

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	<u>.</u>
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f685-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	File Address		File Address		File		File Address
La dia a stata data (1)	-	la dina at a dala (1)	1	lucations et a statu (1)	Address	la dina sé a dala (1)	
Indirect addr. ⁽¹⁾ TMR0	00h	Indirect addr. ⁽¹⁾ OPTION REG	80h	Indirect addr. ⁽¹⁾ TMR0	100h	Indirect addr. ⁽¹⁾ OPTION_REG	180h
PCL	01h		81h		101h		181h
	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h	PORTA	105h	TRISA	185h
PORTB PORTC	06h 07h	TRISB TRISC	86h 87h	PORTB PORTC	106h 107h	TRISB TRISC	186h 187h
FURIC	0711 08h	TRISC	88h	FURIC	10711 108h	TRISC	188h
			89h				189h
PCLATH	09h	PCLATH		PCLATH	109h 104b	PCLATH	18Ah
INTCON	0Ah	INTCON	8Ah 8Bh	INTCON	10Ah 10Bh	INTCON	18Bh
PIR1	0Bh				10Bh 10Ch		
	0Ch	PIE1	8Ch	EEDAT	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2 ⁽¹⁾	18Dh
TMR1L	0Eh	PCON	8Eh		10Eh		18Eh
TMR1H	0Fh	OSCCON	8Fh		10Fh		18Fh
T1CON	10h	OSCTUNE	90h		110h		190h
	11h		91h		111h		191h
0000115	12h	000400(2)	92h		112h		192h
SSPBUF	13h	SSPADD ⁽²⁾	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
	15h	WPUA	95h	WPUB	115h		195h
	16h	IOCA	96h	IOCB	116h		196h
	17h	WDTCON	97h		117h		197h
	18h		98h	VRCON	118h		198h
	19h		99h	CM1CON0	119h		199h
	1Ah		9Ah	CM2CON0	11Ah		19Ah
	1Bh		9Bh	CM2CON1	11Bh		19Bh
	1Ch		9Ch		11Ch		19Ch
	1Dh		9Dh		11Dh		19Dh
ADRESH	1Eh	ADRESL	9Eh	ANSEL	11Eh	SRCON	19Eh
ADCON0	1Fh	ADCON1	9Fh	ANSELH	11Fh		19Fh
Quanta	20h	General Purpose Register	A0h		120h		1A0h
General Purpose Register		32 Bytes	BFh C0h				
96 Bytes			EFh		16Fh		1EFh
	7Fh	accesses 70h-7Fh	F0h FFh	accesses 70h-7Fh	170h 17Fh	accesses 70h-7Fh	1F0h 1FFh
Bank 0	-	Bank 1	-	Bank 2		Bank 3	
Note 1: Not a	physical re	data memory locat gister. o accesses the SS			under certa	in conditions.	

FIGURE 2-5: PIC16F677 SPECIAL FUNCTION REGISTERS

FIGURE 3-6:	INTERNAL OSCILLATOR SWITCH TIMING
3698630.960	LEINTORC (FROM and WOY disalisad)
HFINTOSC	
LFINTOSC	Otart-sp Time Service System Kunning
IRCF <2:0>	$\neq 0$ χ = 0
System Clock	
9898938C	LFINTOSC (ERNer FSCM of WOT snakied)
HFINTOSC	
	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
LFINTOSC	
IRCF <2:0>	$\neq 0$ $\chi = 0$
System Clock	
1.5937030	NEWYORC LEWYORC turns of univer WEY or FEOM is enabled
EFB/FOSC	
MERTOSC	
\$\$CF <33\$	<u>18.0 X 0</u>
System Crosk	

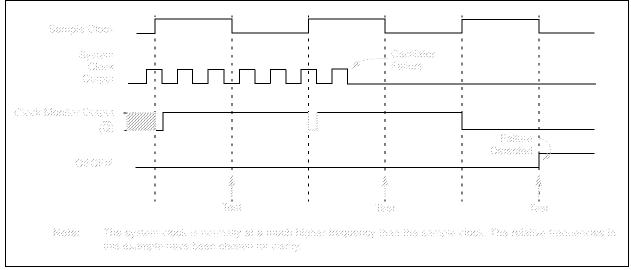


TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets ⁽¹⁾
CONFIG ⁽²⁾	CPD	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	_	_
OSCCON	_	IRCF2	IRCF1	IRCF0	OSTS	HTS	LTS	SCS	-110 x000	-110 x000
OSCTUNE	_	_	—	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	u uuuu
PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIR1	-	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by oscillators.

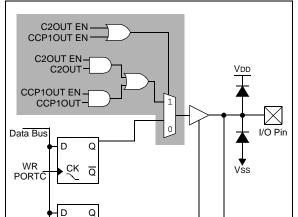
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

2: See Configuration Word register (Register 14-1) for operation of all register bits.

4.5.5 RC4/C2OUT/P1B

The RC4/C2OUT/P1B^(1, 2) is configurable to function as one of the following:

- a general purpose I/O
- a digital output from Comparator C2
- a PWM output


WR

TRISC

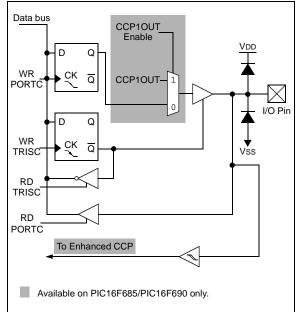
RD TRISC RD PORTC

<u>CK</u> Q

- Note 1: Enabling both C2OUT and P1B will cause a conflict on RC4 and create unpredictable results. Therefore, if C2OUT is enabled, the ECCP+ can not be used in Half-Bridge or Full-Bridge mode and vise-versa.
 - 2: P1B is available on PIC16F685/ PIC16F690 only.

Available on PIC16F685/PIC16F690 only.

FIGURE 4-13: BLOCK DIAGRAM OF RC4


4.5.6 RC5/CCP1/P1A

The RC5/CCP1/P1A⁽¹⁾ is configurable to function as one of the following:

- a general purpose I/O
- a digital input/output for the Enhanced CCP
- a PWM output

Note 1: CCP1 and P1A are available on PIC16F685/PIC16F690 only.

FIGURE 4-14: BLOCK DIAGRAM OF RC5

TABLE 4-3:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTC
------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
ANSELH	_	_	_		ANS11	ANS10	ANS9	ANS8	1111	1111
CCP1CON ⁽²⁾	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	0000 0000
CM2CON0	C2ON	C2OUT	C2OE	C2POL	—	C2R	C2CH1	C2CH0	0000 -000	0000 -000
CM2CON1	MC10UT	MC2OUT	_	-	_	_	T1GSS	C2SYNC	0010	0010
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	uuuu uuuu
PSTRCON	_	_	_	STRSYNC	STRD	STRC	STRB	STRA	0 0001	0 0001
SRCON	SR1	SR0	C1SEN	C2REN	PULSS	PULSR	_	_	0000 00	0000 00
SSPCON ⁽¹⁾	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
VRCON	C1VREN	C2VREN	VRR	VP6EN	VR3	VR2	VR1	VR0	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

Note 1: PIC16F687/PIC16F689/PIC16F690 only.

2: PIC16F685/PIC16F690 only.

6.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected the TMR1H:TMR1L register pair will increment on multiples of Fosc as determined by the Timer1 prescaler.

6.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When counting, Timer1 is incremented on the rising edge of the external clock input T1CKI. In addition, the Counter mode clock can be synchronized to the microcontroller system clock or run asynchronously.

If an external clock oscillator is needed (and the microcontroller is using the INTOSC without CLKOUT), Timer1 can use the LP oscillator as a clock source.

Note 1:	In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after any one or more of the following conditions:
	•Timer1 enabled after POR reset •Write to TMR1H or TMR1L
	•Timer1 is disabled
	•Timer1 is disabled (TMR1ON 0) when T1CKI is high then Timer1 is enabled (TMR1ON=1) when T1CKI is low.
2:	See Figure 6-2

6.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

6.4 Timer1 Oscillator

A low-power 32.768 kHz crystal oscillator is built-in between pins OSC1 (input) and OSC2 (amplifier output). The oscillator is enabled by setting the T1OSCEN control bit of the T1CON register. The oscillator will continue to run during Sleep.

The Timer1 oscillator is shared with the system LP oscillator. Thus, Timer1 can use this mode only when the primary system clock is derived from the internal oscillator or when the oscillator is in the LP mode. The user must provide a software time delay to ensure proper oscillator start-up.

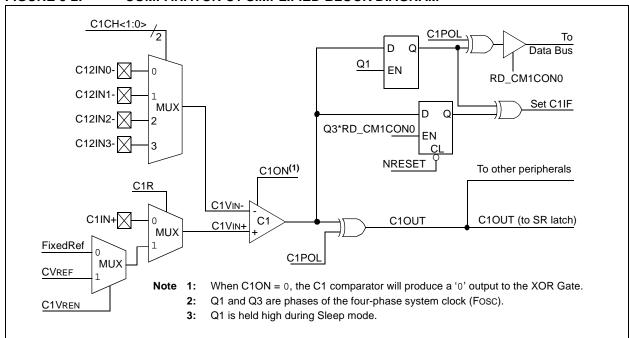
TRISA5 and TRISA4 bits are set when the Timer1 oscillator is enabled. RA5 and RA4 bits read as '0' and TRISA5 and TRISA4 bits read as '1'.

Note:	The oscillator requires a start-up and
	stabilization time before use. Thus,
	T1OSCEN should be set and a suitable
	delay observed prior to enabling Timer1.

6.5 Timer1 Operation in Asynchronous Counter Mode

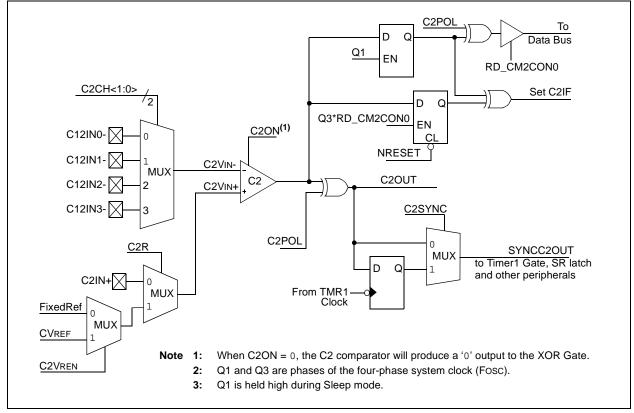
If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 6.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note:	When switching from synchronous to
	asynchronous operation, it is possible to
	skip an increment. When switching from
	asynchronous to synchronous operation,
	it is possible to produce an additional
	increment.


6.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.


6.6 Timer1 Gate

The Timer1 gate (when enabled) allows Timer1 to count when Timer1 gate is active. Timer1 gate source is software configurable to be the T1G pin or the output of Comparator C2. This allows the device to directly time external events using T1G or analog events using Comparator C2. See the CM2CON1 register (Register 8-3) for selecting the Timer1 gate source. This feature can simplify the software for a Delta-Sigma A/D converter and many other applications.

8.5 Operation During Sleep

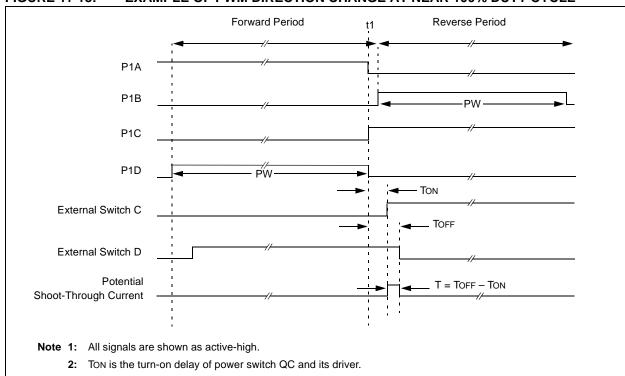
The comparator, if enabled before entering Sleep mode, remains active during Sleep. The additional current consumed by the comparator is shown separately in the **Section 17.0** "**Electrical Specifications**". If the comparator is not used to wake the device, power consumption can be minimized while in Sleep mode by turning off the comparator. Each comparator is turned off by clearing the CxON bit of the CMxCON0 register.

A change to the comparator output can wake-up the device from Sleep. To enable the comparator to wake the device from Sleep, the CxIE bit of the PIE1 register and the PEIE bit of the INTCON register must be set. The instruction following the Sleep instruction always executes following a wake from Sleep. If the GIE bit of the INTCON register is also set, the device will then execute the Interrupt Service Routine.

8.6 Effects of a Reset

A device Reset forces the CMxCON0 and CM2CON1 registers to their Reset states. This forces both comparators and the voltage references to their OFF states.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0	ADFM	VCFG	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	0000 0000	0000 0000
ADCON1	—	ADCS2	ADCS1	ADCS0	_	_	_	-	-000	-000
ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
ANSELH	—	—	—	—	ANS11	ANS10	ANS9	ANS8	1111	1111
ADRESH	A/D Result Register High Byte								xxxx xxxx	uuuu uuuu
ADRESL	A/D Resul	t Register L	ow Byte						xxxx xxxx	uuuu uuuu
INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF	0000 000x	x000 000x
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
PORTA	—	—	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
PORTB	RB7	RB6	RB5	RB4	_	_	_	-	xxxx	uuuu
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
TRISA	—	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	—	1111	1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111


TABLE 9-2: SUMMARY OF ASSOCIATED ADC REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for ADC module.

P1M<1:0>		Signal	0	Pulse Width	-	PR2+1
00	(Single Output)	P1A Modulated			Period	
		P1A Modulated	Delay ⁽¹⁾)	→ Delay ⁽¹⁾	<u> </u>
10	(Half-Bridge)	P1B Modulated				
		P1A Active				
01	(Full-Bridge, Forward)	P1B Inactive			<u> </u> 	<u> </u>
	, er maraj	P1C Inactive				 I I
		P1D Modulated	 '			
		P1A Inactive			1 1 1	1 1 1
11	(Full-Bridge, Reverse)	P1B Modulated				
		P1C Active			 	
		P1D Inactive				
	 Pulse Width = To Delay = 4 * Toso 	c * (PR2 + 1) * (TMR2 Presca osc * (CCPR1L<7:0>:CCP1C ; * (PWM1CON<6:0>)	ON<5:4>) * (TN			,
N	ote 1: Dead-ban mode").	d delay is programmed usi	ng the PWM10	CON register (S	Section 11.4.6 "Progra	ammable Dead-Band De

FIGURE 11-7: EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)

© 2005-2015 Microchip Technology Inc.

FIGURE 11-13: EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE

3: TOFF is the turn-off delay of power switch QD and its driver.

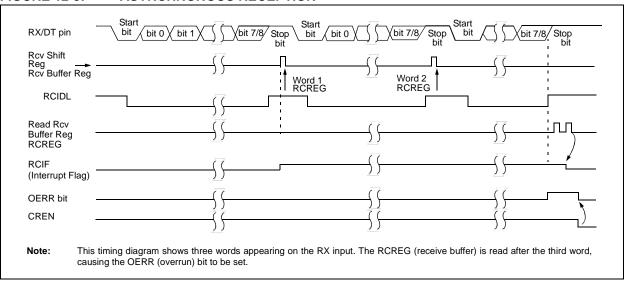
11.4.3 START-UP CONSIDERATIONS

When any PWM mode is used, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins.

Note:	When the microcontroller is released from
	Reset, all of the I/O pins are in the high-
	impedance state. The external circuits
	must keep the power switch devices in the
	OFF state until the microcontroller drives
	the I/O pins with the proper signal levels or
	activates the PWM output(s).

The CCP1M<1:0> bits of the CCP1CON register allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pin output drivers are enabled. Changing the polarity configuration while the PWM pin output drivers are enabled is not recommended since it may result in damage to the application circuits.

The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pin output drivers at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before enabling the PWM pin output drivers. The completion of a full PWM cycle is indicated by the TMR2IF bit of the PIR1 register being set as the second PWM period begins.


12.1.2.8 Asynchronous Reception Set-up:

- Initialize the SPBRGH, SPBRG register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 12.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Enable reception by setting the CREN bit.
- 6. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 7. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 8. Get the received 8 Least Significant data bits from the receive buffer by reading the RCREG register.
- 9. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

12.1.2.9 9-bit Address Detection Mode Set-up

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGH, SPBRG register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 12.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. Enable 9-bit reception by setting the RX9 bit.
- 5. Enable address detection by setting the ADDEN bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 8. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

FIGURE 12-5: ASYNCHRONOUS RECEPTION

12.3.2 AUTO-WAKE-UP ON BREAK

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RX/DT line. This feature is available only in Asynchronous mode.

The Auto-Wake-up feature is enabled by setting the WUE bit of the BAUDCTL register. Once set, the normal receive sequence on RX/DT is disabled, and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a wake-up signal character for the LIN protocol.)

The EUSART module generates an RCIF interrupt coincident with the wake-up event. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 12-7), and asynchronously if the device is in Sleep mode (Figure 12-8). The interrupt condition is cleared by reading the RCREG register.

The WUE bit is automatically cleared by the low-to-high transition on the RX line at the end of the Break. This signals to the user that the Break event is over. At this point, the EUSART module is in Idle mode waiting to receive the next character.

12.3.2.1 Special Considerations

Break Character

To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros.

When the wake-up is enabled the function works independent of the low time on the data stream. If the WUE bit is set and a valid non-zero character is received, the low time from the Start bit to the first rising edge will be interpreted as the wake-up event. The remaining bits in the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors.

Therefore, the initial character in the transmission must be all '0's. This must be ten or more bit times, 13-bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices.

Oscillator Startup Time

Oscillator start-up time must be considered, especially in applications using oscillators with longer start-up intervals (i.e., LP, XT or HS/PLL mode). The Sync Break (or wake-up signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

WUE Bit

The wake-up event causes a receive interrupt by setting the RCIF bit. The WUE bit is cleared in hardware by a rising edge on RX/DT. The interrupt condition is then cleared in software by reading the RCREG register and discarding its contents.

To ensure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

FIGURE 12-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

0400	nininin	punuinuinu	pinnin.	9.1	n na na shi	uhuhu	ЪĮ,	ununun.	punun.	nupunun	1. N.	punununy	րարարա
	BR set by p	98 ·····	s 	:	;	: 	;		:	; ; ;	: 		Osaced
9863 b8			** 5	1		5 5			-			×	
8X3211338		: ;	; ;;	: :	: annaannain	Herene) 1		1 1	, : .aaaaaaaaaaaa	di Santa	·	
			:	: ? : ?	444444444444 :	969ilite. 	анта 29 с		¢	yaaqaaaaaaa t		:	
8081			·	· /				·····		t			
			: :	÷			÷		pares dos	ાંગ ફેલ્લ્સ શેલ્થ	C C (KCREG)	
377		ANGAN MANA	MAMAMA	Ille	UMANNANNA	MAANAA	MA		MAAMAA.	CANTAN MAN	aan		UNICH MANDA

13.5 Master Mode

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 13-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and Status bits appropriately set). This could be useful in receiver applications as a Line Activity Monitor mode. The clock polarity is selected by appropriately programming the CKP bit of the SSPCON register. This then, would give waveforms for SPI communication as shown in Figure 13-3, Figure 13-5 and Figure 13-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2 (No SSP module, PIC16F690 only)

Figure 13-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

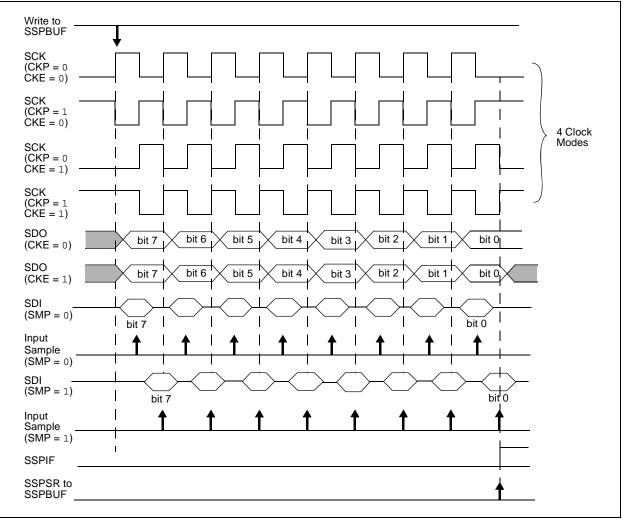
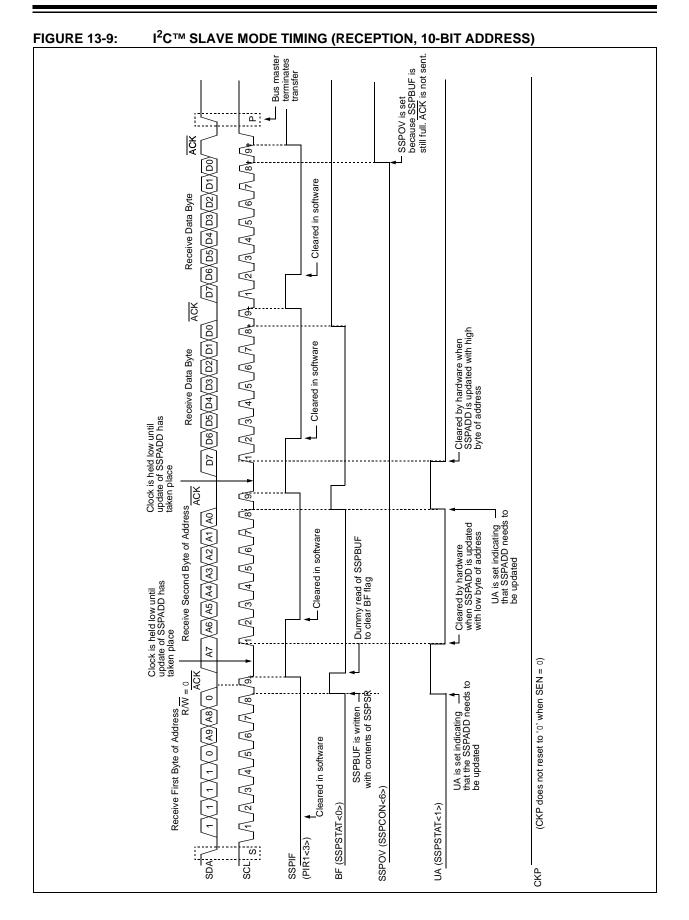



FIGURE 13-3: SPI MODE WAVEFORM (MASTER MODE)

Register	Address	Power-on Reset	MCLR Reset WDT Reset Brown-out Reset ⁽¹⁾	Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out
W	—	XXXX XXXX	uuuu uuuu	uuuu uuuu
INDF	00h/80h/ 100h/180h	XXXX XXXX	XXXX XXXX	<u>uuuu</u> uuuu
TMR0	01h/101h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	02h/82h/ 102h/182h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h/83h/ 103h/183h	0001 1xxx	000q quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾
FSR	04h/84h/ 104h184h	XXXX XXXX	սսսս սսսս	<u>uuuu</u> uuuu
PORTA	05h/105h	xx xxxx	uu uuuu	uu uuuu
PORTB	06h/106h	xxxx	uuuu	uuuu
PORTC	07h/107h	xxxx xxxx	uuuu uuuu	սսսս սսսս
PCLATH	0Ah/8Ah/ 10Ah/18Ah	0 0000	0 0000	u uuuu
INTCON	0Bh/8Bh/ 10Bh/18Bh	0000 000x	0000 000u	uuuu uuuu ⁽²⁾
PIR1	0Ch	-000 0000	-000 0000	-uuu uuuu ⁽²⁾
PIR2	0Dh	0000	0000	uuuu (2)
TMR1L	0Eh	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR1H	0Fh	XXXX XXXX	uuuu uuuu	uuuu uuuu
T1CON	10h	0000 0000	<u>uuuu</u> uuuu	սսսս սսսս
TMR2	11h	0000 0000	0000 0000	<u>uuuu</u> uuuu
T2CON	12h	-000 0000	-000 0000	-uuu uuuu
SSPBUF	13h	xxxx xxxx	uuuu uuuu	<u>uuuu</u> uuuu
SSPCON	14h	0000 0000	0000 0000	uuuu uuuu
CCPR1L	15h	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCPR1H	16h	xxxx xxxx	uuuu uuuu	<u>uuuu</u> uuuu
CCP1CON	17h	0000 0000	0000 0000	uuuu uuuu
RCSTA	18h	0000 000x	0000 000x	uuuu uuuu
TXREG	19h	0000 0000	0000 0000	uuuu uuuu
RCREG	1Ah	0000 0000	0000 0000	uuuu uuuu
PWM1CON	1Ch	0000 0000	0000 0000	uuuu uuuu
ECCPAS	1Dh	0000 0000	0000 0000	uuuu uuuu
ADRESH	1Eh	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON0	1Fh	0000 0000	0000 0000	սսսս սսսս
OPTION_REG	81h/181h	1111 1111	1111 1111	uuuu uuuu
TRISA	85h/185h	11 1111	11 1111	uu uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 14-5 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

6: Accessible only when SSPM < 3:0 > = 1001.

15.2 Instruction Descriptions

ADDLW	Add literal and W				
Syntax:	[label] ADDLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	$(W) + k \to (W)$				
Status Affected:	C, DC, Z				
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.				

BCF	Bit Clear f
Syntax:	[<i>label</i>]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ADDWF	Add W and f					
Syntax:	[label] ADDWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(W) + (f) \rightarrow (destination)					
Status Affected:	C, DC, Z					
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.					

BSF	Bit Set f
Syntax:	[label]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND literal with W
Syntax:	[label] ANDLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W reg- ister.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b' in register 'f' is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

Syntax:	[<i>label</i>] ANDWF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(W) .AND. (f) \rightarrow (destination)				
Status Affected:	Z				
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

AND W with f

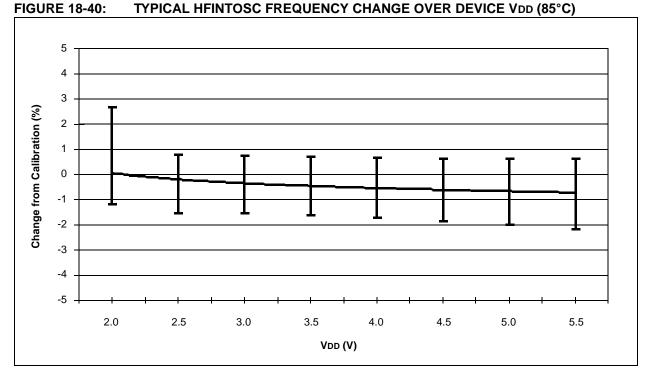
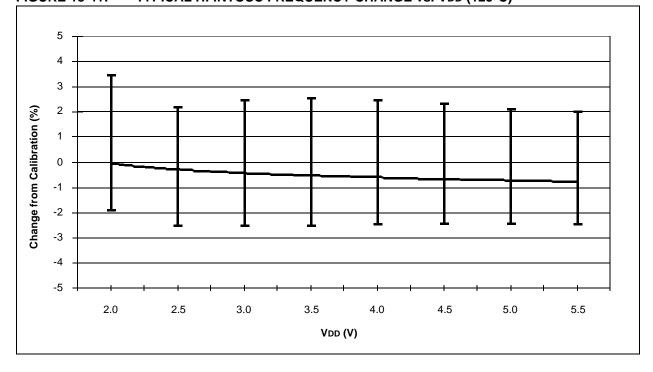
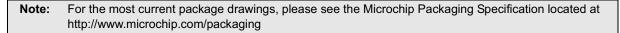
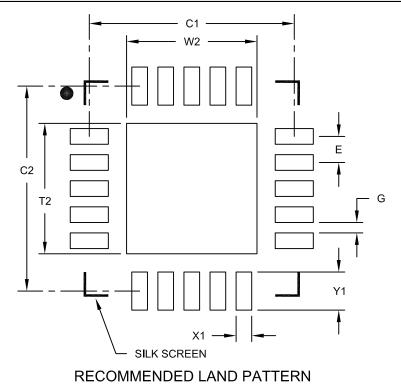

ANDWF

TABLE 17-18:ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES (VDD \geq 3.0V,
VREF \geq 2.5V)


ADC Clock Period (TAD)		Device Frequency (Fosc)				
ADC Clock Source	ADCS<2:0>	20 MHz	8 MHz	4 MHz	1 MHz	
Fosc/2	000	100 ns	250 ns	500 ns	2.0 μs	
Fosc/4	100	200 ns	500 ns	1.0 μs	4.0 μs	
Fosc/8	001	400 ns	1.0 μs	2.0 μs	8.0 μs	
Fosc/16	101	800 ns	2.0 μs	4.0 μs	16.0 μs	
Fosc/32	010	1.6 μs	4.0 μs	8.0 μs	32.0 μs	
Fosc/64	110	3.2 μs	8.0 μs	16.0 μs	64.0 μs	
Frc	x11	2-6 μs	2-6 μs	2-6 μs	2-6 μs	

Legend: Shaded cells should not be used for conversions at temperatures above +125°C.


Note 1: TAD must be between 1.6 μ s and 4.0 μ s.



20-Lead Plastic Quad Flat, No Lead Package (ML) - 4x4 mm Body [QFN] With 0.40 mm Contact Length

	MILLIMETERS				
Dimensior	Dimension Limits		NOM	MAX	
Contact Pitch E		0.50 BSC			
Optional Center Pad Width	W2			2.50	
Optional Center Pad Length	T2			2.50	
Contact Pad Spacing	C1		3.93		
Contact Pad Spacing	C2		3.93		
Contact Pad Width	X1			0.30	
Contact Pad Length	Y1			0.73	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2126A