

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f685-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 Oscillator Control

The Oscillator Control (OSCCON) register (Figure 3-1) controls the system clock and frequency selection options. The OSCCON register contains the following bits:

- Frequency selection bits (IRCF)
- Frequency Status bits (HTS, LTS)
- System clock control bits (OSTS, SCS)

REGISTER 3-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R/W-1	R/W-1	R/W-0	R-1	R-0	R-0	R/W-0
—	IRCF2	IRCF1	IRCF0	OSTS ⁽¹⁾	HTS	LTS	SCS
bit 7							bit 0
Legend:							

Logonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6-4	IRCF<2:0>: Internal Oscillator Frequency Select bits
	111 = 8 MHz
	110 = 4 MHz (default)
	101 = 2 MHz
	100 = 1 MHz
	011 = 500 kHz
	010 = 250 kHz
	001 = 125 kHz
	000 = 31 kHz (LFINTOSC)
bit 3	OSTS: Oscillator Start-up Time-out Status bit ⁽¹⁾
	 1 = Device is running from the clock defined by FOSC<2:0> of the CONFIG register 0 = Device is running from the internal oscillator (HFINTOSC or LFINTOSC)
bit 2	HTS: HFINTOSC Status bit (High Frequency – 8 MHz to 125 kHz)
	1 = HFINTOSC is stable
	0 = HFINTOSC is not stable
bit 1	LTS: LFINTOSC Stable bit (Low Frequency – 31 kHz)
	1 = 1 EINTOSC is stable
	0 = LFINTOSC is not stable
bit 0	SCS: System Clock Select bit
	1 = Internal oscillator is used for system clock
	0 = Clock source defined by FOSC<2:0> of the CONFIG register

Note 1: Bit resets to '0' with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe mode is enabled.

4.4.3 PIN DESCRIPTIONS AND DIAGRAMS

Each PORTB pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the SSP, l^2C^{TM} or interrupts, refer to the appropriate section in this data sheet.

4.4.3.1 RB4/AN10/SDI/SDA

Figure 4-7 shows the diagram for this pin. The RB4/ AN10/SDI/SDA⁽¹⁾ pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- a SPI data I/O
- an I²C data I/O

FIGURE 4-7:

- **Note 1:** The reference voltage (VREF) has no effect on the equation, since it cancels itself out.
 - 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
 - **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0	ADFM	VCFG	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	0000 0000	0000 0000
ADCON1	_	ADCS2	ADCS1	ADCS0	—	_	—	—	-000	-000
ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
ANSELH	_	_	—	_	ANS11	ANS10	ANS9	ANS8	1111	1111
ADRESH	A/D Result Register High Byte								xxxx xxxx	uuuu uuuu
ADRESL	A/D Resul	t Register L	ow Byte						xxxx xxxx	uuuu uuuu
INTCON	GIE	PEIE	T0IE	INTE	RABIE	T0IF	INTF	RABIF	0000 000x	0000 000x
PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
PORTA	—	—	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
PORTB	RB7	RB6	RB5	RB4	—	_	—	—	xxxx	uuuu
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
TRISA		_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	—		—	—	1111	1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

TABLE 9-2: SUMMARY OF ASSOCIATED ADC REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for ADC module.

10.0 DATA EEPROM AND FLASH PROGRAM MEMORY CONTROL

Data EEPROM memory is readable and writable and the Flash program memory (PIC16F685/PIC16F689/ PIC16F690 only) is readable during normal operation (full VDD range). These memories are not directly mapped in the register file space. Instead, they are indirectly addressed through the Special Function Registers (SFRs). There are six SFRs used to access these memories:

- EECON1
- EECON2
- EEDAT
- EEDATH (PIC16F685/PIC16F689/PIC16F690 only)
- EEADR
- EEADRH (PIC16F685/PIC16F689/PIC16F690 only)

When interfacing the data memory block, EEDAT holds the 8-bit data for read/write, and EEADR holds the address of the EEDAT location being accessed. These devices, except for the PIC16F631, have 256 bytes of data EEPROM with an address range from 0h to 0FFh. The PIC16F631 has 128 bytes of data EEPROM with an address range from 0h to 07Fh.

When accessing the program memory block of the PIC16F685/PIC16F689/PIC16F690 devices, the EEDAT and EEDATH registers form a 2-byte word that holds the 14-bit data for read/write, and the EEADR and EEADRH registers form a 2-byte word that holds the 12-bit address of the EEPROM location being read. These devices (PIC16F685/PIC16F689/PIC16F690) have 4K words of program EEPROM with an address range from 0h to 0FFFh. The program memory allows one-word reads.

The EEPROM data memory allows byte read and write. A byte write automatically erases the location and writes the new data (erase before write).

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the voltage range of the device for byte or word operations.

When the device is code-protected, the CPU may continue to read and write the data EEPROM memory and read the program memory. When code-protected, the device programmer can no longer access data or program memory.

10.1 EEADR and EEADRH Registers

The EEADR and EEADRH registers can address up to a maximum of 256 bytes of data EEPROM or up to a maximum of 4K words of program EEPROM.

When selecting a program address value, the MSB of the address is written to the EEADRH register and the LSB is written to the EEADR register. When selecting a data address value, only the LSB of the address is written to the EEADR register.

10.1.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for EE memory accesses.

Control bit EEPGD (PIC16F685/PIC16F689/PIC16F690) determines if the access will be a program or data memory access. When clear, as it is when reset, any subsequent operations will operate on the data memory. When set, any subsequent operations will operate on the program memory. Program memory can only be read.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation to data EEPROM. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a $\overline{\text{MCLR}}$ or a WDT Time-out Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and rewrite the location.

Interrupt flag bit EEIF of the PIR2 register is set when write is complete. It must be cleared in the software.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the data EEPROM write sequence.

FIGURE 11-13: EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE

3: TOFF is the turn-off delay of power switch QD and its driver.

11.4.3 START-UP CONSIDERATIONS

When any PWM mode is used, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins.

Note:	When the microcontroller is released from					
	Reset, all of the I/O pins are in the high-					
	impedance state. The external circuits					
	must keep the power switch devices in the					
	OFF state until the microcontroller drives					
	the I/O pins with the proper signal levels or					
	activates the PWM output(s).					

The CCP1M<1:0> bits of the CCP1CON register allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pin output drivers are enabled. Changing the polarity configuration while the PWM pin output drivers are enabled is not recommended since it may result in damage to the application circuits.

The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pin output drivers at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before enabling the PWM pin output drivers. The completion of a full PWM cycle is indicated by the TMR2IF bit of the PIR1 register being set as the second PWM period begins.

				SYNC = 0	, BRGH	= 1, BRG16	= 1 or S	(NC = 1,	BRG16 = 1			
BAUD	Foso	: = 20.00	0 MHz	Fosc = 18.432 MHz			Fosc = 11.0592 MHz			Fosc = 8.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215	300.0	0.00	6666
1200	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303	1200	-0.02	1666
2400	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151	2401	0.04	832
9600	9597	-0.03	520	9600	0.00	479	9600	0.00	287	9615	0.16	207
10417	10417	0.00	479	10425	0.08	441	10433	0.16	264	10417	0	191
19.2k	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143	19.23k	0.16	103
57.6k	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47	57.14k	-0.79	34
115.2k	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23	117.6k	2.12	16

				SYNC = 0	, BRGH	= 1, BRG16	5 = 1 or S	/NC = 1,	BRG16 = 1			
BAUD	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.01	3332	300.0	0.00	3071	299.9	-0.02	1666	300.1	0.04	832
1200	1200	0.04	832	1200	0.00	767	1199	-0.08	416	1202	0.16	207
2400	2398	0.08	416	2400	0.00	383	2404	0.16	207	2404	0.16	103
9600	9615	0.16	103	9600	0.00	95	9615	0.16	51	9615	0.16	25
10417	10417	0.00	95	10473	0.53	87	10417	0.00	47	10417	0.00	23
19.2k	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	25	19.23k	0.16	12
57.6k	58.82k	2.12	16	57.60k	0.00	15	55.56k	-3.55	8	—	—	—
115.2k	111.1k	-3.55	8	115.2k	0.00	7	_	_	_	—	_	_

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

TABLE 12-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
BAUDCTL	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	01-0 0-00	01-0 0-00
INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF	x000 000x	x000 000x
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
RCREG	EUSART I	Receive Da	ta Register						0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 000x	x000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
SPBRGH	BRG15	BRG14	BRG13	BRG12	BRG11	BRG10	BRG9	BRG8	0000 0000	0000 0000
TRISB	TRISB7	TRISB6	TRISB5	TRISB4					1111	1111
TXREG	EUSART	Transmit Da	ata Register	r					0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Master Transmission.

DAM 0	D/M/O	DAMA	D AAL O	DAVO	DAMA	DAVA	DAMA	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WCOL	SSPOV	SSPEN	CKP	SSPM3-	55PM2-7	SSPM1-	SSPM0-	
DIT 7							Dit U	
Legend:								
R = Readab	le bit	W = Writable bi	t	U = Unimplem	ented bit, read as	ʻ0'		
-n = Value a		'1' = Rit is set	L .	0' = Bit is clea	ared	x = Bit is unkno	wn	
bit 7	 WCOL: Write Collision Detect bit 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software) 0 = No collision 							
bit 6	 SSPOV: Receive Overflow Indicator bit In SPI mode: A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the SSPBUF, even if only transmitting data, to avoid setting overflow. In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register. No overflow In I²CTM mode: A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don't care" in Transmit mode. SSPOV must be cleared in software in either mode. No overflow 							
bit 5	SSPEN : Syncl In SPI mode: 1 = Enables st0 = Disables stIn I2C mode: $1 = Enables th0 = Disables sIn both modes$	PEN: Synchronous Serial Port Enable bit SPI mode: • Enables serial port and configures SCK, SDO and SDI as serial port pins • Disables serial port and configures these pins as I/O port pins ¹² C mode: • Enables the serial port and configures the SDA and SCL pins as serial port pins • Disables serial port and configures the SDA and SCL pins as serial port pins • Disables serial port and configures these pins as I/O port pins • Disables serial port and configures these pins as I/O port pins • Disables when enabled these pins must be properly configured as input or output						
bit 4	CKP : Clock Point In SPI mode: 1 = Idle state f 0 = Idle state f In I^2C mode: SCK release coint 1 = Enable cloo 0 = Holds cloo	 Stir modes, when enabled, these plus must be properly configured as input or output. Clock Polarity Select bit <u>PI mode:</u> Idle state for clock is a high level (Microwire default) Idle state for clock is a low level (Microwire alternate) <u>C mode:</u> K release control Enable clock						
bit 3-0	$\begin{array}{c} \text{SSPM<3:0>:} \ \text{S}\\ 0000 = \text{SPI} \ \text{M}\\ 0001 = \text{SPI} \ \text{M}\\ 0010 = \text{SPI} \ \text{M}\\ 0010 = \text{SPI} \ \text{M}\\ 0100 = \text{SPI} \ \text{M}\\ 0100 = \text{SPI} \ \text{SI}\\ 0101 = \text{SPI} \ \text{SI}\\ 0110 = \text{I}^2 \text{C} \ \text{SI}\\ 0111 = \text{I}^2 \text{C} \ \text{SI}\\ 1000 = \text{Resen}\\ 1001 = \text{Load} \ \text{S}\\ 1010 = \text{Resen}\\ 1011 = \text{I}^2 \text{C} \ \text{SI}\\ 1100 = \text{Resen}\\ 1101 = \text{Resen}\\ 1101 = \text{Resen}\\ 1110 = \text{I}^2 \text{C} \ \text{SI}\\ 1111 = \text{I}^2 \text{C} \ \text{SI}\ 1111 = \text{I}^2 \text{C} \ 1111 = \text{I}^2 \text{C} \ 11111 = \text{I}^2 \text{C} \ 11111 = \text$	SPPM<3:0 -: Synchronous Serial Port Mode Select bits 0000 = SPI Master mode, clock = FosC/4 0011 = SPI Master mode, clock = FosC/64 0010 = SPI Master mode, clock = TMR2 output/2 0100 = SPI Master mode, clock = SCK pin. SS pin control enabled. 0101 = SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin. 0110 = I ² C Slave mode, 7-bit address 0111 = I ² C Slave mode, 10-bit address 1000 = Reserved 1001 = Load SSPMSK register at SSPADD SFR address ⁽²⁾ 1010 = Reserved 1011 = I ² C Firmware Controlled Master mode (slave IDLE) 1100 = Reserved 1101 = Reserved 1101 = I ² C Slave mode, 7-bit address with Start and Stop bit interrupts enabled 1111 = I ² C Slave mode, 10-bit address with Start and Stop bit interrupts enabled						
Note 1:	PIC16F687/PIC16F	F689/PIC16F690	onlv.					

REGISTER 13-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER⁽¹⁾

2: When this mode is selected, any reads or writes to the SSPADD SFR address actually accesses the SSPMSK register.

13.6 Slave Mode

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from Sleep.

13.7 Slave Select Synchronization

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = 04h). The pin must not be driven low for the \overline{SS} pin to function as an input. The data latch must be high. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven,

even if in the middle of a transmitted byte, and becomes a floating output. External pull-up/pull-down resistors may be desirable, depending on the application.

- Note 1: When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is set to VDD.
 - 2: If the SPI is used in Slave Mode with CKE set, then the SS pin control must be enabled.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the \overline{SS} pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 13-4: SLAVE SYNCHRONIZATION WAVEFORM

13.12.1 ADDRESSING

Once the SSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the eight bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF of the PIR1 register is set (interrupt is generated if enabled) on the falling edge of the ninth SCL pulse.

In 10-bit Address mode, two address bytes need to be received by the slave (Figure 13-8). The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address.

The sequence of events for 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of address (bits SSPIF, BF and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of address (bits SSPIF, BF and UA are set).
- 5. Update the SSPADD register with the first (high) byte of address; if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated Start condition.
- 8. Receive first (high) byte of address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

TABLE 13-3: DATA TRANSFER RECEIVED BYTE ACTIONS

Status Bi Transfer is	ts as Data s Received	$SSPSR \to SSPBUF$	Generate ACK	Set bit SSPIF (SSP Interrupt occurs		
BF	SSPOV		r uise	if enabled)		
0	0	Yes	Yes	Yes		
1	0	No	No	Yes		
1	1	No	No	Yes		
0	1	No	No	Yes		

Note: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALL	Call Subroutine			
Syntax:	[<i>label</i>] CALL k			
Operands:	$0 \leq k \leq 2047$			
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>			
Status Affected:	None			
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruction.			

COMF	Complement f				
Syntax:	[<i>label</i>] COMF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	$(\overline{f}) \rightarrow (destination)$				
Status Affected:	Z				
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.				

CLRF	Clear f		
Syntax:	[<i>label</i>] CLRF f		
Operands:	$0 \leq f \leq 127$		
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$		
Status Affected:	Z		
Description:	The contents of register 'f' are cleared and the Z bit is set.		

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow (\text{W}) \\ \text{l} \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f			
Syntax:	[label] DECF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(f) - 1 \rightarrow (destination)			
Status Affected:	Z			
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			

© 2005-2015 Microchip Technology Inc.

17.5 Thermal Considerations

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
Param No.	Sym.	Characteristic	Тур.	Units	Conditions	
TH01 θJA	θJA	Thermal Resistance Junction to Ambient	62.4	C/W	20-pin PDIP package	
			85.2	C/W	20-pin SOIC package	
			108.1	C/W	20-pin SSOP package	
			40	C/W	20-pin QFN 4x4mm package	
TH02 θJC	θJC	Thermal Resistance Junction to Case	28.1	C/W	20-pin PDIP package	
			24.2	C/W	20-pin SOIC package	
			32.2	C/W	20-pin SSOP package	
			2.5	C/W	20-pin QFN 4x4mm package	
TH03	TDIE	Die Temperature	150	С	For derated power calculations	
TH04	PD	Power Dissipation	—	W	PD = PINTERNAL + PI/O	
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD (Note 1)	
TH06	Pi/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$	
TH07	Pder	Derated Power	—	W	PDER = PDMAX (TDIE - TA)/θJA (Note 2, 3)	

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature.

3: Maximum allowable power dissipation is the lower value of either the absolute maximum total power dissipation or derated power.

FIGURE 18-9: MAXIMUM IDD vs. VDD OVER Fosc (EXTRC MODE)

FIGURE 18-29: VOH vs. IOH OVER TEMPERATURE (VDD = 5.0V)

FIGURE 18-43: TYPICAL VP6 REFERENCE VOLTAGE vs. VDD (25°C)

FIGURE 18-45: TYPICAL VP6 REFERENCE VOLTAGE OVER TEMPERATURE (5V)