

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f685-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RC1/AN5/C12IN1-	RC1	ST CMOS Ge		General purpose I/O.
	AN5	AN	_	A/D Channel 5 input.
	C12IN1-	AN		Comparator C1 or C2 negative input.
RC2/AN6/C12IN2-/P1D	RC2	ST	CMOS	General purpose I/O.
	AN6	AN	_	A/D Channel 6 input.
	C12IN2-	AN	_	Comparator C1 or C2 negative input.
	P1D	_	CMOS	PWM output.
RC3/AN7/C12IN3-/P1C	RC3	ST	CMOS	General purpose I/O.
	AN7	AN	_	A/D Channel 7 input.
	C12IN3-	AN		Comparator C1 or C2 negative input.
	P1C	_	CMOS	PWM output.
RC4/C2OUT/P1B	RC4	ST	CMOS	General purpose I/O.
	C2OUT	_	CMOS	Comparator C2 output.
	P1B	_	CMOS	PWM output.
RC5/CCP1/P1A	RC5	ST	CMOS	General purpose I/O.
	CCP1	ST	CMOS	Capture/Compare input.
	P1A	ST	CMOS	PWM output.
RC6/AN8	RC6	ST	CMOS	General purpose I/O.
	AN8	AN	_	A/D Channel 8 input.
RC7/AN9	RC7	ST	CMOS	General purpose I/O.
	AN9	AN	_	A/D Channel 9 input.
Vss	Vss	Power	_	Ground reference.
Vdd	Vdd	Power	—	Positive supply.

TABLE 1-3: PINOUT DESCRIPTION – PIC16F685 (CONTINUED)

HV = High Voltage

TTL = TTL compatible input ST= Schmitt Trigger input with CMOS levels XTAL= Crystal

PIC16F631/677/685/687/689/690

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page	
Bank 3												
180h	INDF	Addressing	this location	cal register)	xxxx xxxx	43,200						
181h	OPTION_REG	RABPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	36,200	
182h	PCL	Program C	ounter's (PC	C) Least Sig	nificant Byte					0000 0000	43,200	
183h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	35,200	
184h	FSR	Indirect Dat	ta Memory A	Address Poir	nter					xxxx xxxx	43,200	
185h	TRISA	_	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	57,200	
186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	_	_	_	_	1111	68,201	
187h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	74,201	
188h	—	Unimpleme	ented							—	_	
189h	—	Unimpleme	ented							_	—	
18Ah	PCLATH	_			Write Buffer	for the uppe	er 5 bits of th	ne Program	Counter	0 0000	43,200	
18Bh	INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF ⁽¹⁾	0000 000x	37,200	
18Ch	EECON1	EEPGD ⁽²⁾	_	_	_	WRERR	WREN	WR	RD	x x000	119,201	
18Dh	EECON2	EEPROM (Control Regi	ster 2 (not a	physical reg	ster)					117,201	
18Eh	—	Unimpleme	ented							—	_	
18Fh	—	Unimpleme	ented							—	_	
190h	—	Unimpleme	ented							_	—	
191h	—	Unimpleme	ented							—	_	
192h	—	Unimpleme	ented							—	_	
193h	—	Unimpleme	ented							—	_	
194h	_	Unimpleme	ented							—	—	
195h	_	Unimpleme	ented							—	—	
196h	_	Unimpleme	ented							—	—	
197h	_	Unimpleme	ented							—	—	
198h	_	Unimpleme	ented							—	—	
199h	—	Unimpleme	ented							_	_	
19Ah	—	Unimpleme	ented							_	_	
19Bh	—	Unimpleme	ented							-	_	
19Ch	—	Unimpleme	Unimplemented —								_	
19Dh	PSTRCON ⁽²⁾	_	_	_	STRSYNC	STRD	STRC	STRB	STRA	0 0001	144,201	
19Eh	SRCON	SR1	SR0	C1SEN	C2REN	PULSS	PULSR	—	—	0000 00	101,201	
19Fh	—	Unimpleme	ented							—	_	

TABLE 2-4: PIC16F631/677/685/687/689/690 SPECIAL FUNCTION REGISTERS SUMMARY BANK 3

Legend: -= Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: MCLR and WDT Reset does not affect the previous value data latch. The RABIF bit will be cleared upon Reset but will set again if the mismatch exists.

2: PIC16F685/PIC16F690 only.

2.2.2.7 PIR2 Register

The PIR2 register contains the interrupt flag bits, as shown in Register 2-7.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-7: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
OSFIF	C2IF	C1IF	EEIF	—	—		—
bit 7							bit 0

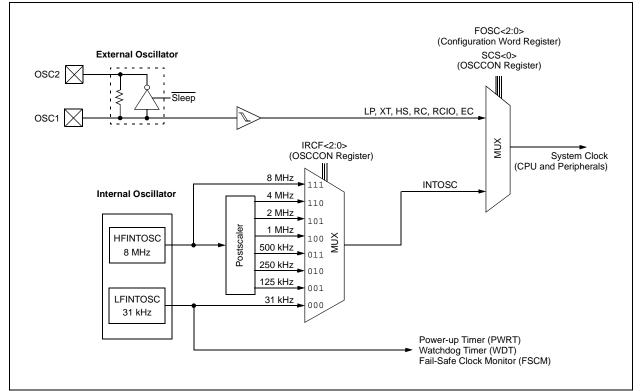
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	OSFIF: Oscillator Fail Interrupt Flag bit
	 1 = System oscillator failed, clock input has changed to INTOSC (must be cleared in software) 0 = System clock operating
bit 6	C2IF: Comparator C2 Interrupt Flag bit
	 1 = Comparator output (C2OUT bit) has changed (must be cleared in software) 0 = Comparator output (C2OUT bit) has not changed
bit 5	C1IF: Comparator C1 Interrupt Flag bit
	 1 = Comparator output (C1OUT bit) has changed (must be cleared in software) 0 = Comparator output (C1OUT bit) has not changed
bit 4	EEIF: EE Write Operation Interrupt Flag bit
	 1 = Write operation completed (must be cleared in software) 0 = Write operation has not completed or has not started
bit 3-0	Unimplemented: Read as '0'

3.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

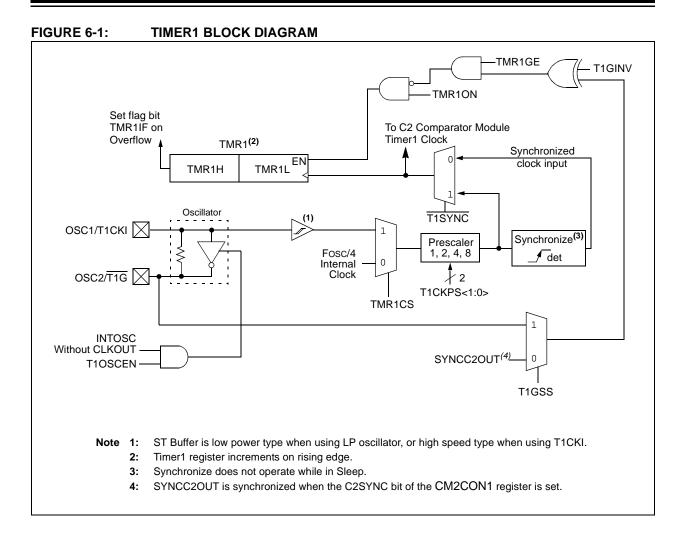
3.1 Overview

The Oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 3-1 illustrates a block diagram of the Oscillator module.


Clock sources can be configured from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be configured from one of two internal oscillators, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal via software.
- Two-Speed Start-up mode, which minimizes latency between external oscillator start-up and code execution.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, EC or RC modes) and switch automatically to the internal oscillator.

The Oscillator module can be configured in one of eight clock modes.

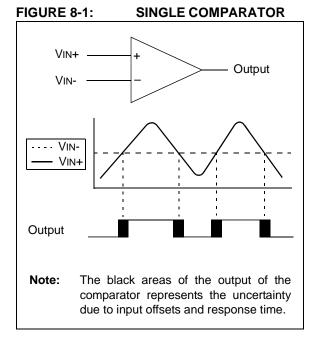

- 1. EC External clock with I/O on OSC2/CLKOUT.
- 2. LP 32 kHz Low-Power Crystal mode.
- 3. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode.
- 4. HS High Gain Crystal or Ceramic Resonator mode.
- 5. RC External Resistor-Capacitor (RC) with Fosc/4 output on OSC2/CLKOUT.
- 6. RCIO External Resistor-Capacitor (RC) with I/O on OSC2/CLKOUT.
- 7. INTOSC Internal oscillator with Fosc/4 output on OSC2 and I/O on OSC1/CLKIN.
- 8. INTOSCIO Internal oscillator with I/O on OSC1/CLKIN and OSC2/CLKOUT.

Clock Source modes are configured by the FOSC<2:0> bits in the Configuration Word register (CONFIG). The internal clock can be generated from two internal oscillators. The HFINTOSC is a calibrated highfrequency oscillator. The LFINTOSC is an uncalibrated low-frequency oscillator.

FIGURE 3-1: SIMPLIFIED PIC[®] MCU CLOCK SOURCE BLOCK DIAGRAM

PIC16F631/677/685/687/689/690

8.0 COMPARATOR MODULE


Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. The comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution. The Analog Comparator module includes the following features:

- Independent comparator control
- Programmable input selection
- Comparator output is available internally/externally
- Programmable output polarity
- Interrupt-on-change
- Wake-up from Sleep
- PWM shutdown
- Timer1 gate (count enable)
- Output synchronization to Timer1 clock input
- SR Latch
- Programmable and Fixed Voltage Reference

Note: Only Comparator C2 can be linked to Timer1.

8.1 Comparator Overview

A single comparator is shown in Figure 8-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

9.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESL and ADRESH).

Note: The ADC module applies to PIC16F677/ PIC16F685/PIC16F687/PIC16F689/ PIC16F690 devices only.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

FIGURE 9-1: ADC BLOCK DIAGRAM

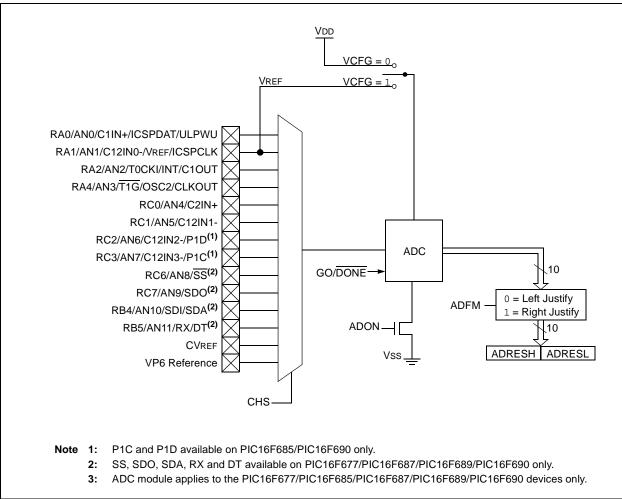


Figure 9-1 shows the block diagram of the ADC.

10.2 Write Verify

Depending on the application, good programming practice may dictate that the value written to the data EEPROM should be verified (see Example 10-4) to the desired value to be written.

EXAMPLE 10-4: WRITE VERIFY

BANKSEL EEDAT	;
MOVF EEDAT, W	;EEDAT not changed
	;from previous write
BANKSEL EECON1	;
BSF EECON1, RD	;YES, Read the
	;value written
BANKSEL EEDAT	;
XORWF EEDAT, W	;
BTFSS STATUS, Z	;Is data the same
GOTO WRITE_ERR	;No, handle error
:	;Yes, continue
BANKSEL 0x00	;Bank 0

10.2.1 USING THE DATA EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). When variables in one section change frequently, while variables in another section do not change, it is possible to exceed the total number of write cycles to the EEPROM (specification D124) without exceeding the total number of write cycles to a single byte (specifications D120 and D120A). If this is the case, then a refresh of the array must be performed. For this reason, variables that do not change (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

10.3 Protection Against Spurious Write

There are conditions when the user may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built in. On power-up, WREN is cleared. Also, the Power-up Timer (64 ms duration) prevents EEPROM write.

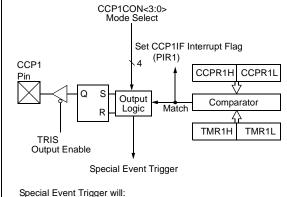
The write initiate sequence and the WREN bit together help prevent an accidental write during:

- Brown-out
- Power Glitch
- Software Malfunction

10.4 Data EEPROM Operation During Code-Protect

Data memory can be code-protected by programming the CPD bit in the Configuration Word register (Register 14-1) to '0'. When the data memory is code-protected, only the CPU is able to read and write data to the data EEPROM. It is recommended to code-protect the program memory when code-protecting data memory and programming unused program memory with NOP instructions.

11.2 Compare Mode


In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the CCP module may:

- Toggle the CCP1 output
- Set the CCP1 output
- Clear the CCP1 output
- Generate a Special Event Trigger
- Generate a Software Interrupt

The action on the pin is based on the value of the CCP1M<3:0> control bits of the CCP1CON register.

All Compare modes can generate an interrupt.

Special Event Trigger Will:

- Clear TMR1H and TMR1L registers.
- NOT set interrupt flag bit TMR1IF of the PIR1 register.
- Set the GO/DONE bit to start the ADC conversion.

11.2.1 CCP1 PIN CONFIGURATION

The user must configure the CCP1 pin as an output by clearing the associated TRIS bit.

Note:	Clearing the CCP1CON register will force								
	the CCP1 compare output latch to the								
	default low level. This is not the port I/O								
	data latch.								

11.2.2 TIMER1 MODE SELECTION

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode.

11.2.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen (CCP1M<3:0> = 1010), the CCP module does not assert control of the CCP1 pin (see the CCP1CON register).

11.2.4 SPECIAL EVENT TRIGGER

When Special Event Trigger mode is chosen (CCP1M<3:0> = 1011), the CCP module does the following:

- Resets Timer1
- Starts an ADC conversion if ADC is enabled

The CCP module does not assert control of the CCP1 pin in this mode (see the CCP1CON register).

The Special Event Trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and the CCPR1H, CCPR1L register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the Timer1 clock. This allows the CCPR1H, CCPR1L register pair to effectively provide a 16-bit programmable period register for Timer1.

- Note 1: The Special Event Trigger from the CCP module does not set interrupt flag bit TMR1IF of the PIR1 register.
 - 2: Removing the match condition by changing the contents of the CCPR1H and CCPR1L register pair, between the clock edge that generates the Special Event Trigger and the clock edge that generates the Timer1 Reset, will preclude the Reset from occurring.

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1										
BAUD	Fosc	: = 20.00	0 MHz	Fosc	: = 18.43	2 MHz	Fosc	= 11.059	92 MHz	Fos	c = 8.000) MHz
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215	300.0	0.00	6666
1200	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303	1200	-0.02	1666
2400	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151	2401	0.04	832
9600	9597	-0.03	520	9600	0.00	479	9600	0.00	287	9615	0.16	207
10417	10417	0.00	479	10425	0.08	441	10433	0.16	264	10417	0	191
19.2k	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143	19.23k	0.16	103
57.6k	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47	57.14k	-0.79	34
115.2k	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23	117.6k	2.12	16

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1										
BAUD	Fos	c = 4.000) MHz	Fosc	= 3.686	4 MHz	Fos	c = 2.000) MHz	Fos	c = 1.000) MHz
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.01	3332	300.0	0.00	3071	299.9	-0.02	1666	300.1	0.04	832
1200	1200	0.04	832	1200	0.00	767	1199	-0.08	416	1202	0.16	207
2400	2398	0.08	416	2400	0.00	383	2404	0.16	207	2404	0.16	103
9600	9615	0.16	103	9600	0.00	95	9615	0.16	51	9615	0.16	25
10417	10417	0.00	95	10473	0.53	87	10417	0.00	47	10417	0.00	23
19.2k	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	25	19.23k	0.16	12
57.6k	58.82k	2.12	16	57.60k	0.00	15	55.56k	-3.55	8	—	_	_
115.2k	111.1k	-3.55	8	115.2k	0.00	7	_	_	_	_	—	—

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

14.2.5 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows: first, PWRT time-out is invoked after POR has expired, then OST is activated after the PWRT time-out has expired. The total time-out will vary based on oscillator configuration and <u>PWRTE</u> bit status. For example, in EC mode with <u>PWRTE</u> bit erased (PWRT disabled), there will be no time-out at all. Figures 14-4, 14-5 and 14-6 depict time-out sequences. The device can execute code from the INTOSC while OST is active by enabling Two-Speed Start-up or Fail-Safe Monitor (see Section 3.7.2 "Two-speed Start-up Sequence" and Section 3.8 "Fail-Safe Clock Monitor").

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then, bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 14-5). This is useful for testing purposes or to synchronize more than one PIC16F631/677/685/ 687/689/690 device operating in parallel.

Table 14-5 shows the Reset conditions for some special registers, while Table 14-4 shows the Reset conditions for all the registers.

14.2.6 POWER CONTROL (PCON) REGISTER

The Power Control register PCON (address 8Eh) has two Status bits to indicate what type of Reset that last occurred.

Bit 0 is $\overline{\text{BOR}}$ (Brown-out Reset). $\overline{\text{BOR}}$ is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if $\overline{\text{BOR}} = 0$, indicating that a Brown-out has occurred. The $\overline{\text{BOR}}$ Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (BOREN<1:0> = 00 in the Configuration Word register).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset, if POR is '0', it will indicate that a Power-on Reset has occurred (i.e., VDD may have gone too low).

For more information, see Section 4.2.4 "Ultra Low-Power Wake-up" and Section 14.2.4 "Brown-out Reset (BOR)".

Oscillator Configuration	Powe	er-up	Brown-o	Wake-up from	
	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	Sleep
XT, HS, LP	TPWRT + 1024 • Tosc	1024 • Tosc	TPWRT + 1024 • Tosc	1024 • Tosc	1024 • Tosc
LP, T1OSCIN = 1	TPWRT	_	TPWRT	—	—
RC, EC, INTOSC	TPWRT	_	TPWRT		—

TABLE 14-1:TIME-OUT IN VARIOUS SITUATIONS

TABLE 14-2: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition			
0	х	1	1	Power-on Reset			
u	0	1	1	Brown-out Reset			
u	u	0	u	WDT Reset			
u	u	0	0	WDT Wake-up			
u	u	u	u	MCLR Reset during normal operation			
u	u	1	0	MCLR Reset during Sleep			

Legend: u = unchanged, x = unknown

DS40001262F-page 198

TABLE 14-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PCON	_	_	ULPWUE	SBOREN		_	POR	BOR	01qq	0uuu
STATUS	IRP	RP1	RPO	TO	PD	Z	DC	С	0001 1xxx	000q quuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition. Shaded cells are not used by BOR. Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

16.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

16.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

16.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

16.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

17.2 DC Characteristics: PIC16F631/677/685/687/689/690-I (Industrial) PIC16F631/677/685/687/689/690-E (Extended) (Continued)

DC CHA	RACTERISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$							
Param Device Characteristics		Min.	Typ†	Max.	Units	Conditions			
No.	Device Characteristics	141111.	iypi	IVIAX.	Units	Vdd	Note		
D020	Power-down Base Current(IPD) ⁽²⁾	_	0.05	1.2	μA	2.0	WDT, BOR, Comparators, VREF and		
		—	0.15	1.5	μA	3.0	T1OSC disabled		
		_	0.35	1.8	μA	5.0			
		_	90	500	nA	3.0	$-40^{\circ}C \le TA \le +25^{\circ}C$		
D021		_	1.0	2.2	μA	2.0	WDT Current ⁽¹⁾		
		_	2.0	4.0	μA	3.0]		
		_	3.0	7.0	μA	5.0			
D022		_	42	60	μA	3.0	BOR Current ⁽¹⁾		
			85	122	μA	5.0			
D023		—	32	45	μA	2.0	Comparator Current ⁽¹⁾ , both		
		—	60	78	μA	3.0	comparators enabled		
		—	120	160	μA	5.0			
D024		—	30	36	μA	2.0	CVREF Current ⁽¹⁾ (high range)		
		—	45	55	μA	3.0			
		—	75	95	μΑ	5.0			
D024a*			39	47	μA	2.0	CVREF Current ⁽¹⁾ (low range)		
			59	72	μA	3.0			
			98	124	μA	5.0			
D025			2.0	5.0	μA	2.0	T1OSC Current, 32.768 kHz		
			2.5	5.5	μA	3.0			
			3.0	7.0	μA	5.0			
D026			0.30	1.6	μA	3.0	A/D Current ⁽¹⁾ , no conversion in		
			0.36	1.9	μA	5.0	progress		
D027			90	125	μA	3.0	VP6 Current		
		—	125	162	μΑ	5.0			

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

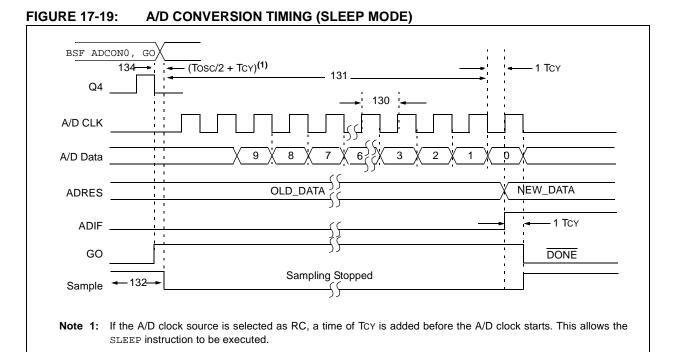
- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.
- **3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.
- 4: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.
- 5: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

17.4 DC Characteristics: PIC16F631/677/685/687/689/690-I (Industrial) PIC16F631/677/685/687/689/690-E (Extended) (Continued)

DC CHARACTERISTICS			Standard Operation Operation Operation Standard Ope	•	herwise stated) 5°C for industrial 25°C for extended		
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
D101*	COSC2	OSC2 pin	_		15	pF	In XT, HS and LP modes when external clock is used to drive OSC1
D101A*	Сю	All I/O pins	_	—	50	pF	
		Data EEPROM Memory					
D120	ED	Byte Endurance	100K	1M	—	E/W	-40°C ≤ TA ≤ +85°C
D120A	ED	Byte Endurance	10K	100K	—	E/W	+85°C \leq TA \leq +125°C
D121	Vdrw	VDD for Read/Write	VMIN	_	5.5	V	Using EECON1 to read/write VMIN = Minimum operating voltage
D122	TDEW	Erase/Write Cycle Time	—	5	6	ms	
D123	Tretd	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated
D124	Tref	Number of Total Erase/Write Cycles before Refresh ⁽⁴⁾	1M	10M	—	E/W	$-40^{\circ}C \le TA \le +85^{\circ}C$
		Program Flash Memory					
D130	Eр	Cell Endurance	10K	100K	—	E/W	$-40^{\circ}C \le TA \le +85^{\circ}C$
D130A	ED	Cell Endurance	1K	10K	—	E/W	$+85^{\circ}C \le TA \le +125^{\circ}C$
D131	Vpr	VDD for Read	Vmin	-	5.5	V	VMIN = Minimum operating voltage
D132	VPEW	VDD for Erase/Write	4.5	—	5.5	V	
D133	TPEW	Erase/Write cycle time	_	2	2.5	ms	
D134	Tretd	Characteristic Retention	40	-	—	Year	Provided no other specifications are violated

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined <u>as cur</u>rent sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: See Section 10.2.1 "Using the Data EEPROM" for additional information.

5: Including OSC2 in CLKOUT mode.

A/D CONVERSION REQUIREMENTS (SLEEP MODE)

ABLE 1: A/D CONVERSION REQUIREMENTS (SLEEP MODE)								
Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
130*	Tad	A/D Internal RC Oscillator Period	3.0*	6.0	9.0*	μS	ADCS<1:0> = 11 (RC mode) At VDD = 2.5V	
			2.0*	4.0	6.0*	μs	At VDD = 5.0V	
131	ΤΟΝΥ	Conversion Time (not including Acquisition Time) ⁽¹⁾	—	11	_	TAD		
132*	TACQ	Acquisition Time	(2)	11.5	_	μS		
			5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 4.1 mV @ 4.096V) from the last sampled voltage (as stored on CHOLD).	
134	TGO	Q4 to A/D Clock Start	_	Tosc/2 + Tcy	_		If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Table 9-1 for minimum conditions.

TABLE 1.

17.8 High Temperature Operation

This section outlines the specifications for the following devices operating in the high temperature range between -40° C and 150° C.⁽⁴⁾

- PIC16F685
- PIC16F687
- PIC16F689
- PIC16F690

When the value of any parameter is identical for both the 125°C Extended and the 150°C High Temp. temperature ranges, then that value will be found in the standard specification tables shown earlier in this chapter, under the fields listed for the 125°C Extended temperature range. If the value of any parameter is unique to the 150°C High Temp. temperature range, then it will be listed here, in this section of the data sheet.

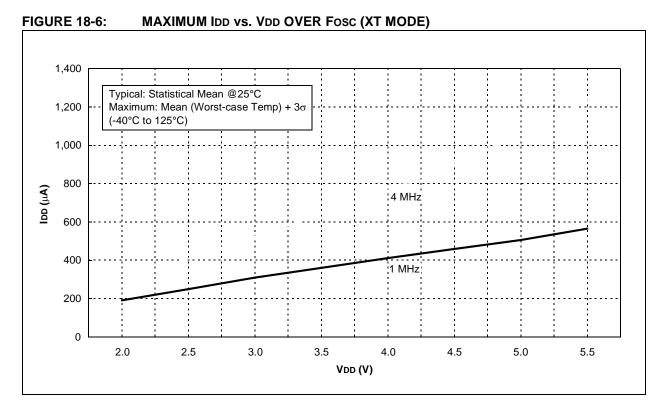
If a Silicon Errata exists for the product and it lists a modification to the 125°C Extended temperature range value, one that is also shared at the 150°C High Temp. temperature range, then that modified value will apply to both temperature ranges.

- Note 1: Writes are <u>not allowed</u> for Flash program memory above 125°C.
 - All AC timing specifications are increased by 30%. This derating factor will include parameters such as TPWRT.
 - **3:** The temperature range indicator in the catalog part number and device marking is "H" for -40°C to 150°C.

Example: PIC16F685T-H/SS indicates the device is shipped in a Tape and reel configuration, in the SSOP package, and is rated for operation from -40°C to 150°C.

- 4: AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
- 5: Endurance of the data EEPROM decreases with increasing temperature. It is recommended that the number of programming cycles to any individual address at temperatures above +125°C not exceed 25,000. Error correction techniques are advised for data requiring more programming cycles above +125°C.
- 6: DS80243 Table 1 refers to various revisions of the PIC16F685, but operation above +125°C will only be available for revision A6 or later.
- 7: The +150°C version of the PIC16F685 will not be offered in PDIP. It will only be offered in SSOP, SOIC, and QFN.

Parameter	Source/Sink	Value	Units
Max. Current: VDD	Source	20	mA
Max. Current: Vss	Sink	50	mA
Max. Current: Pin	Source	5	mA
Max. Current: Pin	Sink	10	mA
Max. Pin Current: at Voн	Source	3	mA
Max. Pin Current: at VoL	Sink	8.5	mA
Max. Port Current: A, B, and C combined	Source	20	mA
Max. Port Current: A, B, and C combined	Sink	50	mA
Max. Junction Temperature		155	°C


TABLE 17-17: ABSOLUTE MAXIMUM RATINGS

Note: Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

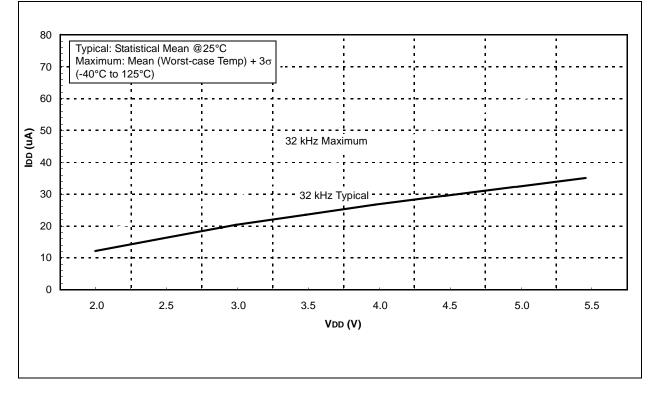
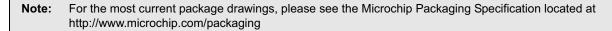
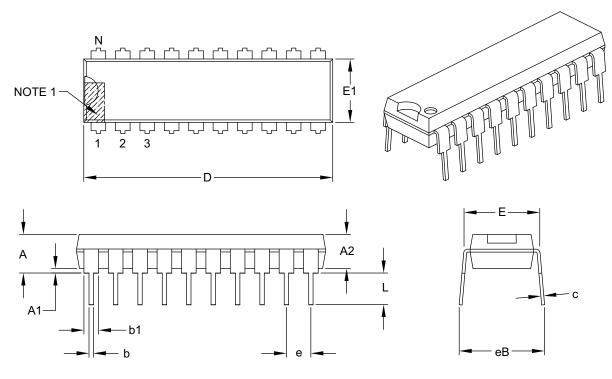

Param	Device		T			Condition			
No.	Characteristics	Min.	Тур.	Max.	Units	Vdd	Note		
D001	Vdd	2.1	_	5.5	V	_	Fosc ≤ 8 MHz: HFINTOSC, EC		
		2.1	_	5.5	V	_	Fosc ≤ 4 MHz		
D010 S	Supply Current (IDD)	_		47		2.1	E 00.111		
		—	_	69	μA	3.0	Fosc = 32 kHz LP Oscillator		
				108		5.0			
D011		—	_	357		2.1			
		—	_	533	μA	3.0	Fosc = 1 MHz XT Oscillator		
		—	_	729		5.0			
D012		—	_	535	μA	2.1			
		—	_	875	μΛ	3.0	Fosc = 4 MHz XT Oscillator		
		—		1.32	mA	5.0			
D013		—	_	336		2.1			
		—	—	477	μA	3.0	Fosc = 1 MHz EC Oscillator		
		—	_	777		5.0			
D014		—	_	505	μA	2.1			
		—	—	724	μι	3.0	Fosc = 4 MHz EC Oscillator		
		—	_	1.30	mA	5.0			
D015		_		51	μA	2.1			
		—	—	92	μι	3.0	Fosc = 31 kHz LFINTOSC		
		—		117	mA	5.0			
D016		—	_	665	μA	2.1			
		—	_	970	μΛ	3.0	Fosc = 4 MHz HFINTOSC		
		—	_	1.56	mA	5.0			
D017		—	_	936	μΑ	2.1			
		—	—	1.34	mA	3.0	Fosc = 8 MHz HFINTOSC		
		—	_	2.27		5.0			
D018		—	_	605	μA	2.1			
			_	903	μΑ	3.0	Fosc = 4 MHz EXTRC		
				1.43	mA	5.0			
D019		—	—	6.61	mA	4.5	Fosc = 20 MHz		
				7.81		5.0	HS Oscillator		

TABLE 17-19: DC CHARACTERISTICS FOR IDD SPECIFICATIONS FOR PIC16F685/687/689/690-H (High Temp.)

PIC16F631/677/685/687/689/690





19.2 Package Details

The following sections give the technical details of the packages.

20-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

	Units	INCHES			
Dimens	sion Limits	MIN	NOM	MAX	
Number of Pins	Ν		20		
Pitch	е	.100 BSC			
Top to Seating Plane	Α	-	-	.210	
Molded Package Thickness	A2	.115	.130	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.300	.310	.325	
Molded Package Width	E1	.240	.250	.280	
Overall Length	D	.980	1.030	1.060	
Tip to Seating Plane	L	.115	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.045	.060	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	-	-	.430	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-019B

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (March 2005)

This is a new data sheet.

Revision B (May 2006)

Added 631/677 part numbers; Added pin summary tables after pin diagrams; Incorporated Golden Chapters.

Revision C (July 2006)

Revised Section 4.2.1, ANSEL and ANSELH Registers; Register 4-3, ANSEL Analog Select; Added Register 4-4, ANSELH Analog Select High; Section 11.3.2, Revised CCP1<1:0> to DC1B<1:0>; Section 11.3.7, Number 4 - Revised CCP1 to DC1B; Figure 11-5, Revised CCP1 to DC1B; Table 11-4, Revised P1M to P1M<1:0>; Section 12.3.1, Revised Paragraph 3; Revised Note 2; Revised Figure 12-6 Title.

Revision D (February 2007)

Removed Preliminary status; Changed PICmicro to PIC; Replaced Dev. Tool Section; Replaced Package Drawings.

Revision E (March 2008)

Add Char Data charts; Updated EUSART Golden Chapter; Updated the Electrical Specification section; Updated Package Drawings as needed.

Revision F (April 2015)

Added Section 17.8: High Temperature Operation in the Electrical Specifications section.

APPENDIX B: MIGRATING FROM OTHER PIC[®] DEVICES

This discusses some of the issues in migrating from other PIC devices to the PIC16F6XX Family of devices.

B.1 PIC16F676 to PIC16F685

TABLE B-1: FEATURE COMPARISON

Feature	PIC16F676	PIC16F685
Max Operating Speed	20 MHz	20 MHz
Max Program Memory (Words)	1024	4096
SRAM (bytes)	64	128
A/D Resolution	10-bit	10-bit
Data EEPROM (Bytes)	128	256
Timers (8/16-bit)	1/1	2/1
Oscillator Modes	8	8
Brown-out Reset	Y	Y
Internal Pull-ups	RA0/1/2/4/5	RA0/1/2/4/5, MCLR
Interrupt-on-change	RA0/1/2/3/4/5	RA0/1/2/3/4/5
Comparator	1	2
ECCP+	N	Y
Ultra Low-Power Wake-up	N	Y
Extended WDT	N	Y
Software Control Option of WDT/BOR	N	Y
INTOSC Frequencies	4 MHz	31 kHz-8 MHz
Clock Switching	N	Y

Note: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device.