E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	18
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f687-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description		
RC1/AN5/C12IN1-	RC1	ST	CMOS	General purpose I/O.		
	AN5	AN	_	A/D Channel 5 input.		
	C12IN1-	AN		Comparator C1 or C2 negative input.		
RC2/AN6/C12IN2-/P1D	RC2	ST	CMOS	General purpose I/O.		
	AN6	AN	_	A/D Channel 6 input.		
	C12IN2-	AN	_	Comparator C1 or C2 negative input.		
	P1D	_	CMOS	PWM output.		
RC3/AN7/C12IN3-/P1C	RC3	ST	CMOS	General purpose I/O.		
	AN7	AN	_	A/D Channel 7 input.		
	C12IN3-	AN		Comparator C1 or C2 negative input.		
	P1C	_	CMOS	PWM output.		
RC4/C2OUT/P1B	RC4	ST	CMOS	General purpose I/O.		
	C2OUT	_	CMOS	Comparator C2 output.		
	P1B	_	CMOS	PWM output.		
RC5/CCP1/P1A	RC5	ST	CMOS	General purpose I/O.		
	CCP1	ST	CMOS	Capture/Compare input.		
	P1A	ST	CMOS	PWM output.		
RC6/AN8	RC6	ST	CMOS	General purpose I/O.		
	AN8	AN	_	A/D Channel 8 input.		
RC7/AN9	RC7	ST	CMOS	General purpose I/O.		
	AN9	AN	_	A/D Channel 9 input.		
Vss	Vss	Power	_	Ground reference.		
Vdd	Vdd	Power	—	Positive supply.		

TABLE 1-3: PINOUT DESCRIPTION – PIC16F685 (CONTINUED)

HV = High Voltage

TTL = TTL compatible input ST= Schmitt Trigger input with CMOS levels XTAL= Crystal

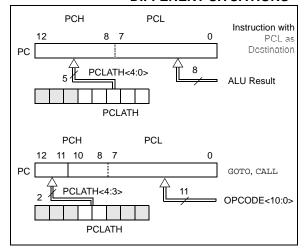

Description		
dividually controlled interrupt-on- bled pull-up.		
dividually controlled interrupt-on- bled pull-up.		
output.		
lock.		
input.		
egative input.		
egative input.		
A/D Channel 7 input.		
egative input.		
General purpose I/O.		
c		

TABLE 1-4: PINOUT DESCRIPTION - PIC16F687/PIC16F689 (CONTINUED)

2.3 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 2-9 shows the two situations for the loading of the PC. The upper example in Figure 2-9 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 2-9 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-9: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<12:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper five bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 13 bits of the program counter will change to the values contained in the PCLATH register and those being written to the PCL register.

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). Care should be exercised when jumping into a look-up table or program branch table (computed GOTO) by modifying the PCL register. Assuming that PCLATH is set to the table start address, if the table length is greater than 255 instructions or if the lower eight bits of the memory address rolls over from 0xFF to 0x00 in the middle of the table, then PCLATH must be incremented for each address rollover that occurs between the table beginning and the target location within the table.

For more information refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

2.3.2 STACK

The PIC16F631/677/685/687/689/690 devices have an 8-level x 13-bit wide hardware stack (see Figures 2-2 and 2-3). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1:	There are no Status bits to indicate stack overflow or stack underflow conditions.						
2:	There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.						

2.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR and the IRP bit of the STATUS register, as shown in Figure 2-10.

A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 2-1.

	MOVLW	0x20	;initialize pointer		
	MOVWF	FSR	;to RAM		
NEXT	CLRF	INDF	;clear INDF register		
	INCF	FSR	;inc pointer		
	BTFSS	FSR,4	;all done?		
	GOTO	NEXT	;no clear next		
CONTIN	CONTINUE		;yes continue		
		NEXT			

3.2 Oscillator Control

The Oscillator Control (OSCCON) register (Figure 3-1) controls the system clock and frequency selection options. The OSCCON register contains the following bits:

- Frequency selection bits (IRCF)
- Frequency Status bits (HTS, LTS)
- System clock control bits (OSTS, SCS)

REGISTER 3-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R/W-1	R/W-1	R/W-0	R-1	R-0	R-0	R/W-0
—	IRCF2	IRCF1	IRCF0	OSTS ⁽¹⁾	HTS	LTS	SCS
bit 7							bit 0
Legend:							

Logona.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7	Unimplemented: Read as '0'
bit 6-4	IRCF<2:0>: Internal Oscillator Frequency Select bits 111 = 8 MHz 110 = 4 MHz (default) 101 = 2 MHz 100 = 1 MHz 011 = 500 kHz 010 = 250 kHz 001 = 125 kHz 000 = 31 kHz (LFINTOSC)
bit 3	OSTS: Oscillator Start-up Time-out Status bit ⁽¹⁾ 1 = Device is running from the clock defined by FOSC<2:0> of the CONFIG register 0 = Device is running from the internal oscillator (HFINTOSC or LFINTOSC)
bit 2	 HTS: HFINTOSC Status bit (High Frequency – 8 MHz to 125 kHz) 1 = HFINTOSC is stable 0 = HFINTOSC is not stable
bit 1	LTS: LFINTOSC Stable bit (Low Frequency – 31 kHz) 1 = LFINTOSC is stable 0 = LFINTOSC is not stable
bit 0	 SCS: System Clock Select bit 1 = Internal oscillator is used for system clock 0 = Clock source defined by FOSC<2:0> of the CONFIG register
Note 1.	Discrete to (o) with Two Greed Oters up and LD VT or LIC collected on the Opeillater mode on Feil

Note 1: Bit resets to '0' with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe mode is enabled.

PIC16F631/677/685/687/689/690

3.4.3 LP, XT, HS MODES

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 3-3). The mode selects a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

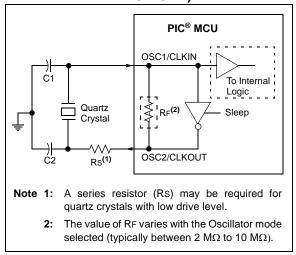
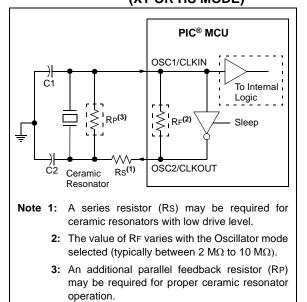

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 3-3 and Figure 3-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

- **Note 1:** Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - **2:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)


FIGURE 3-3: QUARTZ CRYSTAL

OPERATION (LP, XT OR HS MODE)

CERAMIC RESONATOR OPERATION (XT OR HS MODE)

3.5.3 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is an uncalibrated 31 kHz internal clock source.

The output of the LFINTOSC connects to a postscaler and multiplexer (see Figure 3-1). Select 31 kHz, via software, using the IRCF<2:0> bits of the OSCCON register. See **Section 3.5.4 "Frequency Select Bits (IRCF)**" for more information. The LFINTOSC is also the frequency for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The LFINTOSC is enabled by selecting 31 kHz (IRCF<2:0> bits of the OSCCON register = 000) as the system clock source (SCS bit of the OSCCON register = 1), or when any of the following are enabled:

- Two-Speed Start-up IESO bit of the Configuration Word register = 1 and IRCF<2:0> bits of the OSCCON register = 000
- Power-up Timer (PWRT)
- Watchdog Timer (WDT)
- Fail-Safe Clock Monitor (FSCM)

The LF Internal Oscillator (LTS) bit of the OSCCON register indicates whether the LFINTOSC is stable or not.

3.5.4 FREQUENCY SELECT BITS (IRCF)

The output of the 8 MHz HFINTOSC and 31 kHz LFINTOSC connects to a postscaler and multiplexer (see Figure 3-1). The Internal Oscillator Frequency Select bits IRCF<2:0> of the OSCCON register select the frequency output of the internal oscillators. One of eight frequencies can be selected via software:

- 8 MHz
- 4 MHz (Default after Reset)
- 2 MHz
- 1 MHz
- 500 kHz
- 250 kHz
- 125 kHz
- 31 kHz (LFINTOSC)

Note:	Following any Reset, the IRCF<2:0> bits								
	of the OSCCON register are set to '110'								
	and the frequency selection is set to								
	4 MHz. The user can modify the IRCF bits								
	to select a different frequency.								

3.5.5 HFINTOSC AND LFINTOSC CLOCK SWITCH TIMING

When switching between the LFINTOSC and the HFINTOSC, the new oscillator may already be shut down to save power (see Figure 3-6). If this is the case, there is a delay after the IRCF<2:0> bits of the OSCCON register are modified before the frequency selection takes place. The LTS and HTS bits of the OSCCON register will reflect the current active status of the LFINTOSC and HFINTOSC oscillators. The timing of a frequency selection is as follows:

- 1. IRCF<2:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. CLKOUT is held low and the clock switch circuitry waits for a rising edge in the new clock.
- CLKOUT is now connected with the new clock. LTS and HTS bits of the OSCCON register are updated as required.
- 6. Clock switch is complete.

See Figure 3-1 for more details.

If the internal oscillator speed selected is between 8 MHz and 125 kHz, there is no start-up delay before the new frequency is selected. This is because the old and new frequencies are derived from the HFINTOSC via the postscaler and multiplexer.

Start-up delay specifications are located in the oscillator tables of **Section 17.0** "**Electrical Specifications**".

PIC16F631/677/685/687/689/690

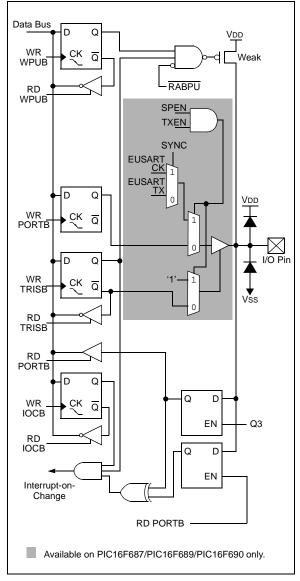

4.4.3.4 RB7/TX/CK

Figure 4-10 shows the diagram for this pin. The RB7/ $TX/CK^{(1)}$ pin is configurable to function as one of the following:

- a general purpose I/O
- an asynchronous serial output
- a synchronous clock I/O

Note 1: TX and CK are available on PIC16F687/ PIC16F689/PIC16F690 only.

FIGURE 4-10: BLOCK DIAGRAM OF RB7

R/W-0	R-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		
C2ON	C2OUT	C2OE	C2POL	—	C2R	C2CH1	C2CH0		
bit 7							bit 0		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimple	emented bit, rea	ad as '0'			
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cl	eared	x = Bit is unk	nown		
bit 7	C2ON: Com	parator C2 Ena	ble bit						
	1 = Compara	ator C2 is enabl ator C2 is disab	ed						
bit 6	C2OUT: Com	nparator C2 Ou	tput bit						
	C2OUT = 0 v C2OUT = 1 v <u>If C2POL = 0</u> C2OUT = 1 v	<u>_ (inverted pola</u> when C2VIN+ > when C2VIN+ < (non-inverted when C2VIN+ > when C2VIN+ <	C2VIN- C2VIN- polarity): C2VIN-						
bit 5	C2OE: Comparator C2 Output Enable bit								
		s present on C s internal only	20UT pin ⁽¹⁾						
bit 4	C1POL: Comparator C1 Output Polarity Select bit								
		ogic is inverted ogic is not inve							
bit 3	Unimplemer	nted: Read as '	0'						
bit 2	C2R: Compa	arator C2 Refer	ence Select bi	ts (non-invertii	ng input)				
		connects to C2 connects to C2							
bit 1-0	C2CH<1:0>: Comparator C2 Channel Select bits								
	01 = C2VIN- 10 = C2VIN-	of C2 connects of C2 connects of C2 connects of C2 connects	to C12IN1- pi to C12IN2- pi	n n					
	TT = CZVIN	ut requires the f			20E = 1, C20I	N = 1 and corres	sponding		

REGISTER 8-2: CM2CON0: COMPARATOR C2 CONTROL REGISTER 0

PORT TRIS bit = 0.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ADFM	VCFG	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON				
bit 7							bit 0				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
1 2 7		о · Б		1 41.9							
bit 7		Conversion Res	sult Format Se	elect bit							
	1 = Right jus 0 = Left justi										
bit 6	VCFG: Volta	ige Reference b	it								
	1 = VREF pin	1									
	0 = VDD										
bit 5-2	CHS<3:0>: Analog Channel Select bits										
	0000 = ANO										
	0001 = AN1										
	0010 = AN2										
	0011 = AN3										
	0100 = AN4										
	0101 = AN5										
	0110 = AN6 0111 = AN7										
	111 = AN7 1000 = AN8										
	1000 = ANS 1001 = ANS										
	1010 = AN10										
	1011 = AN1	1									
	1100 = CVREF										
	1101 = 0.6V Fixed Voltage Reference										
	1110 = Reserved. Do not use.										
	1111 = Reserved. Do not use.										
bit 1	GO/DONE:	A/D Conversion	Status bit								
	1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.										
	This bit is automatically cleared by hardware when the A/D conversion has completed.										
	$0 = A/D \operatorname{conv}$	version complet	ed/not in prog	ress							
bit 0	ADON: ADC	Enable bit									
	1 = ADC is e	enabled									
	0 = ADC is disabled and consumes no operating current										

REGISTER 9-1: ADCON0: A/D CONTROL REGISTER 0

P1M<	1:0>	Signal	0	Pulse Width		PR2+1
00	(Single Output)	P1A Modulated			– Period ————	
		P1A Modulated	⊲ ► Delay	1)	 Delay ⁽¹⁾	
10	(Half-Bridge)	P1B Modulated				
		P1A Active				
01	(Full-Bridge, Forward)	P1B Inactive				 ! !
	, er maraj	P1C Inactive	 			
		P1D Modulated			[
		P1A Inactive			 	
11	(Full-Bridge, Reverse)	P1B Modulated				
		P1C Active			1 	
		P1D Inactive				
	 Pulse Width = To Delay = 4 * Toso 	c * (PR2 + 1) * (TMR2 Presca osc * (CCPR1L<7:0>:CCP1C0 * (PWM1CON<6:0>)	ON<5:4>) * (T			
N	ote 1: Dead-ban mode").	d delay is programmed usir	ng the PWM1	1CON register	(Section 11.4.6 "Programm	able Dead-Band De

FIGURE 11-7: EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)

© 2005-2015 Microchip Technology Inc.

12.3 EUSART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUDCTL register selects 16-bit mode.

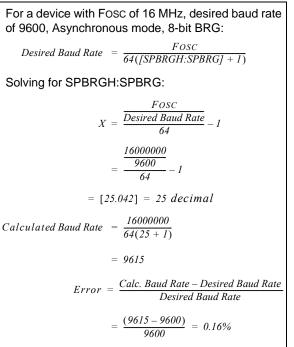

The SPBRGH, SPBRG register pair determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by both the BRGH bit of the TXSTA register and the BRG16 bit of the BAUDCTL register. In Synchronous mode, the BRGH bit is ignored.

Table 12-3 contains the formulas for determining the baud rate. Example 12-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various asynchronous modes have been computed for your convenience and are shown in Table 12-3. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

Writing a new value to the SPBRGH, SPBRG register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate. If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is Idle before changing the system clock.

EXAMPLE 12-1: CALCULATING BAUD RATE ERROR

c	Configuration Bits		Configuration Bits BRG/EUSART Mode		Baud Rate Formula	
SYNC	BRG16	BRGH	BRG/EUSART Mode	Dauu Kale Formula		
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]		
0	0	1	8-bit/Asynchronous			
0	1	0	16-bit/Asynchronous	Fosc/[16 (n+1)]		
0	1	1	16-bit/Asynchronous			
1	0	x	8-bit/Synchronous	Fosc/[4 (n+1)]		
1	1	x	16-bit/Synchronous			

TABLE 12-3: BAUD RATE FORMULAS

Legend: x = Don't care, n = value of SPBRGH, SPBRG register pair

TABLE 12-4: REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
BAUDCTL	ABDOVF	RCIDL	—	SCKP	BRG16		WUE	ABDEN	01-0 0-00	01-0 0-00
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 000x	x000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
SPBRGH	BRG15	BRG14	BRG13	BRG12	BRG11	BRG10	BRG9	BRG8	0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for the Baud Rate Generator.

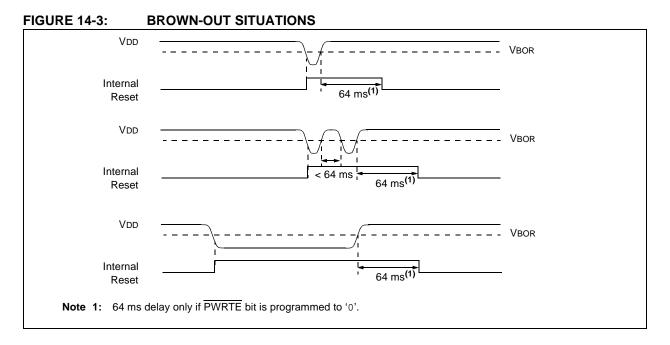
PIC16F631/677/685/687/689/690

REGISTER 13-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER⁽¹⁾

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/A	Р	S	R/W	UA	BF
bit 7							bit (
Legend:						(
R = Readable b		W = Writable bit			iented bit, read a		
-n = Value at PC	DR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	wn
bit 7	SPI Master mo 1 = Input data = 0 = Input data = SPI Slave mod SMP must be o I^2C^{TM} mode:	sampled at end of sampled at middle	data output ti of data outpu is used in Sla	ut time (Microwire	e)		
bit 6	SPI mode. CKI 1 = Data transi 0 = Data transi SPI mode. CKI 1 = Data transi 0 = Data transi l^2C mode:	mitted on rising ed mitted on falling ed	dge of SCK dge of SCK (N lge of SCK				
bit 5	1 = Indicates the	DRESS bit (I ² C m nat the last byte re nat the last byte re	eceived or trar				
bit 4	SSPEN is clea 1 = Indicates th	red when the SSP	been detected			tected last.	
bit 3	SSPEN is clea 1 = Indicates th	red when the SSP	been detected			ected last.	
bit 2	This bit holds th	RITE bit Information ne R/W bit informa rt bit, Stop bit or A	tion following		match. This bit is	only valid from the	address match
bit 1	1 = Indicates th	ldress bit (10-bit l ² nat the user needs bes not need to be	s to update the		SSPADD registe	r	
bit 0	1 = Receive co 0 = Receive not $\frac{\text{Transmit (I}^2 \text{C r})}{1 = \text{Transmit in}}$	and I ² C modes): omplete, SSPBUF ot complete, SSPE	BUF is empty JF is full				
		689/PIC16F690 or	•				

2: Does not update if receive was ignored.

14.2.4 BROWN-OUT RESET (BOR)


The BOREN0 and BOREN1 bits in the Configuration Word register select one of four BOR modes. Two modes have been added to allow software or hardware control of the BOR enable. When BOREN<1:0> = 01, the SBOREN bit (PCON<4>) enables/disables the BOR allowing it to be controlled in software. By selecting BOREN<1:0>, the BOR is automatically disabled in Sleep to conserve power and enabled on wake-up. In this mode, the SBOREN bit is disabled. See Register 14-2 for the Configuration Word definition.

If VDD falls below VBOR for greater than parameter (TBOR) (see **Section 17.0 "Electrical Specifications"**), the Brown-out situation will reset the device. This will occur regardless of VDD slew rate. A Reset is not insured to occur if VDD falls below VBOR for less than parameter (TBOR).

On any Reset (Power-on, Brown-out Reset, Watchdog Timer, etc.), the chip will remain in Reset until VDD rises above VBOR (see Figure 14-3). The Power-up Timer will now be invoked, if enabled and will keep the chip in Reset an additional 64 ms.

Note: The Power-up Timer is enabled by the PWRTE bit in the Configuration Word register.

If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOR, the Power-up Timer will execute a 64 ms Reset.

Register	Address	Power-on Reset	MCLR Reset WDT Reset (Continued) Brown-out Reset ⁽¹⁾	Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out		
TRISB	86h/186h	1111	1111	uuuu		
TRISC	87h/187h	1111 1111	1111 1111	uuuu uuuu		
PIE1	8Ch	-000 0000	-000 0000	-uuu uuuu		
PIE2	8Dh	0000	0000	uuuu uuuu		
PCON	8Eh	010x	0uuq ^{1, 5)}	uuuu		
OSCCON	8Fh	-110 q000	-110 q000	-uuu uuuu		
OSCTUNE	90h	0 0000	u uuuu	u uuuu		
PR2	92h	1111 1111	1111 1111	uuuu uuuu		
SSPADD	93h	0000 0000	1111 1111	uuuu uuuu		
SSPMSK ⁽⁶⁾	93h		1111 1111	uuuu uuuu		
SSPSTAT	94h	0000 0000	1111 1111	uuuu uuuu		
WPUA	95h	11 -111	11 -111	uuuu uuuu		
IOCA	96h	00 0000	00 0000	uu uuuu		
WDTCON	97h	0 1000	0 1000	u uuuu		
TXSTA	98h	0000 0010	0000 0010	uuuu uuuu		
SPBRG	99h	0000 0000	0000 0000	uuuu uuuu		
SPBRGH	9Ah	0000 0000	0000 0000	սսսս սսսս		
BAUDCTL	9Bh	01-0 0-00	01-0 0-00	uu-u u-uu		
ADRESL	9Eh	xxxx xxxx	uuuu uuuu	uuuu uuuu		
ADCON1	9Fh	-000	-000	-uuu		
EEDAT	10Ch	0000 0000	0000 0000	uuuu uuuu		
EEADR	10Dh	0000 0000	0000 0000	uuuu uuuu		
EEDATH	10Eh	00 0000	00 0000	uu uuuu		
EEADRH	10Fh	0000	0000	uuuu		
WPUB	115h	1111	1111	uuuu		
IOCB	116h	0000	0000	uuuu		
VRCON	118h	0000 0000	0000 0000	uuuu uuuu		
CM1CON0	119h	0000 -000	0000 -000	uuuu -uuu		
CM2CON0	11Ah	0000 -000	0000 -000	uuuu -uuu		
CM2CON1	11Bh	0000	0010	uuuu		
ANSEL	11Eh	1111 1111	1111 1111	uuuu uuuu		
ANSELH	11Fh	1111	1111	uuuu		
EECON1	18Ch	x x000	u q000	uuuu		
EECON2	18Dh					
PSTRCON	19Dh	0 0001	0 0001	u uuuu		
SRCON	19EH	0000 00	0000 00	uuuu uu		

TABLE 14-4: INITIALIZATION CONDITION FOR REGISTER (CONTINUED)

 $\label{eq:logend: u = unchanged, x = unknown, - = unimplemented bit, reads as `0', q = value depends on condition.$

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 14-5 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

6: Accessible only when SSPM < 3:0 > = 1001.

TABLE 14-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

14.3.2 TIMER0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. See **Section 5.0 "Timer0 Module**" for operation of the Timer0 module.

14.3.3 PORTA/PORTB INTERRUPT

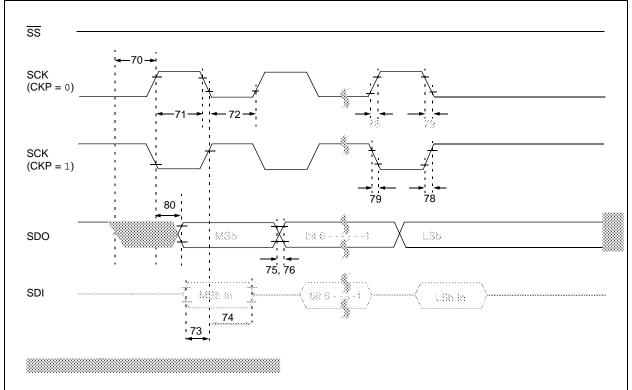
An input change on PORTA or PORTB change sets the RABIF (INTCON<0>) bit. The interrupt can be enabled/ disabled by setting/clearing the RABIE (INTCON<3>) bit. Plus, individual pins can be configured through the IOCA or IOCB registers.

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RABIF interrupt flag may not get set. See Section 4.2.3 "Interrupt-on-change" for more information.

IOC-RA0 -IOCA0 -IOC-RA1 -IOCA1 -IOC-RA2 -IOCA2 IOC-RA3 -IOCA3 -SSPIF SSPIE IOC-RA4-IOCA4-TXIF-TXIE-IOC-RA5-IOCA5 RCIF Wake-up (If in Sleep mode)(1) RCIE IOC-RB4 -TOIF -IOCB4 TOIE -TMR2IF-TMR2IE-Interrupt to CPU INTF -IOC-RB5 -INTE IOCB5 TMR1IF RABIF TMR1IE IOC-RB6 -RABIE IOCB6 C1IF C1IE-PEIE IOC-RB7 -IOCB7 C2IF GIE C2IE ADIF ADIE EEIF EEIE Note 1: Some peripherals depend upon the system OSFIF clock for operation. Since the system clock is OSFIE suspended during Sleep, these peripherals will not wake the part from Sleep. See CCP1IF Section 14.6.1 "Wake-up from Sleep". CCP1IE

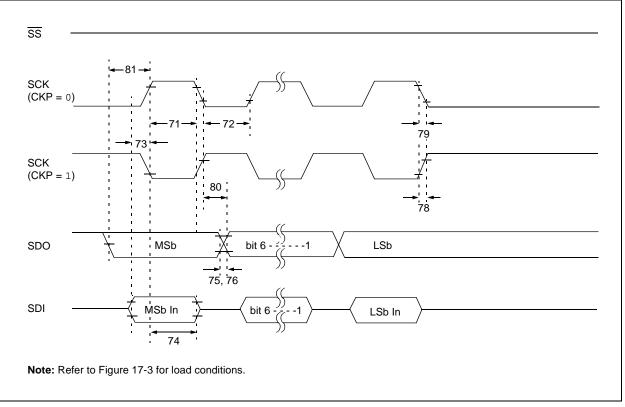
FIGURE 14-7: INTERRUPT LOGIC

17.0 ELECTRICAL SPECIFICATIONS


Absolute Maximum Ratings^(†)

Ambient temperature under bias	40° to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +6.5V
Voltage on MCLR with respect to Vss	0.3V to +13.5V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	800 mW
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iικ (Vi < 0 or Vi > VDD)	± 20 mA
Output clamp current, loк (Vo < 0 or Vo >VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB and PORTC (combined)	200 mA
Maximum current sourced PORTA, PORTB and PORTC (combined)	200 mA

Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - \sum IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOL x IOL).


† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the MCLR pin, rather than pulling this pin directly to Vss.

FIGURE 17-12: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

TABLE 17-14:	I ² C [™] BUS DATA REQUIREMEN [™]	ΓS
--------------	--	----

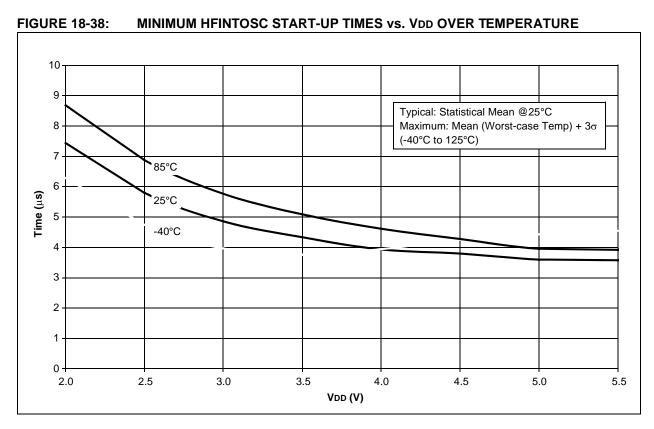
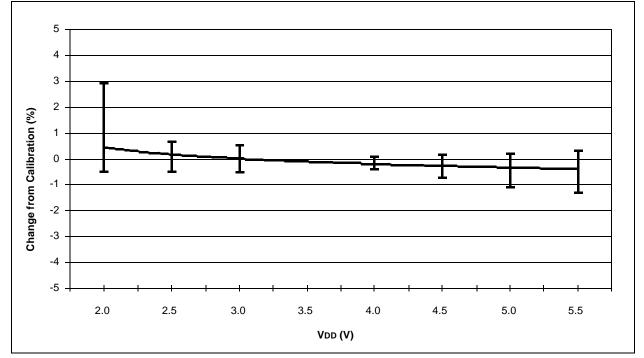
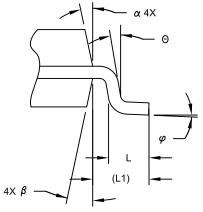
Param. No.	Symbol	Characte	eristic	Min.	Max.	Units	Conditions	
100*	Тнідн	Clock high time	100 kHz mode	4.0		μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6		μS	Device must operate at a minimum of 10 MHz	
			SSP Module	1.5TCY	_			
101*	TLOW	Clock low time	100 kHz mode	4.7		μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3		μS	Device must operate at a minimum of 10 MHz	
			SSP Module	1.5TCY	_			
102*	TR	SDA and SCL rise	100 kHz mode	—	1000	ns		
		time	400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF	
103*	TF	SDA and SCL fall	100 kHz mode	—	300	ns		
		time	400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF	
90*	TSU:STA	Start condition	100 kHz mode	4.7		μS	Only relevant for	
		setup time	400 kHz mode	0.6		μS	Repeated Start condition	
91*	THD:STA	Start condition hold	100 kHz mode	4.0	_	μS	After this period the first	
		time	400 kHz mode	0.6		μS	clock pulse is generated	
106*	THD:DAT	THD:DAT	D:DAT Data input hold time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μS		
107*	TSU:DAT	Data input setup	100 kHz mode	250	—	ns	(Note 2)	
		time	400 kHz mode	100	_	ns		
92*	TSU:STO	Stop condition	100 kHz mode	4.7	_	μS		
		setup time	400 kHz mode	0.6	—	μS		
109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	(Note 1)	
		clock	400 kHz mode	—	—	ns		
110*	TBUF	Bus free time	100 kHz mode	4.7	—	μS	Time the bus must be free	
			400 kHz mode	1.3	_	μS	before a new transmission can start	
	Св	Bus capacitive loading	ng	—	400	pF		

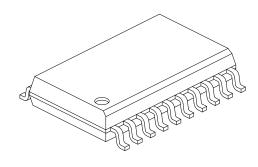
* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TsU:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TsU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

PIC16F631/677/685/687/689/690


FIGURE 18-39: TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (25°C)

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	N	ILLIMETER	S			
Dimension Lim	nits	MIN	NOM	MAX		
Number of Pins	N		20			
Pitch	е		1.27 BSC			
Overall Height	Α	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	Е	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	12.80 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.20	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2