E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f685-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F685 Pin Diagram

20-pin PDIP, SOIC, SSOP	
$VDD \longrightarrow \begin{bmatrix} 1\\ RA5/T1CKI/OSC1/CLKIN & \\ 2\\ RA4/AN3/T1G/OSC2/CLKOUT & \\ 3\\ RA3/MCLR/VPP \longrightarrow \begin{bmatrix} 4\\ RC5/CCP1/P1A & \\ 5\\ RC4/C2OUT/P1B & \\ 6\\ RC3/AN7/C12IN3-/P1C & \\ 7\\ RC6/AN8 & \\ 8\\ RC7/AN9 & \\ 9\\ RB7 & \\ 10\\ \end{bmatrix}$	20 4 Vss 19 4 RA0/AN0/C1IN+/ICSPDAT/ULPWU 18 4 RA1/AN1/C12IN0-/VREF/ICSPCLK 17 4 RA2/AN2/T0CKI/INT/C1OUT 16 4 RC0/AN4/C2IN+ 15 4 RC0/AN4/C2IN+ 15 4 RC1/AN5/C12IN1- 14 4 RC2/AN6/C12IN2-/P1D 13 4 RB4/AN10 12 4 RB5/AN11 11 4 RB6

TABLE 3: PIC16F685 PIN SUMMARY

I/O	Pin	Analog	Comparators	Timers	ECCP	Interrupt	Pull-up	Basic
RA0	19	AN0/ULPWU	C1IN+	_	_	IOC	Y	ICSPDAT
RA1	18	AN1/VREF	C12IN0-	_	—	IOC	Y	ICSPCLK
RA2	17	AN2	C1OUT	T0CKI	—	IOC/INT	Y	—
RA3	4	—	—	_	—	IOC	Y(1)	MCLR/Vpp
RA4	3	AN3	—	T1G	—	IOC	Y	OSC2/CLKOUT
RA5	2		—	T1CKI	—	IOC	Y	OSC1/CLKIN
RB4	13	AN10	—	—	—	IOC	Y	—
RB5	12	AN11	—		—	IOC	Y	—
RB6	11		—		_	IOC	Y	—
RB7	10		—		_	IOC	Y	—
RC0	16	AN4	C2IN+	—	_			—
RC1	15	AN5	C12IN1-		_			—
RC2	14	AN6	C12IN2-		P1D			—
RC3	7	AN7	C12IN3-	_	P1C			—
RC4	6		C2OUT	_	P1B			—
RC5	5	_	—	_	CCP1/P1A		_	—
RC6	8	AN8	—	—	—	_	—	—
RC7	9	AN9	_		_	_	_	—
—	1		_			_	_	Vdd
—	20		_	_	_	_	_	Vss

Note 1: Pull-up activated only with external MCLR configuration.

FIGURE 2-6: PIC16F685 SPECIAL FUNCTION REGISTERS

	File		File		File		File
	Address		Address	· · · · · · (1)	Address		Addres
ndirect addr. (1)	00h	Indirect addr. (1)	80h		100h	Indirect addr. (1)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h	PORTA	105h	TRISA	185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h	PORTC	107h	TRISC	187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDAT	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2 ⁽¹⁾	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh		18Eh
TMR1H	0Fh	OSCCON	8Fh	EEADRH	10Fh		18Fh
T1CON	10h	OSCTUNE	90h		110h		190h
TMR2	11h		91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
	13h		93h		113h		193h
	14h		94h		114h		194h
CCPR1L	15h	WPUA	95h	WPUB	115h		195h
CCPR1H	16h	IOCA	96h	IOCB	116h		196h
CCP1CON	17h	WDTCON	97h		117h		197h
	18h		98h	VRCON	118h		198h
	19h		99h	CM1CON0	119h		199h
	1Ah		9Ah	CM2CON0	11Ah		19Ah
	1Bh		9Bh	CM2CON1	11Bh		19Bh
PWM1CON	1Ch		9Ch		11Ch		19Ch
ECCPAS	1Dh		9Dh		11Dh	PSTRCON	19Dh
ADRESH	1Eh	ADRESL	9Eh	ANSEL	11Eh	SRCON	19Eh
ADCON0	1Fh	ADCON1	9Fh	ANSELH	11Fh		19Fh
	20h		A0h		120h		1A0h
		General		General			
General		Purpose		Purpose			
Purpose		Register		Register			
Register							
OG Dutoo		80 Bytes		80 Bytes			
96 Bytes			EFh	ļ	16Fh		
			F0h		170h		1F0h
	7Fh	70h-7Fh	FFh	70h-7Fh	17Fh	70h-7Fh	1FFh
Bank 0		Bank 1		Bank 2		Bank 3	

Note 1: Not a physical register.

FIGURE 2-8: PIC16F690 SPECIAL FUNCTION REGISTERS

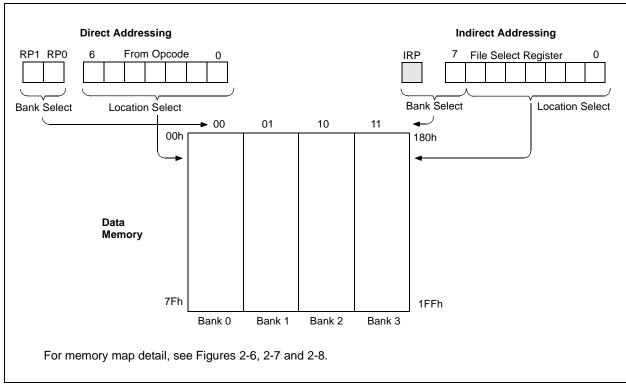
	File		File		File		File
	Address		Address		Address		Address
Indirect addr. (1)	00h	Indirect addr. (1)	80h	Indirect addr. (1)	100h	Indirect addr. (1)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h	PORTA	105h	TRISA	185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h	PORTC	107h	TRISC	187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDAT	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2 ⁽¹⁾	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh		18Eh
TMR1H	0Fh	OSCCON	8Fh	EEADRH	10Fh		18Fh
T1CON	10h	OSCTUNE	90h		110h		190h
TMR2	11h		91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD ⁽²⁾	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h	-	194h
CCPR1L	15h	WPUA	95h	WPUB	115h	-	195h
CCPR1H	16h	IOCA	96h	IOCB	116h	-	196h
CCP1CON	17h	WDTCON	97h		117h	-	197h
RCSTA	18h	TXSTA	98h	VRCON	118h	-	198h
TXREG	19h	SPBRG	99h	CM1CON0	119h		199h
RCREG	1Ah	SPBRGH	9Ah	CM2CON0	11Ah		19Ah
	1Bh	BAUDCTL	9Bh	CM2CON1	11Bh		19Bh
PWM1CON	1Ch		9Ch		11Ch		19Ch
ECCPAS	1Dh		9Dh		11Dh	PSTRCON	19Dh
ADRESH	1Eh	ADRESL	9Eh	ANSEL	11Eh	SRCON	19Eh
ADCON0	1Fh	ADCON1	9Fh	ANSELH	11Fh		19Fh
	20h		A0h		120h		1A0h
General		General		General			
General Purpose		Purpose Register		Purpose Register			
Register		register		register			
-		80 Bytes		80 Bytes			
96 Bytes			EFh		16Fh		
		accesses	F0h	accesses	170h	accesses	1F0h
	7Fh	70h-7Fh	FFh	70h-7Fh	17Fh	70h-7Fh	1FFh
Bank 0	1	Bank 1	1	Bank 2	I	Bank 3	I

Unimplemented data memory locations, read as '0'.

Note 1: Not a physical register.

2: Address 93h also accesses the SSP Mask (SSPMSK) register under certain conditions. See Registers 13-2 and 13-3 for more details.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page	
Bank	2					•	•		•			
100h	INDF	Addressing t	this location	uses conten	ts of FSR to	address data	memory (no	t a physical i	register)	xxxx xxxx	43,200	
101h	TMR0	Timer0 Modu	Timer0 Module Register									
102h	PCL	Program Co	Program Counter's (PC) Least Significant Byte									
103h	STATUS	IRP	IRP RP1 RP0 TO PD Z DC C 0								35,200	
104h	FSR	Indirect Data	Indirect Data Memory Address Pointer									
105h	PORTA ⁽⁴⁾	_	_	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	57,200	
106h	PORTB ⁽⁴⁾	RB7	RB6	RB5	RB4	_	_	-	_	xxxx	67,200	
107h	PORTC ⁽⁴⁾	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	74,200	
108h	—	Unimplemen	ited							_	_	
109h	_	Unimplemen	ited							_	_	
10Ah	PCLATH	_	_	_	Write Bu	ffer for the up	oper 5 bits of	the Program	Counter	0 0000	43,200	
10Bh	INTCON	GIE	PEIE	TOIE	INTE	RABIE	TOIF	INTF	RABIF ⁽¹⁾	0000 000x	37,200	
10Ch	EEDAT	EEDAT7	EEDAT6	EEDAT5	EEDAT4	EEDAT3	EEDAT2	EEDAT1	EEDAT0	0000 0000	118,201	
10Dh	EEADR	EEADR7 ⁽³⁾	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0	0000 0000	118,201	
10Eh	EEDATH ⁽²⁾	_	_	EEDATH5	EEDATH4	EEDATH3	EEDATH2	EEDATH1	EEDATH0	00 0000	118,201	
10Fh	EEADRH ⁽²⁾	_	_	_	_	EEADRH3	EEADRH2	EEADRH1	EEADRH0	0000	118,201	
110h	_	Unimplemen	ted							_	_	
111h		Unimplemen	ited							_	—	
112h	—	Unimplemen	ited							—	—	
113h	—	Unimplemen	ited							—	—	
114h	_	Unimplemen	ited									
115h	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	—	_	—	—	1111	68,201	
116h	IOCB	IOCB7	IOCB6	IOCB5	IOCB4	—	—	—	—	0000	68,201	
117h	—	Unimplemen	ited							—	_	
118h	VRCON	C1VREN	C2VREN	VRR	VP6EN	VR3	VR2	VR1	VR0	0000 0000	103,201	
119h	CM1CON0	C10N	C1OUT	C1OE	C1POL	_	C1R	C1CH1	C1CH0	0000 -000	96,201	
11Ah	CM2CON0	C2ON	C2OUT	C2OE	C2POL	_	C2R	C2CH1	C2CH0	0000 -000	97,201	
11Bh	CM2CON1	MC1OUT	MC2OUT	_	_	_		T1GSS	C2SYNC	0010	99,201	
11Ch	—	Unimplemen	ited							—	_	
11Dh	_	Unimplemen	ited							—	_	
11Eh	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3 ⁽³⁾	ANS2 ⁽³⁾	ANS1	ANS0	1111 1111	59,201	
11Fh	ANSELH(3)	_	—	—	—	ANS11	ANS10	ANS9	ANS8	1111	113,201	


TABLE 2-3: PIC16F631/677/685/687/689/690 SPECIAL FUNCTION REGISTERS SUMMARY BANK 2

Legend: -= Unimplemented locations read as '0', u = unchanged, x = unknown, g = value depends on condition, shaded = unimplemented Note 1: MCLR and WDT Reset does not affect the previous value data latch. The RABIF bit will be cleared upon Reset but will set again if the mismatch exists.

2: PIC16F685/PIC16F689/PIC16F690 only.

3: PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.

4: Port pins with analog functions controlled by the ANSEL and ANSELH registers will read '0' immediately after a Reset even though the data latches are either undefined (POR) or unchanged (other Resets).

FIGURE 2-10: DIRECT/INDIRECT ADDRESSING PIC16F631/677/685/687/689/690

3.5.2.1 OSCTUNE Register

-n = Value at POR

The HFINTOSC is factory calibrated but can be adjusted in software by writing to the OSCTUNE register (Register 3-2).

The default value of the OSCTUNE register is '0'. The value is a 5-bit two's complement number.

When the OSCTUNE register is modified, the HFINTOSC frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

x = Bit is unknown

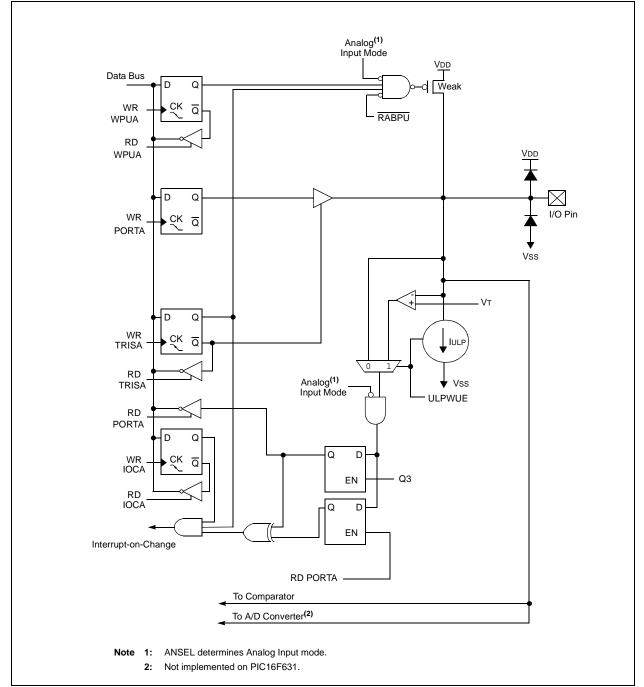
REGISTER 3-2: OSCTUNE: OSCILLATOR TUNING REGISTER

'1' = Bit is set

U-0	U-0	U-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—	TUN4	TUN3	TUN2	TUN1	TUN0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					

'0' = Bit is cleared

bit 7-5	Unimplemented: Read as '0'
bit 4-0	TUN<4:0>: Frequency Tuning bits
	01111 = Maximum frequency
	01110 =
	•
	•
	•
	00001 =
	00000 = Oscillator module is running at the factory-calibrated frequency.
	11111 =
	•
	•
	•
	10000 = Minimum frequency


4.2.5 PIN DESCRIPTIONS AND DIAGRAMS

Each PORTA pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the comparator or the A/D Converter (ADC), refer to the appropriate section in this data sheet.

4.2.5.1 RA0/AN0/C1IN+/ICSPDAT/ULPWU

Figure 4-2 shows the diagram for this pin. The RA0/ AN0/C1IN+/ICSPDAT/ULPWU pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- an analog input to Comparator C1
- In-Circuit Serial Programming[™] data
- · an analog input for the Ultra Low-Power Wake-up

FIGURE 4-1: BLOCK DIAGRAM OF RA0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
ADFM	VCFG	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON					
bit 7							bit 0					
Legend:												
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own					
1 2 7		о · Б		1 41.9								
bit 7		Conversion Res	sult Format Se	elect bit								
	1 = Right jus 0 = Left justi											
bit 6	VCFG: Volta	ige Reference b	it									
	1 = VREF pin											
	0 = VDD											
bit 5-2	CHS<3:0>:	Analog Channe	el Select bits									
	0000 = AN0											
	0001 = AN1											
	0010 = AN2											
	0011 = AN3											
	0100 = AN4											
	0101 = AN5 0110 - AN6											
	0110 = AN6 0111 = AN7											
	1111 = AN7 $1000 = AN8$											
	1000 = AN9											
	1010 = AN1											
	1011 = AN1	1										
	1100 = CVREF											
	1101 = 0.6V	' Fixed Voltage I	Reference									
	1110 = Reserved. Do not use.											
	1111 = Reserved. Do not use.											
bit 1	GO/DONE:	A/D Conversion	Status bit									
	$1 = A/D \operatorname{conv}$	version cycle in	progress. Set	ting this bit star	ts an A/D con	version cycle.						
					e A/D convers	sion has complet	ed.					
	$0 = A/D \operatorname{conv}$	version complet	ed/not in prog	ress								
bit 0	ADON: ADC	Enable bit										
	1 = ADC is e	enabled										
		disabled and cor		arating ourrant								

REGISTER 9-1: ADCON0: A/D CONTROL REGISTER 0

11.3.4 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCP1 pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

11.3.5 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 3.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for additional details.

11.3.6 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

11.3.7 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Disable the PWM pin (CCP1) output driver by setting the associated TRIS bit.
- 2. Set the PWM period by loading the PR2 register.
- Configure the CCP module for the PWM mode by loading the CCP1CON register with the appropriate values.
- Set the PWM duty cycle by loading the CCPR1L register and DC1B<1:0> bits of the CCP1CON register.
- 5. Configure and start Timer2:
 - •Clear the TMR2IF interrupt flag bit of the PIR1 register.

•Set the Timer2 prescale value by loading the T2CKPS bits of the T2CON register.

•Enable Timer2 by setting the TMR2ON bit of the T2CON register.

6. Enable PWM output after a new PWM cycle has started:

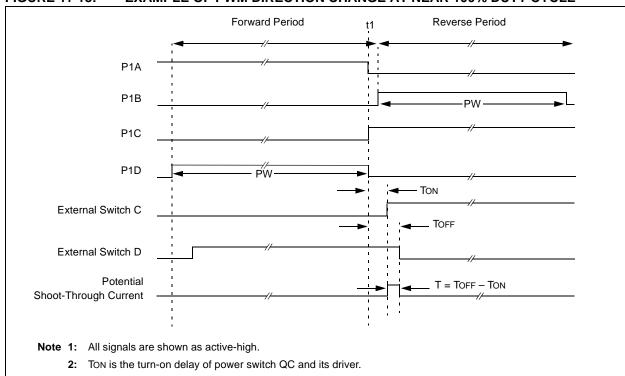
•Wait until Timer2 overflows (TMR2IF bit of the PIR1 register is set).

• Enable the CCP1 pin output driver by clearing the associated TRIS bit.

11.4 PWM (Enhanced Mode)

The Enhanced PWM Mode can generate a PWM signal on up to four different output pins with up to ten bits of resolution. It can do this through four different PWM Output modes:

- Single PWM
- Half-Bridge PWM
- Full-Bridge PWM, Forward mode
- Full-Bridge PWM, Reverse mode


To select an Enhanced PWM mode, the P1M bits of the CCP1CON register must be set appropriately.

The PWM outputs are multiplexed with I/O pins and are designated P1A, P1B, P1C and P1D. The polarity of the PWM pins is configurable and is selected by setting the CCP1M bits in the CCP1CON register appropriately.

Table 11-4 shows the pin assignments for each Enhanced PWM mode.

Figure 11-5 shows an example of a simplified block diagram of the Enhanced PWM module.

Note: To prevent the generation of an incomplete waveform when the PWM is first enabled, the ECCP module waits until the start of a new PWM period before generating a PWM signal.

FIGURE 11-13: EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE

3: TOFF is the turn-off delay of power switch QD and its driver.

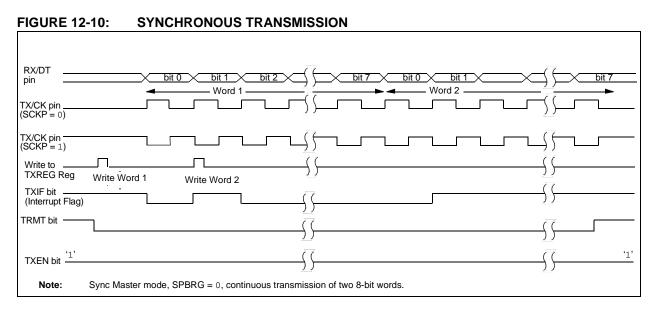
11.4.3 START-UP CONSIDERATIONS

When any PWM mode is used, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins.

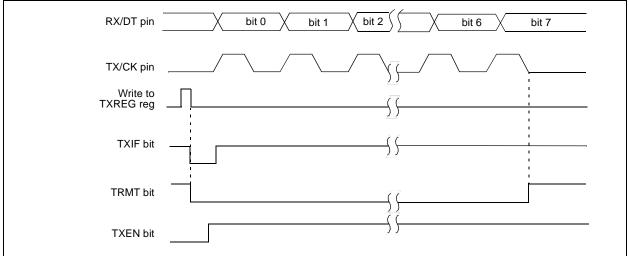
Note:	When the microcontroller is released from									
	Reset, all of the I/O pins are in the high-									
	impedance state. The external circuits									
	must keep the power switch devices in the									
	OFF state until the microcontroller drives									
	the I/O pins with the proper signal levels or									
	activates the PWM output(s).									

The CCP1M<1:0> bits of the CCP1CON register allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pin output drivers are enabled. Changing the polarity configuration while the PWM pin output drivers are enabled is not recommended since it may result in damage to the application circuits.

The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pin output drivers at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before enabling the PWM pin output drivers. The completion of a full PWM cycle is indicated by the TMR2IF bit of the PIR1 register being set as the second PWM period begins.


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x					
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D					
bit 7							bit 0					
<u> </u>												
Legend:	• •											
R = Readabl		W = Writable		-	mented bit, read							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	IOWN					
bit 7	SPEN: Seria	SPEN: Serial Port Enable bit										
	 1 = Serial port enabled (configures RX/DT and TX/CK pins as serial port pins) 0 = Serial port disabled (held in Reset) 											
bit 6	RX9: 9-bit R	eceive Enable b	oit									
		9-bit reception 8-bit reception										
bit 5	SREN: Sing	le Receive Enab	ole bit									
	Asynchronous mode:											
	Don't care	Don't care										
	•	Synchronous mode – Master:										
		1 = Enables single receive0 = Disables single receive										
		0 = Disables single receive This bit is cleared after reception is complete.										
	Synchronous mode – Slave											
	Don't care											
bit 4	CREN: Continuous Receive Enable bit											
	Asynchronous mode:											
	1 = Enables receiver											
	0 = Disables receiver											
	Synchronous mode:											
	 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive 											
bit 3	ADDEN: Add	ADDEN: Address Detect Enable bit										
	Asynchronou	us mode 9-bit (F	<u> X9 = 1)</u> :									
		1 = Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set										
		s address detec		are received a	nd ninth bit car	be used as pa	rity bit					
		us mode 8-bit (R	(X9 = 0):									
h # 0	Don't care	in a Funan hit										
bit 2	FERR: Fram	ing Error bit gerror (can be u	ndatad by ray		rogistor and rac		huto)					
	1 = Framing 0 = No fram		poaled by rea		register and rec	eive next valid	byle)					
bit 1	OERR: Over	rrun Error bit										
	1 = Overrun 0 = No over	n error (can be c run error	leared by clea	aring bit CREN)							
bit 0	RX9D: Ninth	bit of Received	Data									
	This can be	address/data bit	or a parity bi	it and must be o	calculated by u	ser firmware.						
			-		-							

REGISTER 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER⁽¹⁾


				SYNC = 0	, BRGH	= 1, BRG16	= 1 or SY	′NC = 1,	BRG16 = 1	_		
BAUD	Fosc	Fosc = 20.000 MHz Fosc = 18.432 MHz			2 MHz	Fosc	= 11.059	92 MHz	Fos	Fosc = 8.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215	300.0	0.00	6666
1200	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303	1200	-0.02	1666
2400	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151	2401	0.04	832
9600	9597	-0.03	520	9600	0.00	479	9600	0.00	287	9615	0.16	207
10417	10417	0.00	479	10425	0.08	441	10433	0.16	264	10417	0	191
19.2k	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143	19.23k	0.16	103
57.6k	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47	57.14k	-0.79	34
115.2k	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23	117.6k	2.12	16

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1										
BAUD	Fosc = 4.000 MHz		Fosc = 3.6864 MHz		Fosc = 2.000 MHz			Fosc = 1.000 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.01	3332	300.0	0.00	3071	299.9	-0.02	1666	300.1	0.04	832
1200	1200	0.04	832	1200	0.00	767	1199	-0.08	416	1202	0.16	207
2400	2398	0.08	416	2400	0.00	383	2404	0.16	207	2404	0.16	103
9600	9615	0.16	103	9600	0.00	95	9615	0.16	51	9615	0.16	25
10417	10417	0.00	95	10473	0.53	87	10417	0.00	47	10417	0.00	23
19.2k	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	25	19.23k	0.16	12
57.6k	58.82k	2.12	16	57.60k	0.00	15	55.56k	-3.55	8	—	—	_
115.2k	111.1k	-3.55	8	115.2k	0.00	7	_	_	—	_	—	—

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

TABLE 12-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
BAUDCTL	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	01-0 0-00
INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF	0000 000x	0000 000x
PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
RCREG	EUSART F	Receive Da	ta Register						0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
SPBRGH	BRG15	BRG14	BRG13	BRG12	BRG11	BRG10	BRG9	BRG8	0000 0000	0000 0000
TRISB	TRISB7	TRISB6	TRISB5	TRISB4					1111	1111
TXREG EUSART Transmit Data Register									0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
Logondu	egend:									

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Master Transmission.

13.8 Sleep Operation

In Master mode, all module clocks are halted and the transmission/reception will remain in that state until the device wakes from Sleep. After the device returns to Normal mode, the module will continue to transmit/ receive data.

In Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the SSP interrupt flag bit will be set and if enabled, will wake the device from Sleep.

13.9 Effects of a Reset

A Reset disables the SSP module and terminates the current transfer.

13.10 Bus Mode Compatibility

Table 13-1 shows the compatibility between the standard SPI modes and the states of the CKP and CKE control bits.

TABLE 13-1: SPI BUS MODES

Standard SPI Mode	Control Bits State			
Terminology	СКР	CKE		
0,0	0	1		
0,1	0	0		
1,0	1	1		
1,1	1	0		

There is also a SMP bit which controls when the data is sampled.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Bh/8Bh/ 10Bh/18Bh	INTCON	GIE	PEIE	TOIE	INTE	RABIE	TOIF	INTF	RABIF	0000 000x	0000 000x
0Ch	PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
13h	SSPBUF	Synchrono	ous Serial Po	ort Receive	Buffer/Trans	smit Registe	r			xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
86h/186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	_	_	_	_	1111	1111
87h/187h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
8Ch	PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

 TABLE 13-2:
 REGISTERS ASSOCIATED WITH SPI OPERATION⁽¹⁾

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode. Note 1: PIC16F677/PIC16F687/PIC16F689/PIC16F690 only.

WDT CONTROL

enable it and clearing the bit will disable it.

register. When set, the WDT runs continuously.

The WDTE bit is located in the Configuration Word

When the WDTE bit in the Configuration Word register

is set, the SWDTEN bit of the WDTCON register has no

effect. If WDTE is clear, then the SWDTEN bit can be

used to enable and disable the WDT. Setting the bit will

The PSA and PS<2:0> bits of the OPTION register

have the same function as in previous versions of the PIC16F631/677/685/687/689/690 Family of microcon-

trollers. See Section 5.0 "Timer0 Module" for more

14.5.2

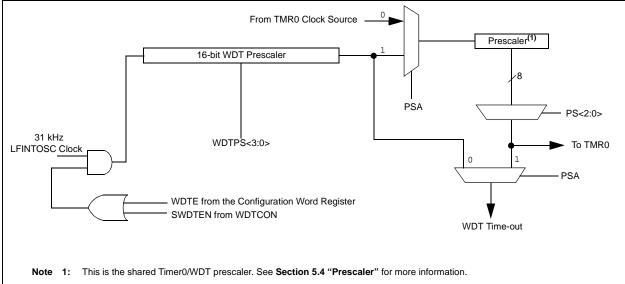
information.

14.5 Watchdog Timer (WDT)

The WDT has the following features:

- Operates from the LFINTOSC (31 kHz)
- Contains a 16-bit prescaler
- Shares an 8-bit prescaler with Timer0
- Time-out period is from 1 ms to 268 seconds
- · Configuration bit and software controlled

WDT is cleared under certain conditions described in Table 14-7.


14.5.1 WDT OSCILLATOR

The WDT derives its time base from the 31 kHz LFINTOSC. The LTS bit of the OSCCON register does not reflect that the LFINTOSC is enabled.

The value of WDTCON is '---0 1000' on all Resets. This gives a nominal time base of 17 ms.

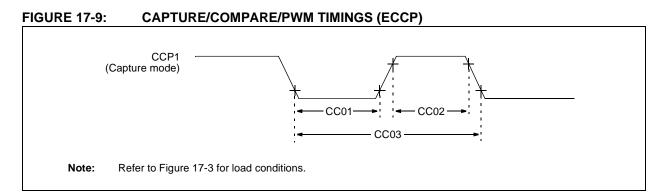

Note:	When the Oscillator Start-up Timer (OST)						
	is invoked, the WDT is held in Reset,						
	because the WDT Ripple Counter is used						
	by the OST to perform the oscillator delay						
	count. When the OST count has expired,						
	the WDT will begin counting (if enabled).						

FIGURE 14-9: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 14-7: WDT STATUS

Conditions	WDT
WDTE = 0	Cleared
CLRWDT Command	
Oscillator Fail Detected	
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK	
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST

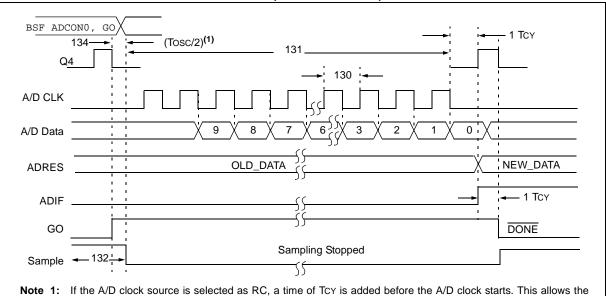


TABLE 17-6: CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP)

	Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Character	istic	Min.	Тур†	Max.	Units	Conditions	
CC01*	TccL	CCP1 Input Low Time	No Prescaler	0.5Tcy + 20	—	—	ns		
			With Prescaler	20	—	—	ns		
CC02*	ТссН	CCP1 Input High Time	No Prescaler	0.5Tcy + 20	_	—	ns		
			With Prescaler	20	_	—	ns		
CC03*	TccP	CCP1 Input Period		<u>3Tcy + 40</u> N	—	—	ns	N = prescale value (1, 4 or 16)	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

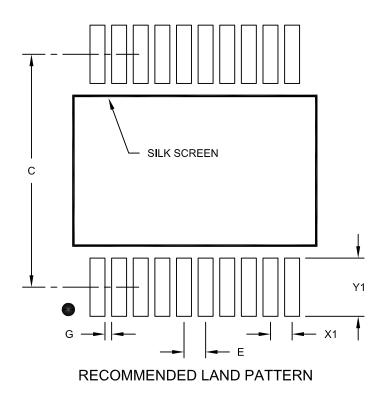
FIGURE 17-18: A/D CONVERSION TIMING (NORMAL MODE)

TABLE 17-16: A/D CONVERSION REQUIREMENTS

SLEEP instruction to be executed.

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
130*	Tad	A/D Clock Period	1.5	—	_	μS	Tosc-based, VREF \ge 2.5V
			3.0*	—	—	μs	Tosc-based, VREF full range
		A/D Internal RC Oscillator Period	3.0*	6.0	9.0*	μs	ADCS<1:0> = 11 (RC mode) At VDD = 2.5V
			2.0*	4.0	6.0*	μS	At VDD = 5.0V
131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	_	11	_	TAD	Set GO bit to new data in A/D Result register
132*	TACQ	Acquisition Time	(2)	11.5		μs	
			5*	_	_	μS	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 4.1 mV @ 4.096V) from the last sampled voltage (as stored on CHOLD).
134	TGO	Q4 to A/D Clock Start		Tosc/2	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

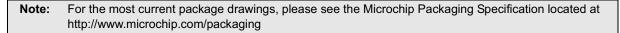
Note 1: ADRESH and ADRESL registers may be read on the following TCY cycle.

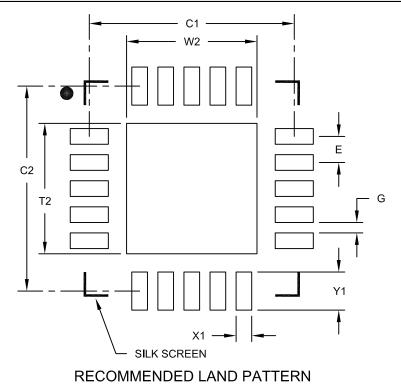
2: See Table 9-1 for minimum conditions.

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			S
Dimensior	Dimension Limits			MAX
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		


Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

20-Lead Plastic Quad Flat, No Lead Package (ML) - 4x4 mm Body [QFN] With 0.40 mm Contact Length

			IILLIMETER	
	Units			S
Dimensior	Dimension Limits			MAX
Contact Pitch	Е	0.50 BSC		
Optional Center Pad Width	W2			2.50
Optional Center Pad Length	T2			2.50
Contact Pad Spacing	C1		3.93	
Contact Pad Spacing	C2		3.93	
Contact Pad Width	X1			0.30
Contact Pad Length Y1				0.73
Distance Between Pads	Distance Between Pads G			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2126A

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (March 2005)

This is a new data sheet.

Revision B (May 2006)

Added 631/677 part numbers; Added pin summary tables after pin diagrams; Incorporated Golden Chapters.

Revision C (July 2006)

Revised Section 4.2.1, ANSEL and ANSELH Registers; Register 4-3, ANSEL Analog Select; Added Register 4-4, ANSELH Analog Select High; Section 11.3.2, Revised CCP1<1:0> to DC1B<1:0>; Section 11.3.7, Number 4 - Revised CCP1 to DC1B; Figure 11-5, Revised CCP1 to DC1B; Table 11-4, Revised P1M to P1M<1:0>; Section 12.3.1, Revised Paragraph 3; Revised Note 2; Revised Figure 12-6 Title.

Revision D (February 2007)

Removed Preliminary status; Changed PICmicro to PIC; Replaced Dev. Tool Section; Replaced Package Drawings.

Revision E (March 2008)

Add Char Data charts; Updated EUSART Golden Chapter; Updated the Electrical Specification section; Updated Package Drawings as needed.

Revision F (April 2015)

Added Section 17.8: High Temperature Operation in the Electrical Specifications section.

APPENDIX B: MIGRATING FROM OTHER PIC[®] DEVICES

This discusses some of the issues in migrating from other PIC devices to the PIC16F6XX Family of devices.

B.1 PIC16F676 to PIC16F685

TABLE B-1: FEATURE COMPARISON

Feature	PIC16F676	PIC16F685
Max Operating Speed	20 MHz	20 MHz
Max Program Memory (Words)	1024	4096
SRAM (bytes)	64	128
A/D Resolution	10-bit	10-bit
Data EEPROM (Bytes)	128	256
Timers (8/16-bit)	1/1	2/1
Oscillator Modes	8	8
Brown-out Reset	Y	Y
Internal Pull-ups	RA0/1/2/4/5	RA0/1/2/4/5, MCLR
Interrupt-on-change	RA0/1/2/3/4/5	RA0/1/2/3/4/5
Comparator	1	2
ECCP+	N	Y
Ultra Low-Power Wake-up	N	Y
Extended WDT	N	Y
Software Control Option of WDT/BOR	N	Y
INTOSC Frequencies	4 MHz	31 kHz-8 MHz
Clock Switching	N	Y

Note: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device.