

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	18
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f677t-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RB7	RB7	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
RC0/AN4/C2IN+	RC0	ST	CMOS	General purpose I/O.
	AN4	AN	_	A/D Channel 4 input.
	C2IN+	AN		Comparator C2 non-inverting input.
RC1/AN5/C12IN1-	RC1	ST	CMOS	General purpose I/O.
	AN5	AN		A/D Channel 5 input.
	C12IN1-	AN		Comparator C1 or C2 inverting input.
RC2/AN6/C12IN2-	RC2	ST	CMOS	General purpose I/O.
	AN6	AN	_	A/D Channel 6 input.
	C12IN2-	AN		Comparator C1 or C2 inverting input.
RC3/AN7/C12IN3-	RC3	ST	CMOS	General purpose I/O.
	AN7	AN	_	A/D Channel 7 input.
	C12IN3-	AN		Comparator C1 or C2 inverting input.
RC4/C2OUT	RC4	ST	CMOS	General purpose I/O.
	C2OUT	—	CMOS	Comparator C2 output.
RC5	RC5	ST	CMOS	General purpose I/O.
RC6/AN8/SS	RC6	ST	CMOS	General purpose I/O.
	AN8	AN	_	A/D Channel 8 input.
	SS	ST	—	Slave Select input.
RC7/AN9/SDO	RC7	ST	CMOS	General purpose I/O.
	AN9	AN		A/D Channel 9 input.
	SDO	—	CMOS	SPI data output.
Vss	Vss	Power		Ground reference.
Vdd	Vdd	Power		Positive supply.

TABLE 1-2: PINOUT DESCRIPTION – PIC16F677 (CONTINUED)

Legend: AN = Analog input or output

TTL = TTL compatible input

HV = High Voltage

CMOS=CMOS compatible input or output

ST= Schmitt Trigger input with CMOS levels XTAL= Crystal

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank	1										
80h	INDF	Addressing	this location	n uses conte	ents of FSR	to address c	ata memory	(not a physic	cal register)	xxxx xxxx	43,200
81h	OPTION_REG	RABPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	36,200
82h	PCL	Program C	ounter's (PC	C) Least Sig	nificant Byte)				0000 0000	43,200
83h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	35,200
84h	FSR	Indirect Dat	ta Memory A	Address Poi	nter					xxxx xxxx	43,200
85h	TRISA	-	-	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	57,200
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	—	_	_	—	1111	68,201
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	74,200
88h	—	Unimpleme	nted							—	—
89h	—	Unimpleme	nted							—	—
8Ah	PCLATH	—	—	—	Write Buffe	er for the upp	per 5 bits of t	he Program	Counter	0 0000	43,200
8Bh	INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF ⁽¹⁾	0000 000x	37,200
8Ch	PIE1	—	ADIE ⁽⁴⁾	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE ⁽⁵⁾	CCP1IE ⁽³⁾	TMR2IE ⁽³⁾	TMR1IE	-000 0000	38,201
8Dh	PIE2	OSFIE	C2IE	C1IE	EEIE	—			_	0000	39,201
8Eh	PCON	—	—	ULPWUE	SBOREN	—		POR	BOR	01qq	42,201
8Fh	OSCCON	_	IRCF2	IRCF1	IRCF0	OSTS	HTS	LTS	SCS	-110 q000	46,201
90h	OSCTUNE	—	—	—	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	50,201
91h	_	Unimpleme	nted							_	_
92h	PR2 ⁽³⁾	Timer2 Per	iod Register							1111 1111	89,201
93h	SSPADD ^(5,7)	Synchrono	us Serial Po	rt (l ² C mode	e) Address I	Register				0000 0000	184,201
93h	SSPMSK ^(5,7)	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	1111 1111	187,201
94h	SSPSTAT ⁽⁵⁾	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	176,201
95h	WPUA ⁽⁶⁾	_	_	WPUA5	WPUA4	_	WPUA2	WPUA1	WPUA0	11 -111	60,201
96h	IOCA	—	_	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0	00 0000	60,201
97h	WDTCON	_	—	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	0 1000	208,201
98h	TXSTA ⁽²⁾	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	157,201
99h	SPBRG ⁽²⁾	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	160,201
9Ah	SPBRGH(2)	BRG15	BRG14	BRG13	BRG12	BRG11	BRG10	BRG9	BRG8	0000 0000	160,201
9Bh	BAUDCTL ⁽²⁾	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	159,201
9Ch	_	Unimpleme	nted		•	•			•	_	—
9Dh	—	Unimpleme	nted							_	—
9Eh	ADRESL ⁽⁴⁾	A/D Result	Register Lo	w Byte						xxxx xxxx	113,201
9Fh	ADCON1 ⁽⁴⁾	_	ADCS2	ADCS1	ADCS0	_	_	_	_	-000	112,201

TABLE 2-2: PIC16F631/677/685/687/689/690 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1

Legend: -= Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented Note 1: MCLR and WDT Reset do not affect the previous value data latch. The RABIF bit will be cleared upon Reset but will set again if the mismatch exists.

2: PIC16F687/PIC16F689/PIC16F690 only.

EIGENERS//PIC16F689/PIC1
 BIC16F685/PIC16F690 only.
 PIC16F677/PIC16F697 (PIC16F697 (PIC16F697

4: PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.

5: PIC16F677/PIC16F687/PIC16F689/PIC16F690 only.

6: RA3 pull-up is enabled when pin is configured as MCLR in Configuration Word.

7: Accessible only when SSPCON register bits SSPM<3:0> = 1001.

3.8 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM can detect oscillator failure any time after the Oscillator Start-up Timer (OST) has expired. The FSCM is enabled by setting the FCMEN bit in the Configuration Word register (CONFIG). The FSCM is applicable to all external Oscillator modes (LP, XT, HS, EC, RC and RCIO).

FIGURE 3-8: FSCM BLOCK DIAGRAM

3.8.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 3-8. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the primary clock goes low.

3.8.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the device clock to an internal clock source and sets the bit flag OSFIF of the PIR2 register. Setting this flag will generate an interrupt if the OSFIE bit of the PIE2 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation.

The internal clock source chosen by the FSCM is determined by the IRCF<2:0> bits of the OSCCON register. This allows the internal oscillator to be configured before a failure occurs.

3.8.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or toggling the SCS bit of the OSCCON register. When the SCS bit is toggled, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON. When the OST times out, the Fail-Safe condition is cleared and the device will be operating from the external clock source. The Fail-Safe condition must be cleared before the OSFIF flag can be cleared.

3.8.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC or RC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed. When the FSCM is enabled, the Two-Speed Start-up is also enabled. Therefore, the device will always be executing code while the OST is operating.

Note: Due to the wide range of oscillator start-up times, the Fail-Safe circuit is not active during oscillator start-up (i.e., after exiting Reset or Sleep). After an appropriate amount of time, the user should check the OSTS bit of the OSCCON register to verify the oscillator start-up and that the system clock switchover has successfully completed.

4.2.5.4 RA3/MCLR/VPP

Figure 4-4 shows the diagram for this pin. The RA3/ MCLR/VPP pin is configurable to function as one of the following:

- a general purpose input
- as Master Clear Reset with weak pull-up

4.2.5.5 RA4/AN3/T1G/OSC2/CLKOUT

Figure 4-5 shows the diagram for this pin. The RA4/ AN3/T1G/OSC2/CLKOUT pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- a Timer1 gate input
- a crystal/resonator connection
- · a clock output

- 2: With CLKOUT option.
- 3: ANSEL determines Analog Input mode.
- 4: Not implemented on PIC16F631.

Note: TMR1GE bit of the <u>T1CON</u> register must be set to use either <u>T1G</u> or C2OUT as the Timer1 gate source. See the CM2CON1 register (Register 8-3) for more information on selecting the Timer1 gate source.

Timer1 gate can be inverted using the T1GINV bit of the T1CON register, whether it originates from the T1G pin or Comparator C2 output. This configures Timer1 to measure either the active-high or active-low time between events.

6.7 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR10N bit of the T1CON register
- TMR1IE bit of the PIE1 register
- PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TTMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

6.8 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bit of the T1CON register must be set
- T1OSCEN bit of the T1CON register (can be set)

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine (0004h).

6.9 ECCP Capture/Compare Time Base

The ECCP module uses the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPR1H:CCPR1L register pair on a configured event.

In Compare mode, an event is triggered when the value CCPR1H:CCPR1L register pair matches the value in the TMR1H:TMR1L register pair. This event can be a Special Event Trigger.

For more information, see Section 11.0 "Enhanced Capture/Compare/PWM Module".

6.10 ECCP Special Event Trigger

When the ECCP is configured to trigger a special event, the trigger will clear the TMR1H:TMR1L register pair. This special event does not cause a Timer1 interrupt. The ECCP module may still be configured to generate a ECCP interrupt.

In this mode of operation, the CCPR1H:CCPR1L register pair becomes the period register for Timer1.

Timer1 should be synchronized to the FOSC to utilize the Special Event Trigger. Asynchronous operation of Timer1 can cause a Special Event Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with a Special Event Trigger from the ECCP, the write will take precedence.

For more information, see **Section 11.2.4** "Special **Event Trigger**".

6.11 Comparator Synchronization

The same clock used to increment Timer1 can also be used to synchronize the comparator output. This feature is enabled in the Comparator module.

When using the comparator for Timer1 gate, the comparator output should be synchronized to Timer1. This ensures Timer1 does not miss an increment if the comparator changes.

For more information, see Section 8.8.2 "Synchronizing Comparator C2 output to Timer1".

R/W-0	R-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
C2ON	C2OUT	C2OE	C2POL		C2R	C2CH1	C2CH0				
bit 7		•					bit 0				
·											
Legend:											
R = Reada	ble bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 7	bit 7 C2ON: Comparator C2 Enable bit 1 = Comparator C2 is enabled 0 = Comparator C2 is disabled										
bit 6	it 6 C2OUT: Comparator C2 Output bit $If C2POL = 1 (inverted polarity):$ $C2OUT = 0 when C2VIN+ > C2VIN-$ $C2OUT = 1 when C2VIN+ < C2VIN-$ $If C2POL = 0 (non-inverted polarity):$ $C2OUT = 1 when C2VIN+ > C2VIN-$ $C2OUT = 1 when C2VIN+ > C2VIN-$										
bit 5	C2OE: Comp 1 = C2OUT is 0 = C2OUT is	arator C2 Outp present on C2 internal only	out Enable bit 2OUT pin ⁽¹⁾								
bit 4	C1POL: Com 1 = C1OUT lo 0 = C1OUT lo	parator C1 Ou ogic is inverted ogic is not inve	tput Polarity So rted	elect bit							
bit 3	Unimplemen	ted: Read as '	0'								
bit 2	C2R: Compar	rator C2 Refer	ence Select bit	s (non-invertin	g input)						
	1 = C2VIN + co $0 = C2VIN + co$	onnects to C2\ onnects to C2I	/REF N+ pin								
bit 1-0	C2CH<1:0>:	Comparator C	2 Channel Sele	ect bits							
	00 = C2VIN-c 01 = C2VIN-c 10 = C2VIN-c 11 = C2VIN-c	of C2 connects of C2 connects of C2 connects of C2 connects	to C12IN0- pir to C12IN1- pir to C12IN2- pir to C12IN3- pir	ו ו ו							
Note 1:	Comparator outpu	t requires the f	ollowing three	conditions: C2	OE = 1, C2ON	= 1 and corres	sponding				

REGISTER 8-2: CM2CON0: COMPARATOR C2 CONTROL REGISTER 0

PORT TRIS bit = 0.

9.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- · Port configuration
- · Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Results formatting

9.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. See the corresponding port section for more information.

Note:	Analog voltages on any pin that is defined
	as a digital input may cause the input buf-
	fer to conduct excess current.

9.1.2 CHANNEL SELECTION

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 9.2 "ADC Operation"** for more information.

9.1.3 ADC VOLTAGE REFERENCE

The VCFG bit of the ADCON0 register provides control of the positive voltage reference. The positive voltage reference can be either VDD or an external voltage source. The negative voltage reference is always connected to the ground reference.

9.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11 TAD periods as shown in Figure 9-2.

For correct conversion, the appropriate TAD specification must be met. See A/D conversion requirements in **Section 17.0 "Electrical Specifications"** for more information. Table 9-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	ADCS2	ADCS1	ADCS0		—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	nown
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	ADCS<2:0>:	A/D Conversio	on Clock Selec	t bits			
	000 = Fosc/2	2					
	001 = Fosc/8	3					
	010 = Fosc/3	32					
	x11 = FRC (C	lock derived fro	om a dedicated	d internal oscilla	ator = 500 kHz	max)	
	100 = Fosc/4	ļ					
	101 = Fosc/1	6					
	110 = Fosc/6	64					
bit 3-0	Unimplemen	ted: Read as '	0'				

REGISTER 9-2: ADCON1: A/D CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0			
bit 7 bit 0										
Legend:										
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'						
-n = Value at P	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown				

REGISTER 11-3: PWM1CON: ENHANCED PWM CONTROL REGISTER

bit 7	 PRSEN: PWM Restart Enable bit 1 = Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event goes away; the PWM restarts automatically 0 = Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM
bit 6-0	PDC<6:0>: PWM Delay Count bits PDCn =Number of Fosc/4 (4 * Tosc) cycles between the scheduled time when a PWM signal should transition active and the actual time it transitions active

R-0	R-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
ABDOVF	RCIDL	—	SCKP	BRG16		WUE	ABDEN		
bit 7	-						bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown		
bit 7	ABDOVF: Au	to-Baud Detect	Overflow bit						
	Asynchronous	<u>s mode</u> :							
	1 = Auto-bauco	d timer overflow	/ed						
	Synchronous	mode:	JVEINUW						
	Don't care								
bit 6	RCIDL: Rece	ive Idle Flag bit							
	Asynchronous	<u>s mode</u> :							
	1 = Receiver	is Idle	ad and the re	acivar ia raaci	ling				
	Svnchronous	mode:	eu anu me re		ving				
	Don't care								
bit 5	Unimplemen	ted: Read as 'd)'						
bit 4	SCKP: Synch	ronous Clock F	Polarity Selec	t bit					
	Asynchronous	<u>s mode</u> :							
	1 = Transmit inverted data to the RB7/TX/CK pin 0 = Transmit non-inverted data to the RB7/TX/CK pin								
	Synchronous	<u>mode</u> :							
	1 = Data is clo	ocked on rising	edge of the o	clock clock					
bit 3	BRG16: 16-bi	it Baud Rate G	enerator bit	CIOCIX					
bit o	1 = 16-bit Ba	ud Rate Gener	ator is used						
	0 = 8-bit Bau	d Rate Genera	tor is used						
bit 2	Unimplemen	ted: Read as ')'						
bit 1	WUE: Wake-u	up Enable bit							
	Asynchronous	<u>s mode</u> :							
	1 = Receiver i	s waiting for a f	alling edge. N	No character w	ill be received by	te RCIF will be	e set. WUE will		
	 automatic automatic 	ally clear after	RCIF is set.						
	Synchronous	mode:	initiany						
	Don't care								
bit 0	ABDEN: Auto	-Baud Detect E	Enable bit						
	Asynchronous	<u>s mode</u> :							
	1 = Auto-Bau	Id Detect mode	is enabled (clears when au	ito-baud is comp	olete)			
	0 = Auto-Bau	Id Detect mode	is disabled						
	Don't care								

REGISTER 12-3: BAUDCTL: BAUD RATE CONTROL REGISTER

12.3 EUSART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUDCTL register selects 16-bit mode.

The SPBRGH, SPBRG register pair determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by both the BRGH bit of the TXSTA register and the BRG16 bit of the BAUDCTL register. In Synchronous mode, the BRGH bit is ignored.

Table 12-3 contains the formulas for determining the baud rate. Example 12-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various asynchronous modes have been computed for your convenience and are shown in Table 12-3. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

Writing a new value to the SPBRGH, SPBRG register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate. If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is Idle before changing the system clock.

EXAMPLE 12-1: CALCULATING BAUD RATE ERROR

C	Configuration Bi	ts		Baud Bate Formula		
SYNC	BRG16	BRGH	BRG/EUSART Mode			
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]		
0	0	1	8-bit/Asynchronous	Eccc/[16 (p+1)]		
0	1	0	16-bit/Asynchronous	FUSC/[16 (n+1)]		
0	1	1	16-bit/Asynchronous			
1	0	x	8-bit/Synchronous	Fosc/[4 (n+1)]		
1	1	x	16-bit/Synchronous			

TABLE 12-3: BAUD RATE FORMULAS

Legend: x = Don't care, n = value of SPBRGH, SPBRG register pair

TABLE 12-4: REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
BAUDCTL	ABDOVF	RCIDL	—	SCKP	BRG16		WUE	ABDEN	01-0 0-00	01-0 0-00
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 000x	x000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
SPBRGH	BRG15	BRG14	BRG13	BRG12	BRG11	BRG10	BRG9	BRG8	0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for the Baud Rate Generator.

	SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc	= 11.059	92 MHz	Fosc = 8.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_	_	_	_	_	_	_	_	_	_	_	_
1200	1221	1.73	255	1200	0.00	239	1200	0.00	143	1202	0.16	103
2400	2404	0.16	129	2400	0.00	119	2400	0.00	71	2404	0.16	51
9600	9470	-1.36	32	9600	0.00	29	9600	0.00	17	9615	0.16	12
10417	10417	0.00	29	10286	-1.26	27	10165	-2.42	16	10417	0.00	11
19.2k	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8	_	_	_
57.6k	—	_	_	57.60k	0.00	7	57.60k	0.00	2	—	—	
115.2k	—	_	_	—	_	_	—	_	_	—	_	_

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES

	SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300	0.16	207	300	0.00	191	300	0.16	103	300	0.16	51
1200	1202	0.16	51	1200	0.00	47	1202	0.16	25	1202	0.16	12
2400	2404	0.16	25	2400	0.00	23	2404	0.16	12	—	—	—
9600	—	—	_	9600	0.00	5	—	—	_	—	—	—
10417	10417	0.00	5	—	_	—	10417	0.00	2	—	—	—
19.2k	—	—		19.20k	0.00	2	—	—	_	—	—	—
57.6k	—	—	—	57.60k	0.00	0	—	—	—	—	—	—
115.2k	—	_	—	—	_	—	—	_	—	—	_	—

	SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD RATE	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz			Fosc = 8.000 MHz		
	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	_	—	_	_	_	_	_	_	_	—	—
1200	—	—	—	—	_	—	—	—	—	—	—	—
2400	—	—	—	—	—	—	_	_	_	2404	0.16	207
9600	9615	0.16	129	9600	0.00	119	9600	0.00	71	9615	0.16	51
10417	10417	0.00	119	10378	-0.37	110	10473	0.53	65	10417	0.00	47
19.2k	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	19231	0.16	25
57.6k	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	55556	-3.55	8
115.2k	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	—	_	_

- **3:** GIE = 1 assumed. In this case after wake-up, the processor jumps to 0004h. If GIE = 0, execution will continue in-line.
- 4. CLKOLIT is not subject to VT HS LD as EC Oscillator mades but a base for their sectors
 - 4: CLKOUT is not available in XT, HS, LP or EC Oscillator modes, but shown here for timing reference.

WAKE-UP FROM SLEEP THROUGH INTERRUPT

14.7 Code Protection

FIGURE 14-10:

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out using ICSP^{TM} for verification purposes.

Note:	The entire data EEPROM and Flash
	program memory will be erased when the
	code protection is switched from on to off.
	See the "PIC12F6XX/16F6XX Memory
	Programming Specification" (DS41204)
	for more information.

14.8 ID Locations

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable during Program/Verify mode. Only the Least Significant seven bits of the ID locations are used.

14.9 In-Circuit Serial Programming

The PIC16F631/677/685/687/689/690 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for:

- power
- ground
- programming voltage

This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a Program/Verify mode by holding the RA0/AN0/C1IN+/ICSPDAT/ULPWU and RA1/AN1/C12IN-/VREF/ICSPCLK pins low, while raising the MCLR (VPP) pin from VIL to VIHH. See the "PIC12F6XX/16F6XX Memory Programming Specification" (DS41204) for more information. RA0 becomes the programming data and RA1 becomes the programming clock. Both RA0 and RA1 are Schmitt Trigger inputs in this mode.

After Reset, to place the device into Program/Verify mode, the Program Counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14 bits of program data are then supplied to or from the device, depending on whether the command was a load or a read. For complete details of serial programming, please refer to the "*PIC12F6XX/16F6XX Memory Programming Specification*" (DS41204).

A typical In-Circuit Serial Programming connection is shown in Figure 14-11.

15.0 INSTRUCTION SET SUMMARY

The PIC16F690 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 15-1, while the various opcode fields are summarized in Table 15-1.

Table 15-2 lists the instructions recognized by the MPASMTM assembler.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8-bit or 11-bit constant, or literal value.

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

15.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (RMW) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a CLRF PORTA instruction will read PORTA, clear all the data bits, then write the result back to PORTA. This example would have the unintended consequence of clearing the condition that set the RAIF flag.

TABLE 15-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
х	Don't care location (= 0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$.
PC	Program Counter
TO	Time-out bit
С	Carry bit
DC	Digit carry bit
Z	Zero bit
PD	Power-down bit

FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS

17.2 DC Characteristics: PIC16F631/677/685/687/689/690-I (Industrial) PIC16F631/677/685/687/689/690-E (Extended) (Continued)

DC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$								
Param	ram Device Characteristics				11	Conditions				
No.	Device Characteristics	Min.	турт	Max.	Units	Vdd	Note			
D020	Power-down Base	_	0.05	1.2	μA	2.0	WDT, BOR, Comparators, VREF and			
	Current(IPD) ⁽²⁾	_	0.15	1.5	μA	3.0	T1OSC disabled			
		_	0.35	1.8	μA	5.0				
		_	90	500	nA	3.0	$-40^{\circ}C \le TA \le +25^{\circ}C$			
D021		_	1.0	2.2	μA	2.0	WDT Current ⁽¹⁾			
		—	2.0	4.0	μA	3.0	7			
		_	3.0	7.0	μA	5.0	7			
D022		_	42	60	μA	3.0	BOR Current ⁽¹⁾			
		—	85	122	μA	5.0	7			
D023		—	32	45	μA	2.0	Comparator Current ⁽¹⁾ , both			
		_	60	78	μA	3.0	comparators enabled			
		—	120	160	μA	5.0	7			
D024		—	30	36	μA	2.0	CVREF Current ⁽¹⁾ (high range)			
		—	45	55	μA	3.0				
		—	75	95	μA	5.0	7			
D024a*		—	39	47	μA	2.0	CVREF Current ⁽¹⁾ (low range)			
		—	59	72	μA	3.0				
		—	98	124	μA	5.0				
D025		_	2.0	5.0	μA	2.0	T1OSC Current, 32.768 kHz			
		—	2.5	5.5	μA	3.0				
		_	3.0	7.0	μA	5.0				
D026			0.30	1.6	μA	3.0	A/D Current ⁽¹⁾ , no conversion in			
		—	0.36	1.9	μA	5.0	progress			
D027		—	90	125	μA	3.0	VP6 Current			
		_	125	162	μA	5.0				

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.
- **3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.
- 4: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.
- 5: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

Param	Device	Units	Min	Тур.	Max	Condition			
No.	Characteristics		IVIIII.		IVIAX.	Vdd	Note		
D020E	Power Down Base	—	_	27		2.1	IPD Base: WDT, BOR,		
	Current (IPD)	_	_	29	μA	3.0	Comparators, VREF and		
		—	_	32		5.0	T1osc disabled		
D021E		_		55		2.1			
		—		59	μΑ	3.0	WDT Current		
		—	_	69		5.0			
D022E		_		75		3.0			
		_		147	μΑ	5.0	BOR Current		
D023E		_		73	μΑ	2.1			
		—		117		3.0	comparator current, both		
		—	_	235		5.0	comparatoro onabioa		
D024E		—	_	102	μΑ	2.1			
		—	_	128		3.0	CVREF current, high range		
		—	_	170		5.0			
D024AE		—	_	133		2.1			
		—	_	167	μA	3.0	CVREF current, low range		
		—	_	222		5.0			
D025E		—	_	36		2.1			
		—	_	41	μA	3.0	T10SC current, 32 kHz		
		—	_	47		5.0			
D026E		—	_	22		3.0	Analog-to-Digital current,		
		—		24	μΑ	5.0	no conversion in progress		
D027E			_	189		3.0	VP6 current (Fixed Voltage		
			_	250	μΑ	5.0	Reference)		

TABLE 17-20: DC CHARACTERISTICS FOR IPD SPECIFICATIONS FOR PIC16F685/687/689/690-H (High Temp.) (High Temp.)

TABLE 17-21: LEAKAGE CURRENT SPECIFICATIONS FOR PIC16F685/687/689/690-H (High Temp.)

Param No.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions
D061	lı∟	Input Leakage Current ⁽¹⁾ (RA3/MCLR)	_	±0.5	±5.0	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
D062	lı∟	Input Leakage Current ⁽²⁾ (RA3/MCLR)	50	250	400	μA	VDD = 5.0V

Note 1: This specification applies when RA3/MCLR is configured as an input with the pull-up disabled. The leakage current for the RA3/MCLR pin is higher than for the standard I/O port pins.

2: This specification applies when RA3/MCLR is configured as the MCLR reset pin function with the weak pull-up enabled.

TABLE 17-22: DATA EEPROM MEMORY ENDURANCE SPECIFICATIONS FOR PIC16F685/687/689/690-H (High Temp.)

Param No.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions
D120A	ED	Byte Endurance	5K	50K	—	E/W	$126^{\circ}C \leq TA \leq 150^{\circ}C$

© 2005-2015 Microchip Technology Inc.

FIGURE 18-43: TYPICAL VP6 REFERENCE VOLTAGE vs. VDD (25°C)

FIGURE 18-48: TYPICAL VP6 REFERENCE VOLTAGE DISTRIBUTION (3V, 125°C)