

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f685t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Data Memory Organization

The data memory (see Figures 2-6 through 2-8) is partitioned into four banks which contain the General Purpose Registers (GPR) and the Special Function Registers (SFR). The Special Function Registers are located in the first 32 locations of each bank. The General Purpose Registers, implemented as static RAM, are located in the last 96 locations of each Bank. Register locations F0h-FFh in Bank 1, 170h-17Fh in Bank 2 and 1F0h-1FFh in Bank 3 point to addresses 70h-7Fh in Bank 0. The actual number of General Purpose Resisters (GPR) in each Bank depends on the device. Details are shown in Figures 2-4 through 2-8. All other RAM is unimplemented and returns '0' when read. RP<1:0> of the STATUS register are the bank select bits:

<u>RP1</u> <u>RP0</u>

0	0	\rightarrow	Bank 0 is selected
0	1	\rightarrow	Bank 1 is selected
1	0	\rightarrow	Bank 2 is selected

1 1 \rightarrow Bank 3 is selected

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 128 x 8 in the PIC16F687 and 256 x 8 in the PIC16F685/PIC16F689/ PIC16F690. Each register is accessed, either directly or indirectly, through the File Select Register (FSR) (see **Section 2.4 "Indirect Addressing, INDF and FSR Registers"**).

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Tables 2-1 through 2-4). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Registers related to the operation of peripheral features are described in the section of that peripheral feature.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank	1										
80h	INDF	Addressing	this location	n uses conte	ents of FSR	to address c	ata memory	(not a physic	cal register)	xxxx xxxx	43,200
81h	OPTION_REG	RABPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	36,200
82h	PCL	Program C	ounter's (PC	C) Least Sig	nificant Byte)				0000 0000	43,200
83h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	35,200
84h	FSR	Indirect Dat	ta Memory A	Address Poi	nter					xxxx xxxx	43,200
85h	TRISA	-	-	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	57,200
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	—	_	_	—	1111	68,201
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	74,200
88h	—	Unimpleme	nted							—	—
89h	—	Unimpleme	nted							—	—
8Ah	PCLATH	—	—	—	Write Buffe	er for the upp	per 5 bits of t	he Program	Counter	0 0000	43,200
8Bh	INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF ⁽¹⁾	0000 000x	37,200
8Ch	PIE1	—	ADIE ⁽⁴⁾	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE ⁽⁵⁾	CCP1IE ⁽³⁾	TMR2IE ⁽³⁾	TMR1IE	-000 0000	38,201
8Dh	PIE2	OSFIE	C2IE	C1IE	EEIE	—			_	0000	39,201
8Eh	PCON	—	—	ULPWUE	SBOREN	—		POR	BOR	01qq	42,201
8Fh	OSCCON	_	IRCF2	IRCF1	IRCF0	OSTS	HTS	LTS	SCS	-110 q000	46,201
90h	OSCTUNE	—	—	—	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	50,201
91h	_	Unimpleme	nted							_	_
92h	PR2 ⁽³⁾	Timer2 Per	iod Register							1111 1111	89,201
93h	SSPADD ^(5,7)	Synchrono	Synchronous Serial Port (I ² C mode) Address Register							0000 0000	184,201
93h	SSPMSK ^(5,7)	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	1111 1111	187,201
94h	SSPSTAT ⁽⁵⁾	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	176,201
95h	WPUA ⁽⁶⁾	_	_	WPUA5	WPUA4	_	WPUA2	WPUA1	WPUA0	11 -111	60,201
96h	IOCA	—	_	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0	00 0000	60,201
97h	WDTCON	_	_	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	0 1000	208,201
98h	TXSTA ⁽²⁾	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	157,201
99h	SPBRG ⁽²⁾	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	160,201
9Ah	SPBRGH(2)	BRG15	BRG14	BRG13	BRG12	BRG11	BRG10	BRG9	BRG8	0000 0000	160,201
9Bh	BAUDCTL ⁽²⁾	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	159,201
9Ch	_	Unimpleme	nted		•	•			•	_	—
9Dh	—	Unimpleme	nted							_	—
9Eh	ADRESL ⁽⁴⁾	A/D Result	Register Lo	w Byte						xxxx xxxx	113,201
9Fh	ADCON1 ⁽⁴⁾	_	ADCS2	ADCS1	ADCS0	_	_	_	_	-000	112,201

TABLE 2-2: PIC16F631/677/685/687/689/690 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1

Legend: -= Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented Note 1: MCLR and WDT Reset do not affect the previous value data latch. The RABIF bit will be cleared upon Reset but will set again if the mismatch exists.

2: PIC16F687/PIC16F689/PIC16F690 only.

EIGENERS//PIC16F689/PIC1
 BIC16F685/PIC16F690 only.
 PIC16F677/PIC16F697 (PIC16F697 (PIC16F697

4: PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.

5: PIC16F677/PIC16F687/PIC16F689/PIC16F690 only.

6: RA3 pull-up is enabled when pin is configured as MCLR in Configuration Word.

7: Accessible only when SSPCON register bits SSPM<3:0> = 1001.

4.0 I/O PORTS

There are as many as eighteen general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

4.1 **PORTA and the TRISA Registers**

PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 4-2). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). The exception is RA3, which is input only and its TRIS bit will always read as '1'. Example 4-1 shows how to initialize PORTA.

Reading the PORTA register (Register 4-1) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write

REGISTER 4-1: PORTA: PORTA REGISTER

operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch. RA3 reads '0' when MCLRE = 1.

The TRISA register controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

The ANSEL register must be initialized to Note: configure an analog channel as a digital input. Pins configured as analog inputs will read '0'.

EXAMPLE 4-1: **INITIALIZING PORTA**

BCF	STATUS, RP	0;Bank 0
BCF	STATUS, RP	1;
CLRF	PORTA	;Init PORTA
BSF	STATUS, RP	1;Bank 2
CLRF	ANSEL	;digital I/O
BSF	STATUS, RP	0;Bank 1
BCF	STATUS, RP	1;
MOVLW	0Ch	;Set RA<3:2> as inputs
MOVWF	TRISA	;and set RA<5:4,1:0>
		;as outputs
BCF	STATUS, RP	0;Bank 0
	BCF BCF CLRF BSF BCF MOVLW MOVWF BCF	BCFSTATUS, RPBCFSTATUS, RPCLRFPORTABSFSTATUS, RPCLRFANSELBSFSTATUS, RPBCFSTATUS, RPMOVLWOChMOVWFTRISABCFSTATUS, RP

U-0	U-0	R/W-x	R/W-x	R-x	R/W-x	R/W-x	R/W-x
—	—	RA5	RA4	RA3	RA2	RA1	RA0
bit 7							bit 0
Logond							

Legena:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-6	Unimplemented: Read as '0'
bit 5-0	RA<5:0>: PORTA I/O Pin bit
	1 = Port pin is > VIн
	0 = Port pin is < VIL

REGISTER 4-2: TRISA: PORTA TRI-STATE REGISTER

U-0	U-0	R/W-1	R/W-1	R-1	R/W-1	R/W-1	R/W-1
—	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-6 Unimplemented: Read as '0'

TRISA<5:0>: PORTA Tri-State Control bit

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

Note 1: TRISA<3> always reads '1'.

bit 5-0

TRISA<5:4> always reads '1' in XT, HS and LP Oscillator modes. 2:

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0
bit 7			•		•	•	bit 0
Legend:							
R = Readable	bit	W = Writable	= Writable bit U = Unimplemented bit, read as '0'			d as '0'	
-n = Value at F	POR	'1' = Bit is set	t is set '0' = Bit is cleared x = Bit			x = Bit is unk	nown

REGISTER 4-3: ANSEL: ANALOG SELECT REGISTER

bit 7-0 ANS<7:0>: Analog Select bits Analog select between analog or digital function on pins AN<7:0>, respectively. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. 0 = Digital I/O. Pin is assigned to port or special function.

REGISTER 4-4: ANSELH: ANALOG SELECT HIGH REGISTER⁽²⁾

U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	—	ANS11	ANS10	ANS9	ANS8
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 3-0 ANS<11:8>: Analog Select bits

Analog select between analog or digital function on pins AN<7:0>, respectively.

1 =Analog input. Pin is assigned as analog input⁽¹⁾.

0 = Digital I/O. Pin is assigned to port or special function.

Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups and interrupt-on-change if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

2: PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.

Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups and interrupt-on-change if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

4.4.3.2 RB5/AN11/RX/DT^(1, 2)

Figure 4-8 shows the diagram for this pin. The RB5/ AN11/RX/DT pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- an asynchronous serial input
- a synchronous serial data I/O

Note 1: RX and DT are available on PIC16F687/ PIC16F689/PIC16F690 only.

2: AN11 is not implemented on PIC16F631.

FIGURE 4-8:

BLOCK DIAGRAM OF RB5

TABLE 10-1: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
EECON1	EEPGD ⁽¹⁾	_	-	_	WRERR	WREN	WR	RD	x x000	0 d000
EECON2	EEPROM Control Register 2 (not a physical register)									
EEADR	EEADR7 ⁽²⁾	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0	0000 0000	0000 0000
EEADRH ⁽¹⁾	—	_	_	_	EEADRH3	EEADRH2	EEADRH1	EEADRH0	0000	0000
EEDAT	EEDAT7	EEDAT6	EEDAT5	EEDAT4	EEDAT3	EEDAT2	EEDAT1	EEDAT0	0000 0000	0000 0000
EEDATH ⁽¹⁾	_	_	EEDATH5	EEDATH4	EEDATH3	EEDATH2	EEDATH1	EEDATH0	00 0000	00 0000
INTCON	GIE	PEIE	T0IE	INTE	RABIE	T0IF	INTF	RABIF	0000 0000	0000 0000
PIE2	OSFIE	C2IE	C1IE	EEIE	_	_	_	_	0000	0000
PIR2	OSFIF	C2IF	C1IF	EEIF	_	_	_	_	0000	0000

 ${\bf x}$ = unknown, ${\bf u}$ = unchanged, – = unimplemented read as '0', ${\bf q}$ = value depends upon condition. Shaded cells are not used by data EEPROM module. PIC16F685/PIC16F689/PIC16F690 only. Legend:

Note 1:

PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only. 2:

Note 1: The TRIS register value for each PWM output must be configured appropriately.

- 2: Clearing the CCP1CON register will relinquish ECCP control of all PWM output pins.
- **3:** Any pin not used by an Enhanced PWM mode is available for alternate pin functions

TABLE 11-4: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES

ECCP Mode	P1M<1:0>	CCP1/P1A	P1B	P1C	P1D
Single	00	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾
Half-Bridge	10	Yes	Yes	No	No
Full-Bridge, Forward	01	Yes	Yes	Yes	Yes
Full-Bridge, Reverse	11	Yes	Yes	Yes	Yes

Note 1: Pulse Steering enables outputs in Single mode.

REGISTER 11-2: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	ECCPASE: ECCP Auto-Shutdown Event Status bit 1 = A shutdown event has occurred; ECCP outputs are in shutdown state 0 = ECCP outputs are operating						
bit 6-4	ECCPAS<2:0>: ECCP Auto-shutdown Source Select bits 000 =Auto-Shutdown is disabled 001 =Comparator C1 output high 010 =Comparator C2 output high ⁽¹⁾ 011 =Either Comparators output is high 100 =VIL on INT pin 101 =VIL on INT pin or Comparator C1 output high 110 =VIL on INT pin or Comparator C2 output high 111 =VIL on INT pin or Comparator C2 output high						
bit 3-2	PSSACn: Pins P1A and P1C Shutdown State Control bits 00 = Drive pins P1A and P1C to '0' 01 = Drive pins P1A and P1C to '1' 1x = Pins P1A and P1C tri-state						
bit 1-0	1-0 PSSBDn: Pins P1B and P1D Shutdown State Control bits 00 = Drive pins P1B and P1D to '0' 01 = Drive pins P1B and P1D to '1' 1x = Pins P1B and P1D tri-state						
Note 1: If C	2SYNC is enal	oled, the shutde	own will be del	ayed by Timer	1.		

Note 1:	The auto-shutdown condition is a level-
	based signal, not an edge-based signal.
	As long as the level is present, the auto-
	shutdown will persist.

- 2: Writing to the ECCPASE bit is disabled while an auto-shutdown condition persists.
- **3:** Once the auto-shutdown condition has been removed and the PWM restarted (either through firmware or auto-restart) the PWM signal will always restart at the beginning of the next PWM period.

FIGURE 11-15: PWM AUTO-SHUTDOWN WITH FIRMWARE RESTART (PRSEN = 0)

11.4.5 AUTO-RESTART MODE

The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PRSEN bit in the PWM1CON register.

If auto-restart is enabled, the ECCPASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the ECCPASE bit will be cleared via hardware and normal operation will resume.

FIGURE 11-16: PWM AUTO-SHUTDOWN WITH AUTO-RESTART ENABLED (PRSEN = 1)

FIGURE 11-19: SIMPLIFIED STEERING BLOCK DIAGRAM

12.4.2.3 EUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 12.4.1.5 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never Idle
- SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCREG register. If the RCIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 12.4.2.4 Synchronous Slave Reception Setup:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 3. If 9-bit reception is desired, set the RX9 bit.
- 4. Set the CREN bit to enable reception.
- The RCIF bit will be set when reception is complete. An interrupt will be generated if the RCIE bit was set.
- 6. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCSTA register.
- 7. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCREG register.
- 8. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
BAUDCTL	ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	01-0 0-00
INTCON	GIE	PEIE	TOIE	INTE	RABIE	TOIF	INTF	RABIF	0000 000x	0000 000x
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
RCREG	EUSART F	Receive Da	ta Register						0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
SPBRGH	BRG15	BRG14	BRG13	BRG12	BRG11	BRG10	BRG9	BRG8	0000 0000	0000 0000
TRISB	TRISB7	TRISB6	TRISB5	TRISB4					1111	1111
TXREG	EUSART Transmit Data Register							0000 0000	0000 0000	
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010

TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.

13.12.2 RECEPTION

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address <u>byte</u> overflow condition exists, then no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF of the SSPSTAT register is set, or bit SSPOV of the SSPCON register is set. This is an error condition due to the user's firmware.

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF of the PIR1 register must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

FIGURE 13-8:	I ² C [™] WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

- R/V	$\overline{N} = 0$		
Receiving Address	ACK Receiving Data	ACK Receiving Data AC	K
SDA $\overline{(1)}$ $\overline{(A7)}$ $\overline{(A6)}$ $\overline{(A5)}$ $\overline{(A4)}$ $\overline{(A3)}$ $\overline{(A2)}$ $\overline{(A1)}$	/D7XD6XD5XD4XD3XD2XD1XD	0) /D7/D6/D5/D4/D3/D2/D1/D0/	
			$\mathbf{Y} = \mathbf{Y}$
SCL 3 0102000400000100			╨┕┟┙
		1	T
SSPIF (PIR1<3>)	 Cleared in software 	!I	Bus Master
	1		terminates
BE (SSPSTAT-OS)	SSPBLIE register is read	·	tiansier
		i I	
SSPOV (SSPCON<6>)		├	+
	Bit SSPOV is set be	ecause the SSPBUF register is still full	
		ACK is not sent.	_

- **3:** GIE = 1 assumed. In this case after wake-up, the processor jumps to 0004h. If GIE = 0, execution will continue in-line.
- 4. CLKOLIT is not subject to VT HS LD as EC Oscillator mades but a base for their sectors
 - 4: CLKOUT is not available in XT, HS, LP or EC Oscillator modes, but shown here for timing reference.

WAKE-UP FROM SLEEP THROUGH INTERRUPT

14.7 Code Protection

FIGURE 14-10:

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out using ICSP^{TM} for verification purposes.

Note:	The entire data EEPROM and Flash
	program memory will be erased when the
	code protection is switched from on to off.
	See the "PIC12F6XX/16F6XX Memory
	Programming Specification" (DS41204)
	for more information.

14.8 ID Locations

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable during Program/Verify mode. Only the Least Significant seven bits of the ID locations are used.

14.9 In-Circuit Serial Programming

The PIC16F631/677/685/687/689/690 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for:

- power
- ground
- programming voltage

This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a Program/Verify mode by holding the RA0/AN0/C1IN+/ICSPDAT/ULPWU and RA1/AN1/C12IN-/VREF/ICSPCLK pins low, while raising the MCLR (VPP) pin from VIL to VIHH. See the "PIC12F6XX/16F6XX Memory Programming Specification" (DS41204) for more information. RA0 becomes the programming data and RA1 becomes the programming clock. Both RA0 and RA1 are Schmitt Trigger inputs in this mode.

After Reset, to place the device into Program/Verify mode, the Program Counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14 bits of program data are then supplied to or from the device, depending on whether the command was a load or a read. For complete details of serial programming, please refer to the "*PIC12F6XX/16F6XX Memory Programming Specification*" (DS41204).

A typical In-Circuit Serial Programming connection is shown in Figure 14-11.

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

CLRWDT	Clear Watchdog Timer					
Syntax:	[label] CLRWDT					
Operands:	None					
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$					
Status Affected:	TO, PD					
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.					

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruction.

COMF	Complement f					
Syntax:	[<i>label</i>] COMF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	$(\overline{f}) \rightarrow (destination)$					
Status Affected:	Z					
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.					

CLRF	Clear f		
Syntax:	[<i>label</i>] CLRF f		
Operands:	$0 \leq f \leq 127$		
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$		
Status Affected:	Z		
Description:	The contents of register 'f' are cleared and the Z bit is set.		

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow (\text{W}) \\ \text{l} \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f				
Syntax:	[label] DECF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(f) - 1 \rightarrow (destination)				
Status Affected:	Z				
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

© 2005-2015 Microchip Technology Inc.

17.2 DC Characteristics: PIC16F631/677/685/687/689/690-I (Industrial) PIC16F631/677/685/687/689/690-E (Extended)

DC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					erwise stated) C for industrial i°C for extended
Param	aram					Conditions	
No.	Device Characteristics	Min.	Тур†	Max.	Units	Vdd	Note
D010	Supply Current (IDD) ^(1, 2)		13	19	μA	2.0	Fosc = 32 kHz
			22	30	μA	3.0	LP Oscillator mode
		_	33	60	μΑ	5.0	
D011*			140	240	μA	2.0	Fosc = 1 MHz
			220	380	μA	3.0	XT Oscillator mode
		—	380	550	μΑ	5.0	
D012		—	260	360	μΑ	2.0	Fosc = 4 MHz
		_	420	650	μA	3.0	XT Oscillator mode
		—	0.8	1.1	mA	5.0	
D013*		—	130	220	μΑ	2.0	Fosc = 1 MHz
		_	215	360	μΑ	3.0	EC Oscillator mode
		—	360	520	μΑ	5.0	
D014		—	220	340	μΑ	2.0	Fosc = 4 MHz
		—	375	550	μA	3.0	EC Oscillator mode
		—	0.65	1.0	mA	5.0	
D015		—	8	20	μΑ	2.0	Fosc = 31 kHz
		_	16	40	μΑ	3.0	LFINTOSC mode
		—	31	65	μΑ	5.0	
D016*		_	340	450	μA	2.0	Fosc = 4 MHz
		_	500	700	μA	3.0	HFINTOSC mode
		—	0.8	1.2	mA	5.0	
D017		—	410	650	μΑ	2.0	Fosc = 8 MHz
		—	700	950	μΑ	3.0	HFINTOSC mode
		—	1.30	1.65	mA	5.0	
D018		_	230	400	μA	2.0	Fosc = 4 MHz
			400	680	μA	3.0	EXTRC mode ⁽³⁾
		_	0.63	1.1	mA	5.0	
D019		_	3.8	5.0	mA	4.5	Fosc = 20 MHz
			4.0	5.45	mA	5.0	HS Oscillator mode

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

5: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

FIGURE 18-39: TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (25°C)

FIGURE 18-43: TYPICAL VP6 REFERENCE VOLTAGE vs. VDD (25°C)

FIGURE 18-53: TYPICAL VP6 REFERENCE VOLTAGE DISTRIBUTION (5V, -40°C)

19.0 PACKAGING INFORMATION

19.1 Package Marking Information

20-Lead PDIP

20-Lead SOIC (7.50 mm)

20-Lead SSOP

20-Lead QFN

Example

Example

Example

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the even be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.