

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	18
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f687t-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device	Program Memory	Data Memory SRAM EEPROM (bytes) (bytes)		1/0	10-bit A/D	Comparators	Timers	SSD	ECCP.	EUGADT
Device	Flash (words)			10	(ch)	Comparators	8/16-bit	335	ECCFŦ	EUSARI
PIC16F631	1024	64	128	18	—	2	1/1	No	No	No
PIC16F677	2048	128	256	18	12	2	1/1	Yes	No	No
PIC16F685	4096	256	256	18	12	2	2/1	No	Yes	No
PIC16F687	2048	128	256	18	12	2	1/1	Yes	No	Yes
PIC16F689	4096	256	256	18	12	2	1/1	Yes	No	Yes
PIC16F690	4096	256	256	18	12	2	2/1	Yes	Yes	Yes

PIC16F631 Pin Diagram

TABLE 1: PIC16F631 PIN SUMMARY

I/O	Pin	Analog	Comparators	Timers	Interrupt	Pull-up	Basic
RA0	19	AN0/ULPWU	C1IN+	_	IOC	Y	ICSPDAT
RA1	18	AN1	C12IN0-	—	IOC	Y	ICSPCLK
RA2	17	—	C1OUT	TOCKI	IOC/INT	Y	—
RA3	4	—	—	—	IOC	Y(1)	MCLR/Vpp
RA4	3	—	—	T1G	IOC	Y	OSC2/CLKOUT
RA5	2	—	—	T1CKI	IOC	Y	OSC1/CLKIN
RB4	13	—	—	_	IOC	Y	—
RB5	12	—	—	—	IOC	Y	—
RB6	11	—	—	—	IOC	Y	—
RB7	10	—	—	—	IOC	Y	—
RC0	16	AN4	C2IN+	—	—	—	—
RC1	15	AN5	C12IN1-	—	—	—	—
RC2	14	AN6	C12IN2-		_	_	—
RC3	7	AN7	C12IN3-		_	_	—
RC4	6	_	C2OUT		_	_	_
RC5	5	—	—		—	_	—
RC6	8	—	-		—	—	—
RC7	9					_	
_	1					—	Vdd
	20						Vss

Note 1: Pull-up enabled only with external MCLR configuration.

Bank 0 00h INDF Addressing this location uses contents of FSR to address data memory (not a physical register) 01h TMR0 Timer0 Module Register 02h PCL Program Counter's (PC) Least Significant Byte 03h STATUS IRP RP1 RP0 TO PD Z DC C 04h FSR Indirect Data Memory Address Pointer	POR, BOR	Page								
00h INDF Addressing this location uses contents of FSR to address data memory (not a physical register) 01h TMR0 Timer0 Module Register 02h PCL Program Counter's (PC) Least Significant Byte 03h STATUS IRP RP1 RP0 TO PD Z DC C 04h FSR Indirect Data Memory Address Pointer										
01h TMR0 Timer0 Module Register 02h PCL Program Counter's (PC) Least Significant Byte 03h STATUS IRP RP1 RP0 \overline{TO} \overline{PD} Z DC C 04h FSR Indirect Data Memory Address Pointer - - RA1 RA0 05h PORTA ⁽⁷⁾ - - RA5 RA4 RA3 RA2 RA1 RA0 06h PORTB ⁽⁷⁾ RB7 RB6 RB5 RB4 - - - - 07h PORTC ⁽⁷⁾ RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 08h - Unimplemented Unimplemented - - - -	Addressing this location uses contents of FSR to address data memory (not a physical register)									
O2h PCL Program Counter's (PC) Least Significant Byte O3h STATUS IRP RP1 RP0 TO PD Z DC C O4h FSR Indirect Data Memory Address Pointer O5h PORTA ⁽⁷⁾ — — RA5 RA4 RA3 RA2 RA1 RA0 O6h PORTB ⁽⁷⁾ RB7 RB6 RB5 RB4 — — — — 07h PORTC ⁽⁷⁾ RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 08h — Unimplemented Unimplemented Unimplemented Unimplemented Unimplemented Unimplemented	xxxx xxxx	79,200								
03h STATUS IRP RP1 RP0 TO PD Z DC C 04h FSR Indirect Data Memory Address Pointer 05h PORTA ⁽⁷⁾ — — RA5 RA4 RA3 RA2 RA1 RA0 06h PORTB ⁽⁷⁾ RB7 RB6 RB5 RB4 — — — — 07h PORTC ⁽⁷⁾ RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 08h — Unimplemented	0000 0000	43,200								
04h FSR Indirect Data Memory Address Pointer 05h PORTA ⁽⁷⁾ — — RA5 RA4 RA3 RA2 RA1 RA0 06h PORTB ⁽⁷⁾ RB7 RB6 RB5 RB4 — — — — 07h PORTC ⁽⁷⁾ RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 08h — Unimplemented — — — —	0001 1xxx	35,200								
05h PORTA ⁽⁷⁾ - - RA5 RA4 RA3 RA2 RA1 RA0 06h PORTB ⁽⁷⁾ RB7 RB6 RB5 RB4 - <td>xxxx xxxx</td> <td>43,200</td>	xxxx xxxx	43,200								
O6h PORTB ⁽⁷⁾ RB7 RB6 RB5 RB4 — …	xx xxxx	57,200								
07h PORTC ⁽⁷⁾ RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 08h — Unimplemented	xxxx	67,200								
08h — Unimplemented	xxxx xxxx	74,200								
00h	—	—								
Unimpiementea	—	—								
OAh PCLATH — — Write Buffer for upper 5 bits of Program Counter	0 0000	43,200								
0Bh INTCON GIE PEIE TOIE INTE RABIE TOIF INTF RABIF ⁽¹⁾	0000 000x	37,200								
0Ch PIR1 — ADIF ⁽⁴⁾ RCIF ⁽²⁾ TXIF ⁽²⁾ SSPIF ⁽⁵⁾ CCP1IF ⁽³⁾ TMR2IF ⁽³⁾ TMR1IF	-000 0000	40,200								
ODh PIR2 OSFIF C2IF C1IF EEIF — # # # # # # # # # # # #	0000	41,200								
0Eh TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register	xxxx xxxx	85,200								
0Fh TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register	xxxx xxxx	85,200								
10h T1CON T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR10N	0000 0000	87,200								
11h TMR2 ⁽³⁾ Timer2 Module Register	0000 0000	89,200								
12h T2CON ⁽³⁾ — TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0	-000 0000	90,200								
13h SSPBUF ⁽⁵⁾ Synchronous Serial Port Receive Buffer/Transmit Register	xxxx xxxx	178,200								
14h SSPCON ^(5, 6) WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0	0000 0000	177,200								
15h CCPR1L ⁽³⁾ Capture/Compare/PWM Register 1 (LSB)	XXXX XXXX	126,200								
16h CCPR1H ⁽³⁾ Capture/Compare/PWM Register 1 (MSB)	xxxx xxxx	126,200								
17h CCP1CON ⁽³⁾ P1M1 P1M0 DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0	0000 0000	125,200								
18h RCSTA ⁽²⁾ SPEN RX9 SREN CREN ADDEN FERR OERR RX9D	0000 000x	158,200								
19h TXREG ⁽²⁾ EUSART Transmit Data Register	0000 0000	150								
1Ah RCREG ⁽²⁾ EUSART Receive Data Register	0000 0000	155								
1Bh — Unimplemented	_	_								
1Ch PWM1CON ⁽³⁾ PRSEN PDC6 PDC5 PDC4 PDC3 PDC2 PDC1 PDC0	0000 0000	143,200								
1Dh ECCPAS ⁽³⁾ ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0	0000 0000	140,200								
1Eh ADRESH ⁽⁴⁾ A/D Result Register High Byte	xxxx xxxx	113,200								
1Fh ADCON0 ⁽⁴⁾ ADFM VCFG CHS3 CHS2 CHS1 CHS0 GO/DONE ADON	0000 0000	111,200								

FABLE 2-1:	PIC16F631/677/685/687/689/690 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0
-------------------	---

Legend: -= Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented **Note 1:** MCLR and WDT Reset do not affect the previous value data latch. The RABIF bit will be cleared upon Reset but will set again if the

mismatch exists.

2: PIC16F687/PIC16F689/PIC16F690 only.

3: PIC16F685/PIC16F690 only.

4: PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.

5: PIC16F677/PIC16F687/PIC16F689/PIC16F690 only.

6: When SSPCON register bits SSPM<3:0> = 1001, any reads or writes to the SSPADD SFR address are accessed through the SSPMSK register. See Registers 13-2 and 13-3 for more detail.

7: Port pins with analog functions controlled by the ANSEL and ANSELH registers will read '0' immediately after a Reset even though the data latches are either undefined (POR) or unchanged (other Resets).

FIGURE 2-10: DIRECT/INDIRECT ADDRESSING PIC16F631/677/685/687/689/690

3.7.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCCON register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Word register (CONFIG), or the internal oscillator.

FIGURE 3-7:	TWO-SPEED START-UP	
HFINTOSC /		
OSC1	←Tost	
OSC2		
Program Counter	PC-N (PC	XPC + 1X
System Clock		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	VCFG	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7	ADFM: A/D C	Conversion Res	ult Format Se	elect bit			
	1 = Right just 0 = Left justifi	ified ed					
bit 6	VCFG: Voltag	ge Reference b	it				
	1 = VREF pin						
	0 = VDD						
bit 5-2	CHS<3:0>: A	nalog Channe	el Select bits				
	0000 = AN0						
	0001 = AN1						
	0010 = AN2						
	0011 = AN3						
	0100 = AN4						
	0101 = AN6						
	0111 = AN7						
	1000 = AN8						
	1001 = AN9						
	1010 = AN10)					
	1011 = AN11						
	1100 = CVRE	F					
	1101 = 0.6V	Fixed Voltage I	Reference				
	1110 = Rese	rved. Do not us	se.				
1.1.4	1111 = Rese	rvea. Do not us	se.				
DIT 1	GO/DONE: A	/D Conversion	Status bit				
	1 = A/D CONV	ersion cycle in	progress. Set	ting this bit star	ts an A/D conv	ersion cycle.	tod
	0 = A/D converts	ersion complete	ed/not in prog	ress	ie A/D convers	ion has complet	lea.
hit 0		Enable bit	sa/not in prog	1000			
	$\perp = ADC$ is ef 0 = ADC is di	sabled and cor	sumes no on	erating current			
				erating our offe			

REGISTER 9-1: ADCON0: A/D CONTROL REGISTER 0

FIGURE 11-13: EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE

3: TOFF is the turn-off delay of power switch QD and its driver.

11.4.3 START-UP CONSIDERATIONS

When any PWM mode is used, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins.

Note:	When the microcontroller is released from								
	Reset, all of the I/O pins are in the high-								
	impedance state. The external circuits								
	must keep the power switch devices in the								
	OFF state until the microcontroller drives								
	the I/O pins with the proper signal levels or								
	activates the PWM output(s).								

The CCP1M<1:0> bits of the CCP1CON register allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pin output drivers are enabled. Changing the polarity configuration while the PWM pin output drivers are enabled is not recommended since it may result in damage to the application circuits.

The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pin output drivers at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before enabling the PWM pin output drivers. The completion of a full PWM cycle is indicated by the TMR2IF bit of the PIR1 register being set as the second PWM period begins.

12.3.3 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXSTA register. The Break character transmission is then initiated by a write to the TXREG. The value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXSTA register indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 12-9 for the timing of the Break character sequence.

12.3.3.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.

12.3.4 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RCSTA register and the Received data as indicated by RCREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when;

- RCIF bit is set
- FERR bit is set
- RCREG = 00h

The second method uses the Auto-Wake-up feature described in **Section 12.3.2** "**Auto-Wake-up on Break**". By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDCTL register before placing the EUSART in Sleep mode.

14.2.5 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows: first, PWRT time-out is invoked after POR has expired, then OST is activated after the PWRT time-out has expired. The total time-out will vary based on oscillator configuration and <u>PWRTE</u> bit status. For example, in EC mode with <u>PWRTE</u> bit erased (PWRT disabled), there will be no time-out at all. Figures 14-4, 14-5 and 14-6 depict time-out sequences. The device can execute code from the INTOSC while OST is active by enabling Two-Speed Start-up or Fail-Safe Monitor (see Section 3.7.2 "Two-speed Start-up Sequence" and Section 3.8 "Fail-Safe Clock Monitor").

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then, bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 14-5). This is useful for testing purposes or to synchronize more than one PIC16F631/677/685/ 687/689/690 device operating in parallel.

Table 14-5 shows the Reset conditions for some special registers, while Table 14-4 shows the Reset conditions for all the registers.

14.2.6 POWER CONTROL (PCON) REGISTER

The Power Control register PCON (address 8Eh) has two Status bits to indicate what type of Reset that last occurred.

Bit 0 is $\overline{\text{BOR}}$ (Brown-out Reset). $\overline{\text{BOR}}$ is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if $\overline{\text{BOR}} = 0$, indicating that a Brown-out has occurred. The $\overline{\text{BOR}}$ Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (BOREN<1:0> = 00 in the Configuration Word register).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset, if POR is '0', it will indicate that a Power-on Reset has occurred (i.e., VDD may have gone too low).

For more information, see Section 4.2.4 "Ultra Low-Power Wake-up" and Section 14.2.4 "Brown-out Reset (BOR)".

Oscillator Configuration	Powe	er-up	Brown-o	Wake-up from	
	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	Sleep
XT, HS, LP	TPWRT + 1024 • Tosc	1024 • Tosc	Tpwrt + 1024 • Tosc	1024 • Tosc	1024 • Tosc
LP, T1OSCIN = 1	TPWRT	—	TPWRT	_	—
RC, EC, INTOSC	TPWRT		TPWRT		_

TABLE 14-1:TIME-OUT IN VARIOUS SITUATIONS

TABLE 14-2: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition
0	x	1	1	Power-on Reset
u	0	1	1	Brown-out Reset
u	u	0	u	WDT Reset
u	u	0	0	WDT Wake-up
u	u	u	u	MCLR Reset during normal operation
u	u	1	0	MCLR Reset during Sleep

Legend: u = unchanged, x = unknown

DS40001262F-page 198

TABLE 14-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PCON	-	-	ULPWUE	SBOREN	-	_	POR	BOR	01qq	0uuu
STATUS	IRP	RP1	RPO	TO	PD	Z	DC	С	0001 1xxx	000q quuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition. Shaded cells are not used by BOR. Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

FIGURE 14-5: TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 2

FIGURE 14-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD)

© 2005-2015 Microchip Technology Inc.

- is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
- 3: CLKOUT is available only in INTOSC and RC Oscillator modes.
- 4: For minimum width of INT pulse, refer to AC specifications in Section 17.0 "Electrical Specifications".
- 5: INTF is enabled to be set any time during the Q4-Q1 cycles.

TABLE 14-6: SUMMARY OF INTERRUPT REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF	x000 000x	x000 000x
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIE2	OSFIE	C2IE	C1IE	EEIE	—	—	—	—	0000	0000
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
PIR2	OSFIF	C2IF	C1IF	EEIF	_	_	_	_	0000	0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition.

Shaded cells are not used by the Interrupt module.

16.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

16.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

TABLE 17-2: OSCILLATOR PARAMETERS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions
OS06	Twarm	Internal Oscillator Switch when running ⁽³⁾	—		_	2	Tosc	Slowest clock
OS07	Tsc	Fail-Safe Sample Clock Period ⁽¹⁾	—		21	—	ms	LFINTOSC/64
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽²⁾	±1%	7.92	8.0	8.08	MHz	VDD = 3.5V, 25°C
			±2%	7.84	8.0	8.16	MHz	$2.5V \le VDD \le 5.5V$, 0°C \le TA \le +85°C
			±5%	7.60	8.0	8.40	MHz	$\begin{array}{l} 2.0V \leq V \text{DD} \leq 5.5 \text{V}, \\ -40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C} \text{ (Ind.)}, \\ -40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C} \text{ (Ext.)} \end{array}$
OS09*	LFosc	Internal Uncalibrated LFINTOSC Frequency	—	15	31	45	kHz	
OS10*	TIOSC ST	HFINTOSC Oscillator	—	5.5	12	24	μS	VDD = 2.0V, -40°C to +85°C
		Wake-up from Sleep Start-up Time	—	3.5	7	14	μs	VDD = 3.0V, -40°C to +85°C
			—	3	6	11	μS	VDD = 5.0V, -40°C to +85°C

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at 'min' values with an external clock applied to the OSC1 pin. When an external clock input is used, the 'max' cycle time limit is 'DC' (no clock) for all devices.

2: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 µF and 0.01 µF values in parallel are recommended.

3: By design.

FIGURE 17-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

Param No.	Symbol	Characteristic	Min.	Тур†	Max.	Units	Conditions	
70*	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input		Тсү		—	ns	
71*	TscH	SCK input high time (Slave mode	e)	TCY + 20	_	—	ns	
72*	TscL	SCK input low time (Slave mode)	TCY + 20	_	—	ns	
73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to SCK edge		100	_	—	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SO	DI data input to SCK edge		_	—	ns	
75*	TDOR	SDO data output rise time	3.0-5.5V	—	10	25	ns	
			2.0-5.5V	—	25	50	ns	
76*	TDOF	SDO data output fall time		—	10	25	ns	
77*	TssH2doZ	ST to SDO output high-impedance		10		50	ns	
78*	TscR	SCK output rise time (Master mode)	3.0-5.5V	_	10	25	ns	
			2.0-5.5V	—	25	50	ns	
79*	TscF	SCK output fall time (Master mod	laster mode)		10	25	ns	
80*	TscH2doV, TscL2doV	H2DOV, SDO data output valid after	3.0-5.5V	—		50	ns	
		SCL2DOV SCK edge		—		145	ns	
81*	TDOV2SCH, TDOV2SCL	SDO data output setup to SCK e	O data output setup to SCK edge			—	ns	
82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge		_	—	50	ns	
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40		_	ns	

TABLE 17-12: SPI MODE REQUIREMENTS

These parameters are characterized but not tested.

Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

I²C[™] BUS START/STOP BITS TIMING FIGURE 17-16:

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	MILLIMETERS					
Dimension Lim	nits	MIN	NOM	MAX		
Number of Pins	N	20				
Pitch	е	1.27 BSC				
Overall Height	Α			2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	Е	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	12.80 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.20	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2

20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimension	n Limits	MIN	NOM	MAX		
Number of Pins	Ν	20				
Pitch	е	0.65 BSC				
Overall Height	Α	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	-		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	6.90	7.20	7.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1	1.25 REF				
Lead Thickness	С	0.09	-	0.25		
Foot Angle	φ	0°	4°	8°		
Lead Width	b	0.22	_	0.38		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B