

Welcome to E-XFL.COM

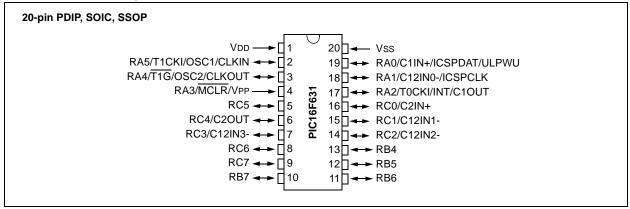
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	18
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	128 × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f687-e-so


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F631/677/685/687/689/690

Device	Program Memory	Data N	lemory	I/O	10-bit A/D	Comparators	Timers	SSP	ECCP+	EUSART
Device	Flash (words)	SRAM (bytes)	EEPROM (bytes)	1/0	(ch)	Comparators	8/16-bit	3 5 F	ECCFŦ	EUSARI
PIC16F631	1024	64	128	18	—	2	1/1	No	No	No
PIC16F677	2048	128	256	18	12	2	1/1	Yes	No	No
PIC16F685	4096	256	256	18	12	2	2/1	No	Yes	No
PIC16F687	2048	128	256	18	12	2	1/1	Yes	No	Yes
PIC16F689	4096	256	256	18	12	2	1/1	Yes	No	Yes
PIC16F690	4096	256	256	18	12	2	2/1	Yes	Yes	Yes

PIC16F631 Pin Diagram

TABLE 1: PIC16F631 PIN SUMMARY

I/O	Pin	Analog	Comparators	Timers	Interrupt	Pull-up	Basic
RA0	19	AN0/ULPWU	C1IN+	—	IOC	Y	ICSPDAT
RA1	18	AN1	C12IN0-		IOC	Y	ICSPCLK
RA2	17	_	C1OUT	T0CKI	IOC/INT	Y	—
RA3	4	—	—	—	IOC	Y(1)	MCLR/Vpp
RA4	3	—	—	T1G	IOC	Y	OSC2/CLKOUT
RA5	2		—	T1CKI	IOC	Y	OSC1/CLKIN
RB4	13		—	—	IOC	Y	—
RB5	12	—	—	—	IOC	Y	—
RB6	11	—	—	—	IOC	Y	—
RB7	10		—	_	IOC	Y	—
RC0	16	AN4	C2IN+	—	_	—	—
RC1	15	AN5	C12IN1-	_			—
RC2	14	AN6	C12IN2-	—		_	—
RC3	7	AN7	C12IN3-				—
RC4	6		C2OUT	—			—
RC5	5		—				—
RC6	8	—		—	_	—	—
RC7	9					_	—
—	1			_		_	Vdd
—	20	_		_		_	Vss

Note 1: Pull-up enabled only with external MCLR configuration.

	File Address		File Address		File		File Address
La dia a stata data (1)	-	la dina at a dala (1)	1	lucations et a data (1)	Address	la dina sé a dala (1)	
Indirect addr. ⁽¹⁾ TMR0	00h	Indirect addr. ⁽¹⁾ OPTION REG	80h	Indirect addr. ⁽¹⁾ TMR0	100h	Indirect addr. ⁽¹⁾ OPTION_REG	180h
PCL	01h		81h		101h		181h
	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h	PORTA	105h	TRISA	185h
PORTB PORTC	06h 07h	TRISB TRISC	86h 87h	PORTB PORTC	106h 107h	TRISB TRISC	186h 187h
FURIC	0711 08h	TRISC	88h	FURIC	10711 108h	TRISC	188h
			89h				189h
PCLATH	09h	PCLATH		PCLATH	109h 104b	PCLATH	18Ah
INTCON	0Ah	INTCON	8Ah 8Bh	INTCON	10Ah 10Bh	INTCON	18Bh
PIR1	0Bh				10Bh 10Ch		
	0Ch	PIE1	8Ch	EEDAT	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2 ⁽¹⁾	18Dh
TMR1L	0Eh	PCON	8Eh		10Eh		18Eh
TMR1H	0Fh	OSCCON	8Fh		10Fh		18Fh
T1CON	10h	OSCTUNE	90h		110h		190h
	11h		91h		111h		191h
0000115	12h	000400(2)	92h		112h		192h
SSPBUF	13h	SSPADD ⁽²⁾	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
	15h	WPUA	95h	WPUB	115h		195h
	16h	IOCA	96h	IOCB	116h		196h
	17h	WDTCON	97h		117h		197h
	18h		98h	VRCON	118h		198h
	19h		99h	CM1CON0	119h		199h
	1Ah		9Ah	CM2CON0	11Ah		19Ah
	1Bh		9Bh	CM2CON1	11Bh		19Bh
	1Ch		9Ch		11Ch		19Ch
	1Dh		9Dh		11Dh		19Dh
ADRESH	1Eh	ADRESL	9Eh	ANSEL	11Eh	SRCON	19Eh
ADCON0	1Fh	ADCON1	9Fh	ANSELH	11Fh		19Fh
Quanta	20h	General Purpose Register	A0h		120h		1A0h
General Purpose Register		32 Bytes	BFh C0h				
96 Bytes			EFh		16Fh		1EFh
	7Fh	accesses 70h-7Fh	F0h FFh	accesses 70h-7Fh	170h 17Fh	accesses 70h-7Fh	1F0h 1FFh
Bank 0	-	Bank 1	-	Bank 2		Bank 3	
Note 1: Not a	physical re	data memory locat gister. o accesses the SS			under certa	in conditions.	

FIGURE 2-5: PIC16F677 SPECIAL FUNCTION REGISTERS

PIC16F631/677/685/687/689/690

3.5.2.1 OSCTUNE Register

-n = Value at POR

The HFINTOSC is factory calibrated but can be adjusted in software by writing to the OSCTUNE register (Register 3-2).

The default value of the OSCTUNE register is '0'. The value is a 5-bit two's complement number.

When the OSCTUNE register is modified, the HFINTOSC frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

x = Bit is unknown

REGISTER 3-2: OSCTUNE: OSCILLATOR TUNING REGISTER

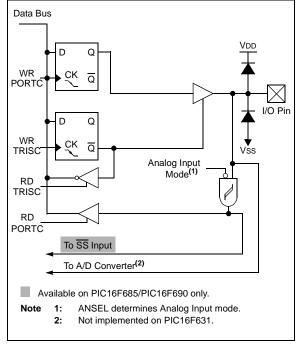
'1' = Bit is set

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	—	TUN4	TUN3	TUN2	TUN1	TUN0			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						

'0' = Bit is cleared

bit 7-5	Unimplemented: Read as '0'
bit 4-0	TUN<4:0>: Frequency Tuning bits
	01111 = Maximum frequency
	01110 =
	•
	•
	•
	00001 =
	00000 = Oscillator module is running at the factory-calibrated frequency.
	11111 =
	•
	•
	•
	10000 = Minimum frequency

4.5.7 RC6/AN8/SS


The RC6/AN8/ $\overline{SS}^{(1,2)}$ is configurable to function as one of the following:

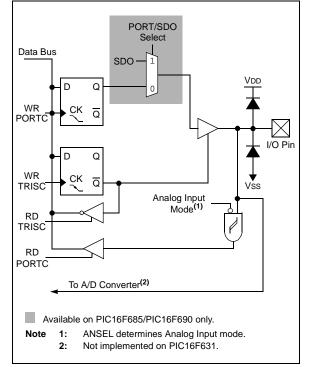
- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- a slave select input

Note 1:	SS is available on PIC16F687/PIC16F689/
	PIC16F690 only.

2: AN8 is not implemented on PIC16F631.

FIGURE 4-15: BLOCK DIAGRAM OF RC6

4.5.8 RC7/AN9/SDO


The RC7/AN9/SDO $^{(1,2)}$ is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- a serial data output

2: AN9 is not implemented on PIC16F631.

FIGURE 4-16: BLOCK DIAGRAM OF RC7

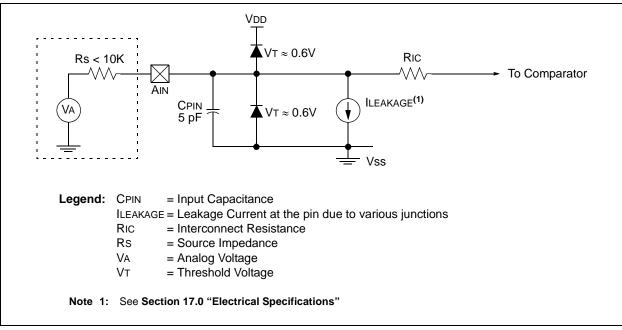
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CM2CON1	MC10UT	MC2OUT	—	—	—	—	T1GSS	C2SYNC	10	10
INTCON	GIE	PEIE	T0IE	INTE	RABIE	T0IF	INTF	RABIF	0000 0000	0000 0000
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
TMR1H	Holding Reg	gister for the	Most Signific	ant Byte of th	he 16-bit TMI	R1 Register		•	xxxx xxxx	uuuu uuuu
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								xxxx xxxx	uuuu uuuu
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	uuuu uuuu

TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

R/W-0	R-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
C2ON	C2OUT	C2OE	C2POL	—	C2R	C2CH1	C2CH0			
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimple	emented bit, rea	ad as '0'				
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cl	eared	x = Bit is unk	nown			
bit 7	C2ON: Com	parator C2 Ena	ble bit							
	1 = Compara	ator C2 is enabl ator C2 is disab	ed							
bit 6	C2OUT: Com	nparator C2 Ou	tput bit							
	C2OUT = 0 v C2OUT = 1 v <u>If C2POL = 0</u> C2OUT = 1 v	<u>_ (inverted pola</u> when C2VIN+ > when C2VIN+ < (non-inverted when C2VIN+ > when C2VIN+ <	C2VIN- C2VIN- polarity): C2VIN-							
bit 5	C2OE: Comparator C2 Output Enable bit									
		s present on C s internal only	20UT pin ⁽¹⁾							
bit 4	C1POL: Con	nparator C1 Ou	tput Polarity S	elect bit						
		ogic is inverted ogic is not inve								
bit 3	Unimplemer	nted: Read as '	0'							
bit 2	C2R: Compa	arator C2 Refer	ence Select bi	ts (non-invertii	ng input)					
		connects to C2 connects to C2								
bit 1-0	C2CH<1:0>: Comparator C2 Channel Select bits									
	01 = C2VIN- 10 = C2VIN-	of C2 connects of C2 connects of C2 connects of C2 connects	to C12IN1- pi to C12IN2- pi	n n						
	TT = CZVIN	ut requires the f			20E = 1, C20I	N = 1 and corres	sponding			

REGISTER 8-2: CM2CON0: COMPARATOR C2 CONTROL REGISTER 0


PORT TRIS bit = 0.

8.7 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 8-6. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

FIGURE 8-6: ANALOG INPUT MODEL

9.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESL and ADRESH).

Note: The ADC module applies to PIC16F677/ PIC16F685/PIC16F687/PIC16F689/ PIC16F690 devices only.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

FIGURE 9-1: ADC BLOCK DIAGRAM

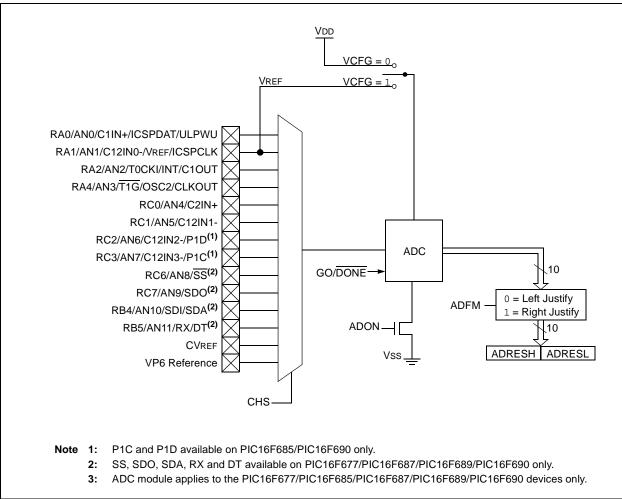


Figure 9-1 shows the block diagram of the ADC.

10.1.2 READING THE DATA EEPROM MEMORY

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit of the EECON1 register, and then set control bit RD. The data is available at the very next cycle, in the EEDAT register; therefore, it can be read in the next instruction. EEDAT will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 10-1: DATA EEPROM READ

BANKSEL	EEADR ;	
MOVF	DATA_EE_ADD	R, W;
MOVWF	EEADR	;Data Memory
		;Address to read
BANKSEL	EECON1	;
BCF	EECON1, EEP	GD;Point to DATA memory
BSF	EECON1, RD	;EE Read
BANKSEL	EEDAT	;
MOVF	EEDAT, W	;W = EEDAT
BANKSEL	PORTA	;Bank 0

10.1.3 WRITING TO THE DATA EEPROM MEMORY

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDAT register. Then the user must follow a specific sequence to initiate the write for each byte.

The write will not initiate if the specific sequence is not followed exactly (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. Interrupts should be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

BANKSELEEADR MOVFDATA_EE_ADDR, W; MOVWFEEADR ;Data Memory Address to write MOVFDATA_EE_DATA, W; MOVWFEEDAT ;Data Memory Value to write BANKSELEECON1 ; BCF EECON1, EEPGD; Point to DATA memory BSF EECON1, WREN; Enable writes BCF INTCON, GIE ; Disable INTs. BTFSCINTCON, GIE;SEE AN576 GOTO\$-2 MOVLW55h ; Required Sequence MOVWFEECON2 ;Write 55h MOVLWAAh ; MOVWFEECON2 ;Write AAh BSF EECON1, WR ;Set WR bit to begin write BSF INTCON, GIE ; Enable INTs. SLEEP ;Wait for interrupt to signal write complete (optional) BCF EECON1, WREN; Disable writes BANKSEL0x00 ;Bank 0

EXAMPLE 10-2: DATA EEPROM WRITE

PIC16F631/677/685/687/689/690

11.3 PWM Mode

The PWM mode generates a Pulse-Width Modulated signal on the CCP1 pin. The duty cycle, period and resolution are determined by the following registers:

- PR2
- T2CON
- CCPR1L
- CCP1CON

In Pulse-Width Modulation (PWM) mode, the CCP module produces up to a 10-bit resolution PWM output on the CCP1 pin. Since the CCP1 pin is multiplexed with the PORT data latch, the TRIS for that pin must be cleared to enable the CCP1 pin output driver.

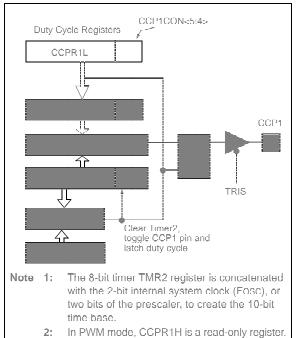

Note:	Clearing	the	CCP1CON	ON register		
	relinquish	n CCF	1 control of t	he CCP1	pin.	

Figure 11-3 shows a simplified block diagram of PWM operation.

Figure 11-4 shows a typical waveform of the PWM signal.

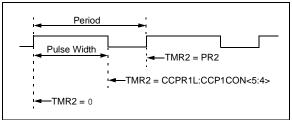

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 11.3.7** "Setup for PWM Operation".

FIGURE 11-3: SIMPLIFIED PWM BLOCK DIAGRAM

The PWM output (Figure 11-4) has a time base (period) and a time that the output stays high (duty cycle).

FIGURE 11-4: CCP PWM OUTPUT

11.4.2.1 Direction Change in Full-Bridge Mode

In the Full-Bridge mode, the P1M1 bit in the CCP1CON register allows users to control the forward/reverse direction. When the application firmware changes this direction control bit, the module will change to the new direction on the next PWM cycle.

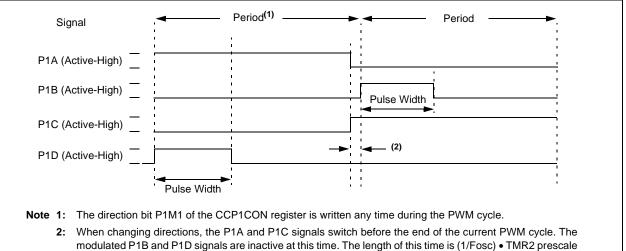
A direction change is initiated in software by changing the P1M1 bit of the CCP1CON register. The following sequence occurs prior to the end of the current PWM period:

- The modulated outputs (P1B and P1D) are placed in their inactive state.
- The associated unmodulated outputs (P1A and P1C) are switched to drive in the opposite direction.
- PWM modulation resumes at the beginning of the next period.

See Figure 11-12 for an illustration of this sequence.

The Full-Bridge mode does not provide dead-band delay. As one output is modulated at a time, dead-band delay is generally not required. There is a situation where dead-band delay is required. This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn-off time of the power switch, including the power device and driver circuit, is greater than the turn-on time.


Figure 11-13 shows an example of the PWM direction changing from forward to reverse, at a near 100% duty cycle. In this example, at time t1, the output P1A and P1D become inactive, while output P1C becomes active. Since the turn-off time of the power devices is longer than the turn-on time, a shoot-through current will flow through power devices QC and QD (see Figure 11-10) for the duration of 't'. The same phenomenon will occur to power devices QA and QB for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, two possible solutions for eliminating the shoot-through current are:

- 1. Reduce PWM duty cycle for one PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

Other options to prevent shoot-through current may exist.

FIGURE 11-12: EXAMPLE OF PWM DIRECTION CHANGE

value.

	SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fosc	Fosc = 20.000 MHz		Fosc	Fosc = 18.432 MHz		Fosc = 11.0592 MHz			Fosc = 8.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_		_		_	_	_	_	_	_	_	_
1200	1221	1.73	255	1200	0.00	239	1200	0.00	143	1202	0.16	103
2400	2404	0.16	129	2400	0.00	119	2400	0.00	71	2404	0.16	51
9600	9470	-1.36	32	9600	0.00	29	9600	0.00	17	9615	0.16	12
10417	10417	0.00	29	10286	-1.26	27	10165	-2.42	16	10417	0.00	11
19.2k	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8	_	_	_
57.6k	—	—	_	57.60k	0.00	7	57.60k	0.00	2	—	—	—
115.2k	—		_	—	_	_	_		_	_	_	_

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES

	SYNC = 0, BRGH = 0, BRG16 = 0												
BAUD	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300	0.16	207	300	0.00	191	300	0.16	103	300	0.16	51	
1200	1202	0.16	51	1200	0.00	47	1202	0.16	25	1202	0.16	12	
2400	2404	0.16	25	2400	0.00	23	2404	0.16	12	—	_	_	
9600	—	_	_	9600	0.00	5	_	_	_	—	_	_	
10417	10417	0.00	5	—	_	_	10417	0.00	2	—	_	_	
19.2k	—	_	_	19.20k	0.00	2	_	_	_	—	_	_	
57.6k	—	—	—	57.60k	0.00	0	—	—	—	—	—	—	
115.2k	—	—	_	_	_	—	_	—	_	—	—	—	

		SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD	Fosc = 20.000 MHz		Fosc = 18.432 MHz			Fosc = 11.0592 MHz			Fosc = 8.000 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	—		_	_		_		—	_		—		
1200	—	—	—	—	_	—	—	—	—	—	—	—	
2400	_	_	_	—	_	_	—	_	_	2404	0.16	207	
9600	9615	0.16	129	9600	0.00	119	9600	0.00	71	9615	0.16	51	
10417	10417	0.00	119	10378	-0.37	110	10473	0.53	65	10417	0.00	47	
19.2k	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	19231	0.16	25	
57.6k	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	55556	-3.55	8	
115.2k	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	—	—	_	

14.0 SPECIAL FEATURES OF THE CPU

The PIC16F631/677/685/687/689/690 have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving features and offer code protection.

These features are:

- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Oscillator selection
- Sleep
- Code protection
- ID Locations
- In-Circuit Serial Programming

The PIC16F631/677/685/687/689/690 have two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 64 ms (nominal) on power-up only, designed to keep the part in Reset while the power supply stabilizes. There is also circuitry to reset the device if a brown-out occurs, which can use the Power-up Timer to provide at least a 64 ms Reset. With these three functions-on-chip, most applications need no external Reset circuitry.

The Sleep mode is designed to offer a very low-current Power-down mode. The user can wake-up from Sleep through:

- External Reset
- Watchdog Timer Wake-up
- An interrupt

Several oscillator options are also made available to allow the part to fit the application. The INTOSC option saves system cost while the LP crystal option saves power. A set of Configuration bits are used to select various options (see Register 14-2).

14.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1') to select various device configurations as shown in Register 14-2. These bits are mapped in program memory location 2007h.

Note: Address 2007h is beyond the user program memory space. It belongs to the special configuration memory space (2000h-3FFFh), which can be accessed only during programming. See "PIC12F6XX/16F6XX Memory Programming Specification" (DS41204) for more information.

Register Address		Power-on Reset	MCLR Reset WDT Reset Brown-out Reset ⁽¹⁾	Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out		
W	—	XXXX XXXX	uuuu uuuu	uuuu uuuu		
INDF	00h/80h/ 100h/180h	XXXX XXXX	XXXX XXXX	<u>uuuu</u> uuuu		
TMR0	01h/101h	xxxx xxxx	uuuu uuuu	uuuu uuuu		
PCL	02h/82h/ 102h/182h	0000 0000	0000 0000	PC + 1 ⁽³⁾		
STATUS	03h/83h/ 103h/183h	0001 1xxx	000q quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾		
FSR	04h/84h/ 104h184h	XXXX XXXX	սսսս սսսս	<u>uuuu</u> uuuu		
PORTA	05h/105h	xx xxxx	uu uuuu	uu uuuu		
PORTB	06h/106h	xxxx	uuuu	uuuu		
PORTC	07h/107h	xxxx xxxx	uuuu uuuu	uuuu uuuu		
PCLATH	0Ah/8Ah/ 10Ah/18Ah	0 0000	0 0000	u uuuu		
INTCON	0Bh/8Bh/ 10Bh/18Bh	0000 000x	0000 000u	uuuu uuuu ⁽²⁾		
PIR1	0Ch	-000 0000	-000 0000	-uuu uuuu ⁽²⁾		
PIR2	0Dh	0000	0000	uuuu (2)		
TMR1L	0Eh	XXXX XXXX	uuuu uuuu	uuuu uuuu		
TMR1H	0Fh	XXXX XXXX	uuuu uuuu	uuuu uuuu		
T1CON	10h	0000 0000	<u>uuuu</u> uuuu	սսսս սսսս		
TMR2	11h	0000 0000	0000 0000	<u>uuuu</u> uuuu		
T2CON	12h	-000 0000	-000 0000	-uuu uuuu		
SSPBUF	13h	XXXX XXXX	uuuu uuuu	uuuu uuuu		
SSPCON	14h	0000 0000	0000 0000	uuuu uuuu		
CCPR1L	15h	XXXX XXXX	uuuu uuuu	uuuu uuuu		
CCPR1H	16h	xxxx xxxx	uuuu uuuu	<u>uuuu</u> uuuu		
CCP1CON	17h	0000 0000	0000 0000	uuuu uuuu		
RCSTA	18h	0000 000x	0000 000x	uuuu uuuu		
TXREG	19h	0000 0000	0000 0000	uuuu uuuu		
RCREG	1Ah	0000 0000	0000 0000	uuuu uuuu		
PWM1CON	1Ch	0000 0000	0000 0000	uuuu uuuu		
ECCPAS	1Dh	0000 0000	0000 0000	uuuu uuuu		
ADRESH	1Eh	xxxx xxxx	uuuu uuuu	uuuu uuuu		
ADCON0	1Fh	0000 0000	0000 0000	սսսս սսսս		
OPTION_REG	81h/181h	1111 1111	1111 1111	uuuu uuuu		
TRISA	85h/185h	11 1111	11 1111	uu uuuu		

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 14-5 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

6: Accessible only when SSPM < 3:0 > = 1001.

Register Addres		Power-on Reset	MCLR Reset WDT Reset (Continued) Brown-out Reset ⁽¹⁾	Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out		
TRISB	86h/186h	1111	1111	uuuu		
TRISC	87h/187h	1111 1111	1111 1111	uuuu uuuu		
PIE1	8Ch	-000 0000	-000 0000	-uuu uuuu		
PIE2	8Dh	0000	0000	uuuu uuuu		
PCON	8Eh	010x	0uuq ^{1, 5)}	uuuu		
OSCCON	8Fh	-110 q000	-110 q000	-uuu uuuu		
OSCTUNE	90h	0 0000	u uuuu	u uuuu		
PR2	92h	1111 1111	1111 1111	uuuu uuuu		
SSPADD	93h	0000 0000	1111 1111	uuuu uuuu		
SSPMSK ⁽⁶⁾	93h		1111 1111	սսսս սսսս		
SSPSTAT	94h	0000 0000	1111 1111	uuuu uuuu		
WPUA	95h	11 -111	11 -111	uuuu uuuu		
IOCA	96h	00 0000	00 0000	uu uuuu		
WDTCON	97h	0 1000	0 1000	u uuuu		
TXSTA	98h	0000 0010	0000 0010	uuuu uuuu		
SPBRG	99h	0000 0000	0000 0000	uuuu uuuu		
SPBRGH	9Ah	0000 0000	0000 0000	սսսս սսսս		
BAUDCTL	9Bh	01-0 0-00	01-0 0-00	uu-u u-uu		
ADRESL	9Eh	xxxx xxxx	uuuu uuuu	uuuu uuuu		
ADCON1	9Fh	-000	-000	-uuu		
EEDAT	10Ch	0000 0000	0000 0000	uuuu uuuu		
EEADR	10Dh	0000 0000	0000 0000	uuuu uuuu		
EEDATH	10Eh	00 0000	00 0000	uu uuuu		
EEADRH	10Fh	0000	0000	uuuu		
WPUB	115h	1111	1111	uuuu		
IOCB	116h	0000	0000	uuuu		
VRCON	118h	0000 0000	0000 0000	uuuu uuuu		
CM1CON0	119h	0000 -000	0000 -000	uuuu -uuu		
CM2CON0	11Ah	0000 -000	0000 -000	uuuu -uuu		
CM2CON1	11Bh	0000	0010	uuuu		
ANSEL	11Eh	1111 1111	1111 1111	uuuu uuuu		
ANSELH	11Fh	1111	1111	uuuu		
EECON1	18Ch	x x000	u q000	uuuu		
EECON2	18Dh					
PSTRCON	19Dh	0 0001	0 0001	u uuuu		
SRCON	19EH	0000 00	0000 00	uuuu uu		

TABLE 14-4: INITIALIZATION CONDITION FOR REGISTER (CONTINUED)

 $\label{eq:logend: u = unchanged, x = unknown, - = unimplemented bit, reads as `0', q = value depends on condition.$

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 14-5 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

6: Accessible only when SSPM < 3:0 > = 1001.

TABLE 14-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

14.3 Interrupts

The PIC16F631/677/685/687/689/690 have multiple sources of interrupt:

- External Interrupt RA2/INT
- TMR0 Overflow Interrupt
- PORTA/PORTB Change Interrupts
- 2 Comparator Interrupts
- A/D Interrupt (except PIC16F631)
- Timer1 Overflow Interrupt
- Timer2 Match Interrupt (PIC16F685/PIC16F690 only)
- EEPROM Data Write Interrupt
- Fail-Safe Clock Monitor Interrupt
- Enhanced CCP Interrupt (PIC16F685/PIC16F690 only)
- EUSART Receive and Transmit interrupts (PIC16F687/PIC16F689/PIC16F690 only)

The Interrupt Control register (INTCON) and Peripheral Interrupt Request Register 1 (PIR1) record individual interrupt requests in flag bits. The INTCON register also has individual and global interrupt enable bits.

A Global Interrupt Enable bit, GIE (INTCON<7>), enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in the INTCON, PIE1 and PIE2 registers, respectively. GIE is cleared on Reset.

The Return from Interrupt instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables unmasked interrupts.

The following interrupt flags are contained in the INTCON register:

- INT Pin Interrupt
- PORTA/PORTB Change Interrupts
- TMR0 Overflow Interrupt

The peripheral interrupt flags are contained in the PIR1 and PIR2 registers. The corresponding interrupt enable bits are contained in PIE1 and PIE2 registers.

The following interrupt flags are contained in the PIR1 register:

- A/D Interrupt
- EUSART Receive and Transmit Interrupts
- Timer1 Overflow Interrupt
- Synchronous Serial Port (SSP) Interrupt
- Enhanced CCP1 Interrupt
- Timer1 Overflow Interrupt
- Timer2 Match Interrupt

The following interrupt flags are contained in the PIR2 register:

- Fail-Safe Clock Monitor Interrupt
- 2 Comparator Interrupts
- EEPROM Data Write Interrupt

When an interrupt is serviced:

- The GIE is cleared to disable any further interrupt.
- The return address is pushed onto the stack.
- The PC is loaded with 0004h.

For external interrupt events, such as the INT pin, PORTA/PORTB change interrupts, the interrupt latency will be three or four instruction cycles. The exact latency depends upon when the interrupt event occurs (see Figure 14-8). The latency is the same for one or 2-cycle instructions. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests.

Note 1: Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit or the GIE bit.

2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The interrupts, which were ignored, are still pending to be serviced when the GIE bit is set again.

For additional information on Timer1, Timer2, comparators, A/D, data EEPROM, EUSART, SSP or Enhanced CCP modules, refer to the respective peripheral section.

14.3.1 RA2/INT INTERRUPT

External interrupt on RA2/INT pin is edge-triggered; either rising if the INTEDG bit (OPTION_REG<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RA2/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The RA2/INT interrupt can wake-up the processor from Sleep, if the INTE bit was set prior to going into Sleep. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up (0004h). See Section 14.6 "Power-Down Mode (Sleep)" for details on Sleep and Figure 14-10 for timing of wake-up from Sleep through RA2/INT interrupt.

Note: The ANSEL and CM2CON0 registers must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'.

15.0 INSTRUCTION SET SUMMARY

The PIC16F690 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 15-1, while the various opcode fields are summarized in Table 15-1.

Table 15-2 lists the instructions recognized by the MPASMTM assembler.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

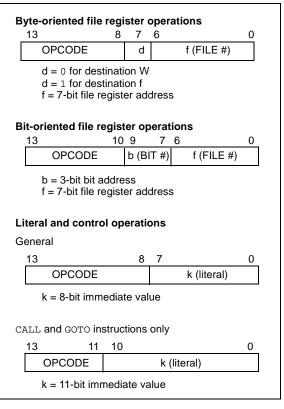
For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8-bit or 11-bit constant, or literal value.

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

15.1 Read-Modify-Write Operations


Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (RMW) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a CLRF PORTA instruction will read PORTA, clear all the data bits, then write the result back to PORTA. This example would have the unintended consequence of clearing the condition that set the RAIF flag.

TABLE 15-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
х	Don't care location (= 0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$.
PC	Program Counter
TO	Time-out bit
С	Carry bit
DC	Digit carry bit
Z	Zero bit
PD	Power-down bit

FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS

TABLE 17-14:	I ² C [™] BUS DATA REQUIREMEN [™]	ΓS
--------------	--	----

Param. No.	Symbol	Characte	eristic	Min.	Max.	Units	Conditions
100* Thigh		Clock high time	100 kHz mode	4.0		μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6		μS	Device must operate at a minimum of 10 MHz
			SSP Module	1.5TCY	_		
101*	TLOW	Clock low time	100 kHz mode	4.7		μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3		μS	Device must operate at a minimum of 10 MHz
			SSP Module	1.5TCY	_		
102*	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
103*	TF	SDA and SCL fall	100 kHz mode	—	300	ns	
		time	400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
90*	TSU:STA	Start condition	100 kHz mode	4.7		μS	Only relevant for
		setup time	400 kHz mode	0.6		μS	Repeated Start condition
91*	THD:STA		100 kHz mode	4.0	_	μS	After this period the first
		time	400 kHz mode	0.6		μS	clock pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μS	
107*	TSU:DAT	Data input setup	100 kHz mode	250	—	ns	(Note 2)
		time	400 kHz mode	100	_	ns	
92*	TSU:STO	Stop condition	100 kHz mode	4.7	_	μS	
		setup time	400 kHz mode	0.6	—	μS	
109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	(Note 1)
		clock	400 kHz mode	—	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	_	μS	before a new transmission can start
	Св	Bus capacitive loading	ng	—	400	pF	

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TsU:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TsU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

TABLE 17-15: A/D CONVERTER (ADC) CHARACTERISTICS:

	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
AD01	NR	Resolution	—		10 bits	bit				
AD02	EIL	Integral Error	—		±1	LSb	VREF = 5.12V			
AD03	Edl	Differential Error	—		±1	LSb	No missing codes to 10 bits VREF = 5.12V			
AD04	EOFF	Offset Error	—	_	±1	LSb	VREF = 5.12V			
AD04A			—	+1.5	+3.0	LSb	(PIC16F677 only)			
AD07	Egn	Gain Error	—	_	±1	LSb	VREF = 5.12V			
AD06 AD06A	Vref	Reference Voltage ⁽³⁾	2.2 2.5	_	 Vdd	V	Absolute minimum to ensure 1 LSb accuracy			
AD07	VAIN	Full-Scale Range	Vss	_	Vref	V				
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	_	_	10	kΩ				
AD09*	IREF	VREF Input Current ⁽³⁾	10	—	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN.			
			_	_	50	μA	During A/D conversion cycle			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

- **2:** The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.
- **3:** ADC VREF is from external VREF or VDD pin, whichever is selected as reference input.
- 4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.

TABLE 17-18:ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES (VDD \geq 3.0V,
VREF \geq 2.5V)

ADC Clock F	Period (TAD)	Device Frequency (Fosc)						
ADC Clock Source	ADCS<2:0>	20 MHz	8 MHz	4 MHz	1 MHz			
Fosc/2	000	100 ns	250 ns	500 ns	2.0 μs			
Fosc/4	100	200 ns	500 ns	1.0 μs	4.0 μs			
Fosc/8	001	400 ns	1.0 μs	2.0 μs	8.0 μs			
Fosc/16	101	800 ns	2.0 μs	4.0 μs	16.0 μs			
Fosc/32	010	1.6 μs	4.0 μs	8.0 μs	32.0 μs			
Fosc/64	110	3.2 μs	8.0 μs	16.0 μs	64.0 μs			
Frc	x11	2-6 μs	2-6 μs	2-6 μs	2-6 μs			

Legend: Shaded cells should not be used for conversions at temperatures above +125°C.

Note 1: TAD must be between 1.6 μ s and 4.0 μ s.