer0 register is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, the high and low periods of the external clock source must meet the timing requirements as shown in Section 17.0 "Electrical Specifications".

11.4.2 FULL-BRIDGE MODE


In Full-Bridge mode, all four pins are used as outputs. An example of Full-Bridge application is shown in Figure 11-10.

In the Forward mode, pin CCP1/P1A is driven to its active state, pin P1D is modulated, while P1B and P1C will be driven to their inactive state as shown in Figure 11-11.

In the Reverse mode, P1C is driven to its active state, pin P1B is modulated, while P1A and P1D will be driven to their inactive state as shown Figure 11-11.

P1A, P1B, P1C and P1D outputs are multiplexed with the PORT data latches. The associated TRIS bits must be cleared to configure the P1A, P1B, P1C and P1D pins as outputs.

FIGURE 11-10: EXAMPLE OF FULL-BRIDGE APPLICATION

11.4.7 PULSE STEERING MODE

In Single Output mode, pulse steering allows any of the PWM pins to be the modulated signal. Additionally, the same PWM signal can be simultaneously available on multiple pins.

Once the Single Output mode is selected (CCP1M<3:2> = 11 and P1M<1:0> = 00 of the CCP1CON register), the user firmware can bring out the same PWM signal to one, two, three or four output pins by setting the appropriate STR<D:A> bits of the PSTRCON register, as shown in Figure 11-19.

Note: The associated TRIS bits must be set to output ('0') to enable the pin output driver in order to see the PWM signal on the pin.

While the PWM Steering mode is active, CCP1M<1:0> bits of the CCP1CON register select the PWM output polarity for the P1<D:A> pins.

The PWM auto-shutdown operation also applies to PWM Steering mode as described in **Section 11.4.4** "**Enhanced PWM Auto-shutdown mode**". An autoshutdown event will only affect pins that have PWM outputs enabled.

REGISTER 11-4: PSTRCON: PULSE STEERING CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	
_		_	STRSYNC	STRD	STRC	STRB	STRA	
bit 7		·					bit (
Legend:								
R = Readat	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'		
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 7-5	Unimpleme	ented: Read as	'0'					
bit 4	STRSYNC:	Steering Sync I	pit					
	1 = Output	steering update	occurs on next	PWM period				
	0 = Output	steering update	occurs at the be	eginning of the	instruction cyc	le boundary		
bit 3	STRD: Stee	ering Enable bit	D					
		has the PWM		olarity control	from CCP1M<	1:0>		
	0 = P1D pir	n is assigned to	port pin					
bit 2	STRC: Stee	ering Enable bit	С					
	1 = P1C pir	has the PWM	waveform with p	olarity control	from CCP1M<	1:0>		
	0 = P1C pir	n is assigned to	port pin					
bit 1	STRB: Stee	ering Enable bit	В					
	1 = P1B pin has the PWM waveform with polarity control from CCP1M<1:0>							
	0 = P1B pin is assigned to port pin							
bit 0	STRA: Stee	STRA: Steering Enable bit A						
	1 = P1A pin has the PWM waveform with polarity control from CCP1M<1:0>							
	0 = P1A pir	n is assigned to	port pin					

Note 1: The PWM Steering mode is available only when the CCP1CON register bits CCP1M<3:2> = 11 and P1M<1:0> = 00.

12.4.1.5 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCSTA register) or the Continuous Receive Enable bit (CREN of the RCSTA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCREG. The RCIF bit remains set as long as there are un-read characters in the receive FIFO.

12.4.1.6 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TX/ CK pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

12.4.1.7 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCREG is read to access the FIFO. When this happens the OERR bit of the RCSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RCREG. If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

12.4.1.8 Receiving 9-bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will shift 9-bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREG.

12.4.1.9 Synchronous Master Reception Setup:

- 1. Initialize the SPBRGH, SPBRG register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set bit RX9.
- 6. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- 7. Interrupt flag bit RCIF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

REGISTER 13-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER⁽¹⁾

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/A	Р	S	R/W	UA	BF
bit 7							bit (
Legend:						(a)	
R = Readable b		W = Writable bit			nented bit, read a		
-n = Value at PC	DR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	wn
bit 7	SPI Master mo 1 = Input data = 0 = Input data = SPI Slave mod SMP must be o I^2C^{TM} mode:	sampled at end of sampled at middle	data output ti of data outpu is used in Sla	ut time (Microwire	e)		
bit 6	CKE: SPI Clock Edge Select bit SPI mode. CKP = 0: 1 = Data transmitted on rising edge of SCK (Microwire alternate) 0 = Data transmitted on falling edge of SCK SPI mode. CKP = 1: 1 = Data transmitted on falling edge of SCK (Microwire default) 0 = Data transmitted on falling edge of SCK (Microwire default) 0 = Data transmitted on rising edge of SCK (Microwire default) 0 = Data transmitted on rising edge of SCK (Microwire default) 0 = Data transmitted on rising edge of SCK (Microwire default) 0 = Data transmitted on rising edge of SCK (Microwire default) 0 = Data transmitted on rising edge of SCK (Microwire default) 0 = Data transmitted on rising edge of SCK (Microwire default) 0 = Data transmitted on rising edge of SCK (Microwire default) 0 = Data transmitted on rising edge of SCK (Microwire default) 0 = Data transmitted on rising edge of SCK (Microwire default) 0 = Data transmitted on rising edge of SCK (Microwire default) 0 = Data transmitted on rising edge of SCK (Microwire default)						
bit 5	1 = Indicates the	DRESS bit (I ² C m nat the last byte re nat the last byte re	eceived or trar				
bit 4	SSPEN is clea 1 = Indicates th	red when the SSP	been detected			tected last.	
bit 3	SSPEN is clea 1 = Indicates th	red when the SSP	been detected			tected last.	
bit 2	This bit holds th	RITE bit Information ne R/W bit informa rt bit, Stop bit or A	tion following		match. This bit is	only valid from the	address match
bit 1	1 = Indicates th	ldress bit (10-bit l ² nat the user needs bes not need to be	s to update the		SSPADD registe	r	
bit 0	1 = Receive co 0 = Receive no <u>Transmit (I^2Cr</u> 1 = Transmit in	and I ² C modes): omplete, SSPBUF ot complete, SSPE	BUF is empty JF is full				
		689/PIC16F690 or	•				

2: Does not update if receive was ignored.

13.12.2 RECEPTION

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address <u>byte</u> overflow condition exists, then no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF of the SSPSTAT register is set, or bit SSPOV of the SSPCON register is set. This is an error condition due to the user's firmware.

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF of the PIR1 register must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

FIGURE 13-8:	I ² C [™] WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

- R/	$\overline{V} = 0$			
Receiving Address	ACK Receivin	g Data ACK	Receiving Data	ACK
SDA I A7 A6 A5 A4 A3 A2 A1	/D7XD6XD5XD4X	$D3 \langle D2 \rangle D1 \langle D0 \rangle / D7 \rangle$	D6\D5\D4\D3\D2\D1	
SCL <u>'IS</u> ! <u>1</u> 2 <u>3</u> 4 <u>5</u> 6 <u>7</u> 8	9 + 1 2 3 4			_/8 \ /9_/ ⁺ ⊢
				i T
SSPIF (PIR1<3>)	Cleared	in software		Bus Master
		I I		terminates transfer
BF (SSPSTAT<0>)	SSPBUF re	nister is read		
		gister is read		
				1
SSPOV (SSPCON<6>)				
	Dit (
	Bit S	SPOV is set because the	SSPBUF register is still full	.
			ACK is not ser	nt

14.4 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W and STATUS registers). This must be implemented in software.

Since the upper 16 bytes of all GPR banks are common in the PIC16F631/677/685/687/689/690 (see Figures 2-2 and 2-3), temporary holding registers, W_TEMP and STATUS_TEMP, should be placed in here. These 16 locations do not require banking and therefore, make it easier to context save and restore. The same code shown in Example 14-1 can be used to:

- Store the W register
- Store the STATUS register
- Execute the ISR code
- Restore the Status (and Bank Select Bit register)
- Restore the W register

Note: The PIC16F631/677/685/687/689/690 normally does not require saving the PCLATH. However, if computed GOTO's are used in the ISR and the main code, the PCLATH must be saved and restored in the ISR.

EXAMPLE 14-1: SAVING STATUS AND W REGISTERS IN RAM

MOVWF SWAPF CLRF MOVWF :	STATUS,W STATUS	;Copy W to TEMP register ;Swap status to be saved into W ;bank 0, regardless of current bank, Clears IRP,RP1,RP0 ;Save status to bank zero STATUS_TEMP register
:(ISR :)	;Insert user code here
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W ;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

WDT CONTROL

enable it and clearing the bit will disable it.

register. When set, the WDT runs continuously.

The WDTE bit is located in the Configuration Word

When the WDTE bit in the Configuration Word register

is set, the SWDTEN bit of the WDTCON register has no

effect. If WDTE is clear, then the SWDTEN bit can be

used to enable and disable the WDT. Setting the bit will

The PSA and PS<2:0> bits of the OPTION register

have the same function as in previous versions of the PIC16F631/677/685/687/689/690 Family of microcon-

trollers. See Section 5.0 "Timer0 Module" for more

14.5.2

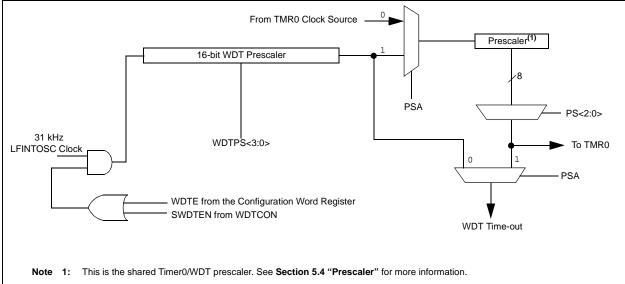
information.

14.5 Watchdog Timer (WDT)

The WDT has the following features:

- Operates from the LFINTOSC (31 kHz)
- Contains a 16-bit prescaler
- Shares an 8-bit prescaler with Timer0
- Time-out period is from 1 ms to 268 seconds
- · Configuration bit and software controlled

WDT is cleared under certain conditions described in Table 14-7.


14.5.1 WDT OSCILLATOR

The WDT derives its time base from the 31 kHz LFINTOSC. The LTS bit of the OSCCON register does not reflect that the LFINTOSC is enabled.

The value of WDTCON is '---0 1000' on all Resets. This gives a nominal time base of 17 ms.

Note:	When the Oscillator Start-up Timer (OST)							
	is invoked, the WDT is held in Reset,							
	because the WDT Ripple Counter is used							
	by the OST to perform the oscillator delay							
	count. When the OST count has expired,							
	the WDT will begin counting (if enabled).							

FIGURE 14-9: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 14-7: WDT STATUS

Conditions	WDT
WDTE = 0	Cleared
CLRWDT Command	
Oscillator Fail Detected	
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK	
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST

17.4 DC Characteristics: PIC16F631/677/685/687/689/690-I (Industrial) PIC16F631/677/685/687/689/690-E (Extended)

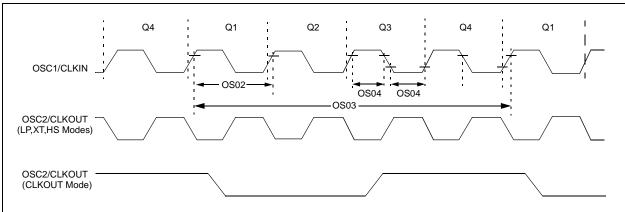
DC CHA	ARACTER	ISTICS				less otherwise stated) TA \leq +85°C for industrial TA \leq +125°C for extended		
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
	VIL	Input Low Voltage						
		I/O Port:						
D030		with TTL buffer	Vss	—	0.8	V	$4.5V \leq V \text{DD} \leq 5.5V$	
D030A			Vss	—	0.15 Vdd	V	$2.0V \leq V\text{DD} \leq 4.5V$	
D031		with Schmitt Trigger buffer	Vss	_	0.2 Vdd	V	$2.0V \le VDD \le 5.5V$	
D032		MCLR, OSC1 (RC mode) ⁽¹⁾	Vss	—	0.2 Vdd	V		
D033		OSC1 (XT and LP modes)	Vss	_	0.3	V		
D033A		OSC1 (HS mode)	Vss	—	0.3 Vdd	V		
	VIH	Input High Voltage						
		I/O Ports:		_				
D040		with TTL buffer	2.0	_	Vdd	V	$4.5V \le VDD \le 5.5V$	
D040A			0.25 VDD + 0.8	—	Vdd	V	$2.0V \le VDD \le 4.5V$	
D041		with Schmitt Trigger buffer	0.8 Vdd	_	Vdd	V	$2.0V \le VDD \le 5.5V$	
D042		MCLR	0.8 Vdd	_	Vdd	V		
D043		OSC1 (XT and LP modes)	1.6	_	Vdd	V		
D043A		OSC1 (HS mode)	0.7 Vdd	—	Vdd	V		
D043B		OSC1 (RC mode)	0.9 Vdd	_	Vdd	V	(Note 1)	
	lı∟	Input Leakage Current ⁽²⁾						
D060		I/O ports	_	± 0.1	± 1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance	
D061		MCLR ⁽³⁾	—	± 0.1	± 5	μA	$VSS \leq VPIN \leq VDD$	
D063		OSC1	_	± 0.1	± 5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP oscillator configuration	
D070*	IPUR	PORTA Weak Pull-up Current	50	250	400	μΑ	VDD = 5.0V, VPIN = VSS	
	Vol	Output Low Voltage ⁽⁵⁾						
D080		I/O ports	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V (Ind.)	
	Voh	Output High Voltage ⁽⁵⁾						
D090		I/O ports	Vdd - 0.7	-	_	V	IOH = -3.0 mA, VDD = 4.5V (Ind.)	
D100	IULP	Ultra Low-Power Wake-up Current	_	200	_	nA	See Application Note AN879, "Using the Microchip Ultra Low-Power Wake-up Module" (DS00879)	
		Capacitive Loading Specs on Output Pins						

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

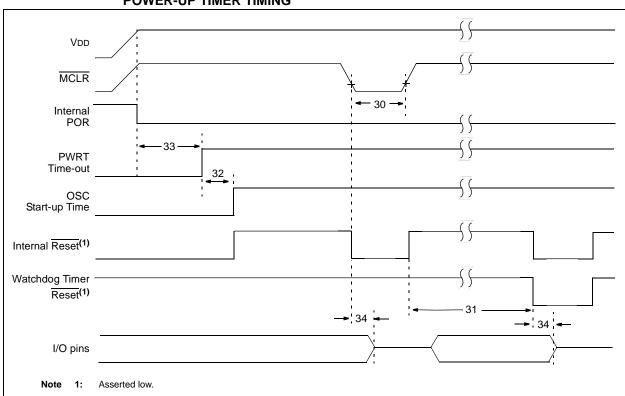
2: Negative current is defined as current sourced by the pin.


3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: See Section 10.2.1 "Using the Data EEPROM" for additional information.

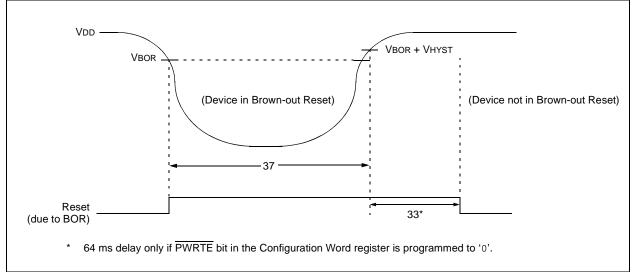
5: Including OSC2 in CLKOUT mode.

17.7 AC Characteristics: PIC16F631/677/685/687/689/690 (Industrial, Extended)


TABLE 17-1: CLOCK OSCILLATOR TIMING REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	37	kHz	LP Oscillator mode	
			DC	—	4	MHz	XT Oscillator mode	
			DC	—	20	MHz	HS Oscillator mode	
			DC	—	20	MHz	EC Oscillator mode	
		Oscillator Frequency ⁽¹⁾	_	32.768	_	kHz	LP Oscillator mode	
			0.1	—	4	MHz	XT Oscillator mode	
			1	—	20	MHz	HS Oscillator mode	
			DC	—	4	MHz	RC Oscillator mode	
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	_	×	μS	LP Oscillator mode	
			250	—	×	ns	XT Oscillator mode	
			50	—	×	ns	HS Oscillator mode	
			50	—	∞	ns	EC Oscillator mode	
		Oscillator Period ⁽¹⁾	_	30.5	_	μS	LP Oscillator mode	
			250	—	10,000	ns	XT Oscillator mode	
			50	—	1,000	ns	HS Oscillator mode	
			250	—	—	ns	RC Oscillator mode	
OS03	TCY	Instruction Cycle Time ⁽¹⁾	200	TCY	DC	ns	Tcy = 4/Fosc	
OS04*	TosH,	External CLKIN High,	2	—	—	μS	LP oscillator	
	TosL	External CLKIN Low	100	—	—	ns	XT oscillator	
			20	—	—	ns	HS oscillator	
OS05*	TosR,	External CLKIN Rise,	0	_	×	ns	LP oscillator	
	TosF	External CLKIN Fall	0	—	×	ns	XT oscillator	
			0	—	∞	ns	HS oscillator	

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

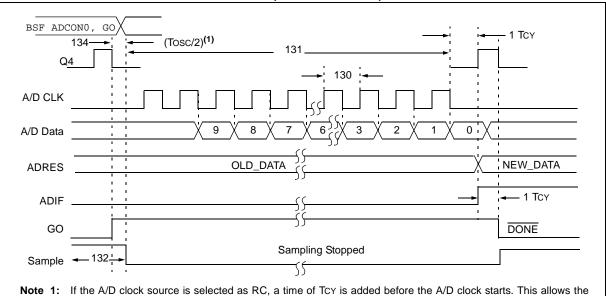

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at 'min' values with an external clock applied to OSC1 pin. When an external clock input is used, the 'max' cycle time limit is 'DC' (no clock) for all devices.

FIGURE 17-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 17-18: A/D CONVERSION TIMING (NORMAL MODE)

TABLE 17-16: A/D CONVERSION REQUIREMENTS

SLEEP instruction to be executed.

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
130*	Tad	A/D Clock Period	1.5	—	_	μS	Tosc-based, VREF \ge 2.5V
			3.0*	—	—	μs	Tosc-based, VREF full range
		A/D Internal RC Oscillator Period	3.0*	6.0	9.0*	μs	ADCS<1:0> = 11 (RC mode) At VDD = 2.5V
			2.0*	4.0	6.0*	μS	At VDD = 5.0V
131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	_	11	_	TAD	Set GO bit to new data in A/D Result register
132*	TACQ	Acquisition Time	(2)	11.5		μs	
			5*	_	_	μS	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 4.1 mV @ 4.096V) from the last sampled voltage (as stored on CHOLD).
134	TGO	Q4 to A/D Clock Start		Tosc/2	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRESH and ADRESL registers may be read on the following TCY cycle.

2: See Table 9-1 for minimum conditions.