E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f685-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F677 Pin Diagram

20-pin PDIP, SOIC, SSOP	
VDD	15 → RC1/AN5/C12IN1-

TABLE 2: PIC16F631 PIN SUMMARY

I/O	Pin	Analog	Comparators	Timers	Interrupt	Pull-up	Basic		
RA0	19	AN0/ULPWU	C1IN+	—	IOC	Y	ICSPDAT		
RA1	18	AN1	C12IN0-		IOC	Y	ICSPCLK		
RA2	17	—	C1OUT	T0CKI	IOC/INT	Y	—		
RA3	4	—	—	—	IOC	Y(1)	MCLR/VPP		
RA4	3	—	—	T1G	IOC	Y	OSC2/CLKOUT		
RA5	2	—	—	T1CKI	IOC	Y	OSC1/CLKIN		
RB4	13		—	—	IOC	Y	—		
RB5	12	_	—	—	IOC	Y	—		
RB6	11		—	—	IOC	Y	—		
RB7	10		—		IOC	Y	—		
RC0	16	AN4	C2IN+	—			—		
RC1	15	AN5	C12IN1-	_			—		
RC2	14	AN6	C12IN2-				—		
RC3	7	AN7	C12IN3-				—		
RC4	6	_	C2OUT	_	_	_	—		
RC5	5		—				—		
RC6	8		_	_		_	_		
RC7	9	_				—	—		
	1					-	Vdd		
_	20			_	_	_	Vss		

Note 1: Pull-up enabled only with external MCLR configuration.

2.2 Data Memory Organization

The data memory (see Figures 2-6 through 2-8) is partitioned into four banks which contain the General Purpose Registers (GPR) and the Special Function Registers (SFR). The Special Function Registers are located in the first 32 locations of each bank. The General Purpose Registers, implemented as static RAM, are located in the last 96 locations of each Bank. Register locations F0h-FFh in Bank 1, 170h-17Fh in Bank 2 and 1F0h-1FFh in Bank 3 point to addresses 70h-7Fh in Bank 0. The actual number of General Purpose Resisters (GPR) in each Bank depends on the device. Details are shown in Figures 2-4 through 2-8. All other RAM is unimplemented and returns '0' when read. RP<1:0> of the STATUS register are the bank select bits:

<u>RP1</u> <u>RP0</u>

0	0	\rightarrow	Bank 0 is selected
0	1	\rightarrow	Bank 1 is selected
1	0	\rightarrow	Bank 2 is selected

1 1 \rightarrow Bank 3 is selected

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 128 x 8 in the PIC16F687 and 256 x 8 in the PIC16F685/PIC16F689/ PIC16F690. Each register is accessed, either directly or indirectly, through the File Select Register (FSR) (see **Section 2.4 "Indirect Addressing, INDF and FSR Registers"**).

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Tables 2-1 through 2-4). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Registers related to the operation of peripheral features are described in the section of that peripheral feature.

GURE 2-7:	File	F687/PIC16F68	File				File
					File		File
Indirect addr. (1)	Address	ladias et e dela (1)	Address	ladias et e dala (1)	Address	Indinent ender (1)	Addres
		Indirect addr. ⁽¹⁾		Indirect addr. ⁽¹⁾		Indirect addr. (1)	
TMR0 PCL	01h	OPTION_REG PCL	81h 82b	TMR0 PCL	101h 102h	OPTION_REG PCL	181h
STATUS	02h 03h	STATUS	82h 83h	STATUS	102h 103h	STATUS	182h 183h
FSR	-	FSR		FSR		FSR	
	04h		84h	PORTA	104h 105h		184h
PORTA PORTB	05h 06h	TRISA TRISB	85h 86h	PORTA	105h 106h	TRISA TRISB	185h 186h
PORTE	00n 07h	TRISE	87h	PORTE	106h 107h	TRISE	187h
FURIC	08h	TRIBC	88h	FORTC	107h 108h	TRISC	188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10911 10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10An 10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDAT	10Dh	EECON1	18Ch
	-					EECON2 ⁽¹⁾	
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECONZY	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH ⁽³⁾	10Eh		18Eh
TMR1H	0Fh	OSCCON	8Fh	EEADRH ⁽³⁾	10Fh		18Fh
T1CON	10h	OSCTUNE	90h		110h		190h
	11h		91h		111h		191h
	12h	(2)	92h		112h		192h
SSPBUF	13h	SSPADD ⁽²⁾	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
	15h	WPUA	95h	WPUB	115h		195h
	16h	IOCA	96h	IOCB	116h		196h
	17h	WDTCON	97h		117h		197h
RCSTA	18h	TXSTA	98h	VRCON	118h		198h
TXREG	19h	SPBRG	99h	CM1CON0	119h		199h
RCREG	1Ah	SPBRGH	9Ah	CM2CON0	11Ah		19Ah
	1Bh	BAUDCTL	9Bh	CM2CON1	11Bh		19Bh
	1Ch		9Ch		11Ch		19Ch
	1Dh		9Dh		11Dh	00001	19Dh
ADRESH	1Eh	ADRESL	9Eh	ANSEL	11Eh	SRCON	19Eh
ADCON0	1Fh	ADCON1	9Fh	ANSELH	11Fh		19Fh
General Purpose Register	20h	General Purpose Register 32 Bytes 48 Bytes	A0h BFh C0h	General Purpose Register 80 Bytes (PIC16F689	120h		1A0h
96 Bytes		(PIC16F689 only)	EFh	only)			
	7Fh	accesses 70h-7Fh	F0h FFh	accesses 70h-7Fh	170h 17Fh	accesses 70h-7Fh	1F0h 1FFh
Bank 0	1	Bank 1	I	Bank 2	I	Bank 3	
lote 1: Not a p 2: Addres See Re	ohysical reg s 93h also	•	P Mask (SS	as '0'. SPMSK) register u	nder certai	n conditions.	

2.2.2.4 PIE1 Register

The PIE1 register contains the interrupt enable bits, as shown in Register 2-4.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 2-4: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	ADIE ⁽⁵⁾	RCIE ⁽³⁾	TXIE ⁽³⁾	SSPIE ⁽⁴⁾	CCP1IE ⁽²⁾	TMR2IE ⁽¹⁾	TMR1IE
bit 7							bit 0

Legend:				
R = Read	able bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
L : L 7	11			
bit 7	-	mented: Read as '0'	. –	
bit 6		D Converter (ADC) Interrupt	t Enable bit	
		bles the ADC interrupt bles the ADC interrupt		
bit 5		USART Receive Interrupt Er	able hit(3)	
Dit J		bles the EUSART receive inter		
		bles the EUSART receive int		
bit 4		JSART Transmit Interrupt Er		
		bles the EUSART transmit in		
	0 = Disa	bles the EUSART transmit ir	nterrupt	
bit 3	SSPIE: S	Synchronous Serial Port (SS	P) Interrupt Enable bit ⁽⁴⁾	
		bles the SSP interrupt		
		bles the SSP interrupt		
bit 2		CCP1 Interrupt Enable bit ⁽²)	
		bles the CCP1 interrupt bles the CCP1 interrupt		
bit 1		: Timer2 to PR2 Match Interr	upt Enable bit ⁽¹⁾	
		bles the Timer2 to PR2 match	•	
		bles the Timer2 to PR2 matc		
bit 0	TMR1IE:	: Timer1 Overflow Interrupt E	Enable bit	
		oles the Timer1 overflow inte	•	
	0 = Disa	bles the Timer1 overflow inte	errupt	
Note 1:		IC16F690 only.		
2:		IC16F689/PIC16F690 only.		
3:	PIC16F687/P	IC16F689/PIC16F690 only.		

4: PIC16F677/PIC16F687/PIC16F689/PIC16F690 only.

5: PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.

3.5.2.1 OSCTUNE Register

-n = Value at POR

The HFINTOSC is factory calibrated but can be adjusted in software by writing to the OSCTUNE register (Register 3-2).

The default value of the OSCTUNE register is '0'. The value is a 5-bit two's complement number.

When the OSCTUNE register is modified, the HFINTOSC frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

x = Bit is unknown

REGISTER 3-2: OSCTUNE: OSCILLATOR TUNING REGISTER

'1' = Bit is set

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimpler	nented bit, read	l as '0'	

'0' = Bit is cleared

bit 7-5	Unimplemented: Read as '0'
bit 4-0	TUN<4:0>: Frequency Tuning bits
	01111 = Maximum frequency
	01110 =
	•
	•
	•
	00001 =
	00000 = Oscillator module is running at the factory-calibrated frequency.
	11111 =
	•
	•
	•
	10000 = Minimum frequency

4.2 Additional Pin Functions

Every PORTA pin on this device family has an interrupton-change option and a weak pull-up option. RA0 also has an Ultra Low-Power Wake-up option. The next three sections describe these functions.

4.2.1 ANSEL AND ANSELH REGISTERS

The ANSEL and ANSELH registers are used to disable the input buffers of I/O pins, which allow analog voltages to be applied to those pins without causing excessive current. Setting the ANSx bit of a corresponding pin will cause all digital reads of that pin to return '0' and also permit analog functions of that pin to operate correctly.

The state of the ANSx bit has no effect on the digital output function of its corresponding pin. A pin with the TRISx bit clear and ANSx bit set will operate as a digital output, together with the analog input function of that pin. Pins with the ANSx bit set always read '0', which can cause unexpected behavior when executing read or write operations on the port due to the read-modifywrite sequence of all such operations.

4.2.2 WEAK PULL-UPS

Each of the PORTA pins, except RA3, has an individually configurable internal weak pull-up. Control bits WPUAx enable or disable each pull-up. Refer to Register 4-4. Each weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the RABPU bit of the OPTION register. A weak pull-up is automatically enabled for RA3 when configured as MCLR and disabled when RA3 is an I/O. There is no software control of the MCLR pull-up.

4.2.3 INTERRUPT-ON-CHANGE

Each PORTA pin is individually configurable as an interrupt-on-change pin. Control bits IOCAx enable or disable the interrupt function for each pin. Refer to Register 4-6. The interrupt-on-change is disabled on a Power-on Reset.

For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of PORTA. The 'mismatch' outputs of the last read are OR'd together to set the PORTA Change Interrupt Flag bit (RABIF) in the INTCON register (Register 2-6).

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, clears the interrupt by:

- a) Any read or write of PORTA. This will end the mismatch condition, then,
- b) Clear the flag bit RABIF.

A mismatch condition will continue to set flag bit RABIF. Reading PORTA will end the mismatch condition and allow flag bit RABIF to be cleared. The latch holding the last read value is not affected by a MCLR nor BOR Reset. After these Resets, the RABIF flag will continue to be set if a mismatch is present.

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RABIF interrupt flag may not get set.

U-0	U-0	R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1
_	_	WPUA5	WPUA4		WPUA2	WPUA1	WPUA0
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 7-6 bit 5-4	-	nented: Read as '(
DIL 5-4	1 = Pull-up 0 = Pull-up		Register bit				
bit 3	Unimplem	nented: Read as 'o)'				
bit 2-0	WPUA<2: 1 = Pull-up 0 = Pull-up		Register bit				
Note 1: 2:		bit of the OPTION	•				bled.

WPUA: PORTA REGISTER **REGISTER 4-5:**

3: The RA3 pull-up is enabled when configured as MCLR and disabled as an I/O in the Configuration Word.

4: WPUA<5:4> always reads '1' in XT, HS and LP Oscillator modes.

REGISTER 4-6: IOCA: INTERRUPT-ON-CHANGE PORTA REGISTER

Logondi							
bit 7							bit 0
_	—	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

Legena.					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-6 Unimplemented: Read as '0'

bit 5-0 IOCA<5:0>: Interrupt-on-change PORTA Control bit

1 = Interrupt-on-change enabled

0 = Interrupt-on-change disabled

Note 1: Global Interrupt Enable (GIE) must be enabled for individual interrupts to be recognized.

2: IOCA<5:4> always reads '1' in XT, HS and LP Oscillator modes.

TABLE 4-1:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTA
------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0	ADFM	VCFG	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	0000 0000	0000 0000
ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
CM1CON0	C1ON	C1OUT	C1OE	C1POL	_	C1R	C1CH1	C1CH0	0000 -000	0000 -000
INTCON	GIE	PEIE	T0IE	INTE	RABIE	T0IF	INTF	RABIF	0000 000x	0000 000x
IOCA	_	_	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0	00 0000	00 0000
OPTION_REG	RABPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	uuuu uuuu
TRISA		_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
WPUA	_	—	WPUA5	WPUA4	—	WPUA2	WPUA1	WPUA0	11 -111	11 -111

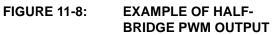
Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

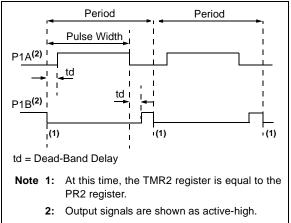
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
oit 7							bit
egend:							
R = Readable	e bit	W = Writable	oit	U = Unimplen		id as '0'	
n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
oit 7	Unimplemen	ted: Read as '	ז'				
oit 6-3	-	>: Timer2 Outp		Select hits			
	0000 =1:1 Pc	•					
	0000 =1:1 PC						
	0010 =1:2 PC						
	0010 =1:0 Pc						
	0100 =1:5 Pc						
	0101 =1:6 Pc						
	0110 =1:7 Pc	ostscaler					
	0111 =1:8 Pc	ostscaler					
	1000 =1:9 Pc	ostscaler					
	1001 =1:10 F						
	1010 =1:11 P						
	1011 =1:12 F						
	1100 =1:13 F						
	1101 =1:14 F						
	1110 =1:15 P 1111 =1:16 P						
oit 2	TMR2ON: Tir						
	1 = Timer2 is	son					
	0 = Timer2 is	off					
oit 1-0	T2CKPS<1:0	>: Timer2 Cloc	k Prescale Sel	lect bits			
	00 =Prescale	ris 1					
	01 =Prescale	r is 4					
	1x =Prescale	r is 16					
lote 1: PI	IC16F685/PIC16	E600 only					

T2CON: TIMER 2 CONTROL REGISTER⁽¹⁾ **REGISTER 7-1:**

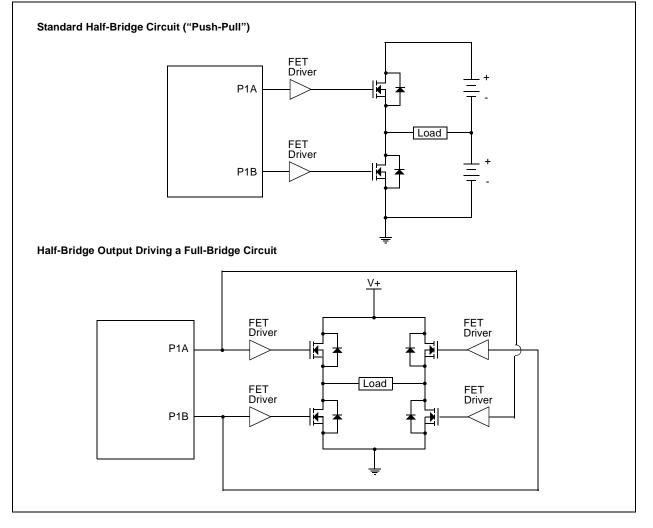
TABLE 7-1: SUMMARY OF ASSOCIATED TIMER2⁽¹⁾ REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF	0000 000x	0000 000x
PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
PR2	Timer2 M	lodule Period	Register						1111 1111	1111 1111
TMR2	Holding F	Holding Register for the 8-bit TMR2 Register							0000 0000	0000 0000
T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
Lanandi			als are see al					(T 0		


 Legend:
 x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for Timer2 module.


 Note
 1:
 PIC16F685/PIC16F690 only.

11.4.1 HALF-BRIDGE MODE


In Half-Bridge mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the CCP1/P1A pin, while the complementary PWM output signal is output on the P1B pin (see Figure 11-6). This mode can be used for Half-Bridge applications, as shown in Figure 11-9, or for Full-Bridge applications, where four power switches are being modulated with two PWM signals.

In Half-Bridge mode, the programmable dead-band delay can be used to prevent shoot-through current in Half-Bridge power devices. The value of the PDC<6:0> bits of the PWM1CON register sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **Section 11.4.6 "Programmable Dead-Band Delay mode"** for more details of the dead-band delay operations. Since the P1A and P1B outputs are multiplexed with the PORT data latches, the associated TRIS bits must be cleared to configure P1A and P1B as outputs.

FIGURE 11-9: EXAMPLE OF HALF-BRIDGE APPLICATIONS

11.4.2.1 Direction Change in Full-Bridge Mode

In the Full-Bridge mode, the P1M1 bit in the CCP1CON register allows users to control the forward/reverse direction. When the application firmware changes this direction control bit, the module will change to the new direction on the next PWM cycle.

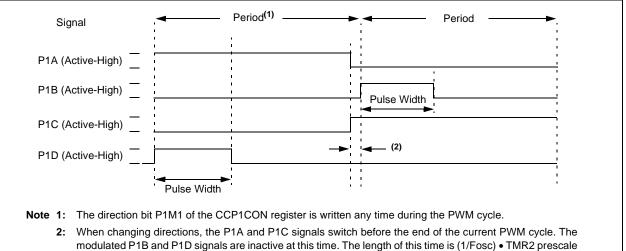
A direction change is initiated in software by changing the P1M1 bit of the CCP1CON register. The following sequence occurs prior to the end of the current PWM period:

- The modulated outputs (P1B and P1D) are placed in their inactive state.
- The associated unmodulated outputs (P1A and P1C) are switched to drive in the opposite direction.
- PWM modulation resumes at the beginning of the next period.

See Figure 11-12 for an illustration of this sequence.

The Full-Bridge mode does not provide dead-band delay. As one output is modulated at a time, dead-band delay is generally not required. There is a situation where dead-band delay is required. This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn-off time of the power switch, including the power device and driver circuit, is greater than the turn-on time.


Figure 11-13 shows an example of the PWM direction changing from forward to reverse, at a near 100% duty cycle. In this example, at time t1, the output P1A and P1D become inactive, while output P1C becomes active. Since the turn-off time of the power devices is longer than the turn-on time, a shoot-through current will flow through power devices QC and QD (see Figure 11-10) for the duration of 't'. The same phenomenon will occur to power devices QA and QB for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, two possible solutions for eliminating the shoot-through current are:

- 1. Reduce PWM duty cycle for one PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

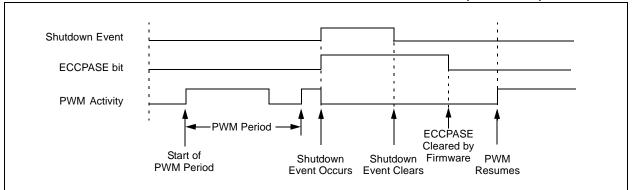
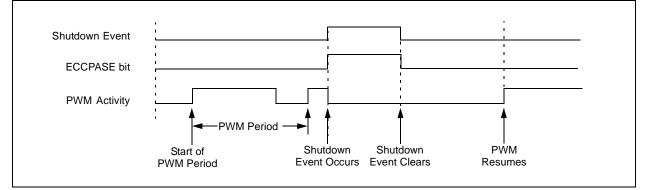

Other options to prevent shoot-through current may exist.

FIGURE 11-12: EXAMPLE OF PWM DIRECTION CHANGE

value.

FIGURE 11-15: PWM AUTO-SHUTDOWN WITH FIRMWARE RESTART (PRSEN = 0)



11.4.5 AUTO-RESTART MODE

The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PRSEN bit in the PWM1CON register.

If auto-restart is enabled, the ECCPASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the ECCPASE bit will be cleared via hardware and normal operation will resume.

FIGURE 11-16: PWM AUTO-SHUTDOWN WITH AUTO-RESTART ENABLED (PRSEN = 1)

				SYNC = 0	, BRGH	= 1, BRG16	= 1 or SY	′NC = 1,	BRG16 = 1	_		
BAUD	Fosc	: = 20.00	0 MHz	Fosc = 18.432 MHz			Fosc = 11.0592 MHz			Fosc = 8.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual %		SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215	300.0	0.00	6666
1200	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303	1200	-0.02	1666
2400	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151	2401	0.04	832
9600	9597	-0.03	520	9600	0.00	479	9600	0.00	287	9615	0.16	207
10417	10417	0.00	479	10425	0.08	441	10433	0.16	264	10417	0	191
19.2k	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143	19.23k	0.16	103
57.6k	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47	57.14k	-0.79	34
115.2k	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23	117.6k	2.12	16

				SYNC = 0	, BRGH	= 1, BRG16	= 1 or SΥ	/NC = 1,	BRG16 = 1				
BAUD	Fos	c = 4.000) MHz	Fosc = 3.6864 MHz			Fosc = 2.000 MHz			Fos	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual % value		Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	300.0	0.01	3332	300.0	0.00	3071	299.9	-0.02	1666	300.1	0.04	832	
1200	1200	0.04	832	1200	0.00	767	1199	-0.08	416	1202	0.16	207	
2400	2398	0.08	416	2400	0.00	383	2404	0.16	207	2404	0.16	103	
9600	9615	0.16	103	9600	0.00	95	9615	0.16	51	9615	0.16	25	
10417	10417	0.00	95	10473	0.53	87	10417	0.00	47	10417	0.00	23	
19.2k	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	25	19.23k	0.16	12	
57.6k	58.82k	2.12	16	57.60k	0.00	15	55.56k	-3.55	8	—	_	_	
115.2k	111.1k	-3.55	8	115.2k	0.00	7	_	_	_	_	—	—	

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

FIGURE 12-12	: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RX/DT pin TX/CK pin (SCKP = 0)	bit 0 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
TX/CK pin (SCKP = 1) Write to bit SREN	
SREN bit	ʻ0'
RCIF bit (Interrupt) ——— Read	
RXREG	g diagram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.

TABLE 12-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
BAUDCTL	ABDOVF	RCIDL		SCKP	BRG16	—	WUE	ABDEN	01-0 0-00	01-0 0-00
INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF	x000 000x	0000 000x
PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
RCREG	EUSART F	Receive Da	ta Register						0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
SPBRGH	BRG15	BRG14	BRG13	BRG12	BRG11	BRG10	BRG9	BRG8	0000 0000	0000 0000
TRISB	TRISB7	TRISB6	TRISB5	TRISB4					1111	1111
TXREG	TXREG EUSART Transmit Data Register									0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Master Reception.

13.12.1 ADDRESSING

Once the SSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the eight bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF of the PIR1 register is set (interrupt is generated if enabled) on the falling edge of the ninth SCL pulse.

In 10-bit Address mode, two address bytes need to be received by the slave (Figure 13-8). The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address.

The sequence of events for 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of address (bits SSPIF, BF and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of address (bits SSPIF, BF and UA are set).
- 5. Update the SSPADD register with the first (high) byte of address; if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated Start condition.
- 8. Receive first (high) byte of address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

TABLE 13-3: DATA TRANSFER RECEIVED BYTE ACTIONS

	ts as Data s Received	$SSPSR \to SSPBUF$	Generate ACK Pulse	Set bit SSPIF (SSP Interrupt occurs
BF	SSPOV		Fuise	if enabled)
0	0	Yes	Yes	Yes
1	0	No	No	Yes
1	1	No	No	Yes
0	1	No	No	Yes

Note: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

Register	Address	Power-on Reset	MCLR Reset WDT Reset (Continued) Brown-out Reset ⁽¹⁾	Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out
TRISB	86h/186h	1111	1111	uuuu
TRISC	87h/187h	1111 1111	1111 1111	uuuu uuuu
PIE1	8Ch	-000 0000	-000 0000	-uuu uuuu
PIE2	8Dh	0000	0000	uuuu uuuu
PCON	8Eh	010x	0uuq ^{1, 5)}	uuuu
OSCCON	8Fh	-110 q000	-110 q000	-uuu uuuu
OSCTUNE	90h	0 0000	u uuuu	u uuuu
PR2	92h	1111 1111	1111 1111	uuuu uuuu
SSPADD	93h	0000 0000	1111 1111	uuuu uuuu
SSPMSK ⁽⁶⁾	93h		1111 1111	uuuu uuuu
SSPSTAT	94h	0000 0000	1111 1111	uuuu uuuu
WPUA	95h	11 -111	11 -111	uuuu uuuu
IOCA	96h	00 0000	00 0000	uu uuuu
WDTCON	97h	0 1000	0 1000	u uuuu
TXSTA	98h	0000 0010	0000 0010	uuuu uuuu
SPBRG	99h	0000 0000	0000 0000	uuuu uuuu
SPBRGH	9Ah	0000 0000	0000 0000	սսսս սսսս
BAUDCTL	9Bh	01-0 0-00	01-0 0-00	uu-u u-uu
ADRESL	9Eh	xxxx xxxx	uuuu uuuu	սսսս սսսս
ADCON1	9Fh	-000	-000	-uuu
EEDAT	10Ch	0000 0000	0000 0000	uuuu uuuu
EEADR	10Dh	0000 0000	0000 0000	uuuu uuuu
EEDATH	10Eh	00 0000	00 0000	uu uuuu
EEADRH	10Fh	0000	0000	uuuu
WPUB	115h	1111	1111	uuuu
IOCB	116h	0000	0000	uuuu
VRCON	118h	0000 0000	0000 0000	սսսս սսսս
CM1CON0	119h	0000 -000	0000 -000	uuuu -uuu
CM2CON0	11Ah	0000 -000	0000 -000	uuuu -uuu
CM2CON1	11Bh	0000	0010	uuuu
ANSEL	11Eh	1111 1111	1111 1111	uuuu uuuu
ANSELH	11Fh	1111	1111	uuuu
EECON1	18Ch	x x000	u q000	uuuu
EECON2	18Dh			
PSTRCON	19Dh	0 0001	0 0001	u uuuu
SRCON	19EH	0000 00	0000 00	uuuu uu

TABLE 14-4: INITIALIZATION CONDITION FOR REGISTER (CONTINUED)

 $\label{eq:logend: u = unchanged, x = unknown, - = unimplemented bit, reads as `0', q = value depends on condition.$

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 14-5 for Reset value for specific condition.

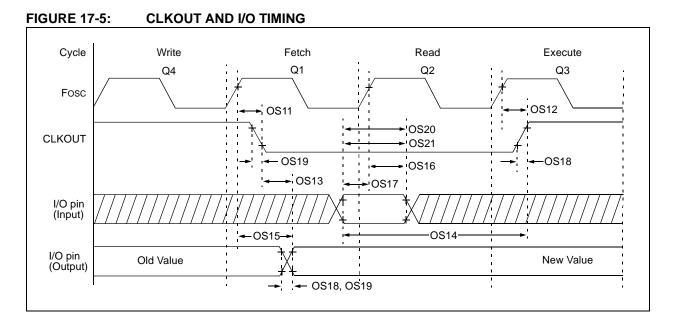
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

6: Accessible only when SSPM < 3:0 > = 1001.

TABLE 14-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

TABLE 17-2: OSCILLATOR PARAMETERS

	Operating Temperatu	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions
OS06	TWARM	Internal Oscillator Switch when running ⁽³⁾	—			2	Tosc	Slowest clock
OS07	Tsc	Fail-Safe Sample Clock Period ⁽¹⁾	—	_	21	-	ms	LFINTOSC/64
OS08	HFosc	Internal Calibrated	±1%	7.92	8.0	8.08	MHz	VDD = 3.5V, 25°C
		HFINTOSC Frequency ⁽²⁾	±2%	7.84	8.0	8.16	MHz	$2.5V \le VDD \le 5.5V$, $0^{\circ}C \le TA \le +85^{\circ}C$
			±5%	7.60	8.0	8.40	MHz	$ \begin{array}{l} 2.0V \leq V D D \leq 5.5V, \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ (Ind.)}, \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ (Ext.)} \end{array} $
OS09*	LFosc	Internal Uncalibrated LFINTOSC Frequency	—	15	31	45	kHz	
OS10*	TIOSC ST	HFINTOSC Oscillator	_	5.5	12	24	μs	VDD = 2.0V, -40°C to +85°C
		Wake-up from Sleep	—	3.5	7	14	μs	VDD = 3.0V, -40°C to +85°C
		Start-up Time	—	3	6	11	μs	VDD = 5.0V, -40°C to +85°C


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at 'min' values with an external clock applied to the OSC1 pin. When an external clock input is used, the 'max' cycle time limit is 'DC' (no clock) for all devices.

2: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 µF and 0.01 µF values in parallel are recommended.

3: By design.

TABLE 17-3: CLKOUT AND I/O TIMING PARAMETERS

		Conditions (unless otherwise stated) re -40°C \leq TA \leq +125°C					
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	—	—	70	ns	VDD = 5.0V
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	_	_	72	ns	VDD = 5.0V
OS13	TckL2IoV	CLKOUT↓ to port out valid ⁽¹⁾	_	_	20	ns	
OS14	ТюV2скН	Port input valid before CLKOUT↑ ⁽¹⁾	Tosc + 200 ns	_		ns	
OS15	TosH2IoV	Fosc↑ (Q1 cycle) to port out valid	—	50	70*	ns	VDD = 5.0V
OS16	TosH2iol	Fosc↑ (Q2 cycle) to port input invalid (I/O in hold time)	50			ns	VDD = 5.0V
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20		_	ns	
OS18	TIOR	Port output rise time ⁽²⁾		15 40	72 32	ns	VDD = 2.0V VDD = 5.0V
OS19	TIOF	Port output fall time ⁽²⁾		28 15	55 30	ns	VDD = 2.0V VDD = 5.0V
OS20*	TINP	INT pin input high or low time	25	—	_	ns	
OS21*	Trap	PORTA interrupt-on-change new input level time	Тсү	—	_	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated.

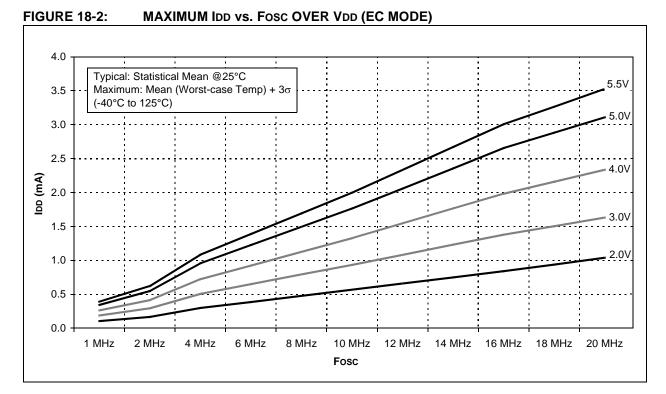
Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

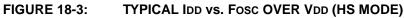
2: Includes OSC2 in CLKOUT mode.

Param	Device Characteristics	Units	Min.	Тур.		Condition		
No.					Max.	Vdd	Note	
D020E	Power Down Base Current (IPD)	—		27	μΑ	2.1	IPD Base: WDT, BOR,	
		—		29		3.0	Comparators, VREF and	
		—		32		5.0	T1osc disabled	
D021E		—	_	55	μΑ	2.1	WDT Current	
		—		59		3.0		
		—		69		5.0]	
D022E		—	—	75		3.0	BOD Current	
		_	_	147	μA	5.0	BOR Current	
D023E		—		73	μA	2.1		
		—	—	117		3.0	Comparator current, both comparators enabled	
		_	_	235		5.0		
D024E		—		102	μΑ	2.1		
		—	_	128		3.0	CVREF current, high range	
		—		170		5.0]	
D024AE		—	_	133	μΑ	2.1	CVREF current, low range	
		_		167		3.0		
		—		222		5.0		
D025E		—	_	36	μΑ	2.1	T1osc current, 32 kHz	
		—	_	41		3.0		
		—		47		5.0]	
D026E		_	_	22	μA	3.0	Analog-to-Digital current,	
			_	24		5.0	no conversion in progress	
D027E				189	μA	3.0	VP6 current (Fixed Voltage	
				250		5.0	Reference)	

TABLE 17-20: DC CHARACTERISTICS FOR IPD SPECIFICATIONS FOR PIC16F685/687/689/690-H (High Temp.) (High Temp.)

TABLE 17-21: LEAKAGE CURRENT SPECIFICATIONS FOR PIC16F685/687/689/690-H (High Temp.)


Param No.	Sym.	n. Characteristic		Тур.	Max.	Units	Conditions
D061	lı∟	Input Leakage Current ⁽¹⁾ (RA3/MCLR)	_	±0.5	±5.0	μA	$VSS \leq VPIN \leq VDD$
D062	lı∟	Input Leakage Current ⁽²⁾ (RA3/MCLR)	50	250	400	μA	VDD = 5.0V


Note 1: This specification applies when RA3/MCLR is configured as an input with the pull-up disabled. The leakage current for the RA3/MCLR pin is higher than for the standard I/O port pins.

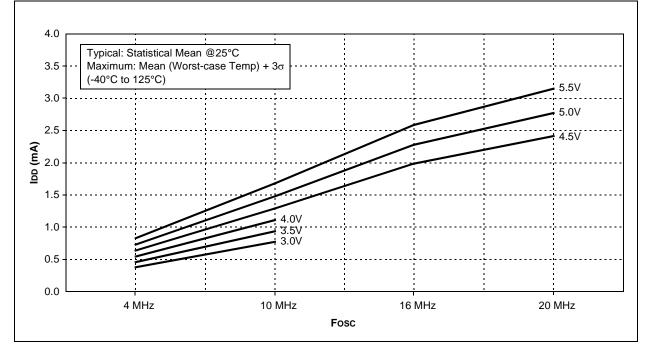

2: This specification applies when RA3/MCLR is configured as the MCLR reset pin function with the weak pull-up enabled.

TABLE 17-22: DATA EEPROM MEMORY ENDURANCE SPECIFICATIONS FOR PIC16F685/687/689/690-H (High Temp.)

Param No.	Sym.	n. Characteristic		Тур.	Max.	Units	Conditions
D120A	ED	Byte Endurance	5K	50K	_	E/W	$126^{\circ}C \leq TA \leq 150^{\circ}C$

