E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f689-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: PINOUT DESCRIPTION – PIC16F685

Name	Function	Input Type	Output Type	Description		
RA0/AN0/C1IN+/ICSPDAT/ ULPWU	RA0	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.		
	AN0	AN	—	A/D Channel 0 input.		
	C1IN+	AN	—	Comparator C1 positive input.		
	ICSPDAT	TTL	CMOS	ICSP™ Data I/O.		
	ULPWU	AN	—	Ultra Low-Power Wake-up input.		
RA1/AN1/C12IN0-/VREF/ICSPCLK	RA1	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.		
	AN1	AN	—	A/D Channel 1 input.		
	C12IN0-	AN	—	Comparator C1 or C2 negative input.		
	Vref	AN	—	External Voltage Reference for A/D.		
	ICSPCLK	ST	—	ICSP™ clock.		
RA2/AN2/T0CKI/INT/C1OUT	RA2	ST	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.		
	AN2	AN	—	A/D Channel 2 input.		
	T0CKI	ST	—	Timer0 clock input.		
	INT	ST	—	External interrupt pin.		
	C1OUT		CMOS	Comparator C1 output.		
RA3/MCLR/Vpp	RA3	TTL	—	General purpose input. Individually controlled interrupt-on- change.		
	MCLR	ST	—	Master Clear with internal pull-up.		
	Vpp	ΗV	_	Programming voltage.		
RA4/AN3/T1G/OSC2/CLKOUT	RA4	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.		
	AN3	AN	—	A/D Channel 3 input.		
	T1G	ST	—	Timer1 gate input.		
	OSC2		XTAL	Crystal/Resonator.		
	CLKOUT		CMOS	Fosc/4 output.		
RA5/T1CKI/OSC1/CLKIN	RA5	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.		
	T1CKI	ST	—	Timer1 clock input.		
	OSC1	XTAL	—	Crystal/Resonator.		
	CLKIN	ST	—	External clock input/RC oscillator connection.		
RB4/AN10	RB4	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.		
	AN10	AN		A/D Channel 10 input.		
RB5/AN11	RB5	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.		
	AN11	AN	—	A/D Channel 11 input.		
RB6	RB6	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.		
RB7	RB7	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.		
RC0/AN4/C2IN+	RC0	ST	CMOS	General purpose I/O.		
	AN4	AN		A/D Channel 4 input.		
	C2IN+	AN		Comparator C2 positive input.		
Legend: AN = Analog input of TTL = TTL compatible HV = High Voltage	or output le input	CMOS= ST= S XTAL= 0	CMOS co Schmitt T Crystal	rigger input with CMOS levels		

TABLE 1-5: PINOUT DESCRIPTION – PIC16F690

Name	Function	Input Type	Output Type	Description		
RA0/AN0/C1IN+/ICSPDAT/ ULPWU	RA0	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.		
	AN0	AN	—	A/D Channel 0 input.		
	C1IN+	AN	—	Comparator C1 positive input.		
	ICSPDAT	TTL	CMOS	ICSP™ Data I/O.		
	ULPWU	AN	_	Ultra Low-Power Wake-up input.		
RA1/AN1/C12IN0-/VREF/ICSPCLK	RA1	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.		
	AN1	AN	—	A/D Channel 1 input.		
	C12IN0-	AN	_	Comparator C1 or C2 negative input.		
	VREF	AN		External Voltage Reference for A/D.		
	ICSPCLK	ST	—	ICSP™ clock.		
RA2/AN2/T0CKI/INT/C1OUT	RA2	ST	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.		
	AN2	AN	—	A/D Channel 2 input.		
	TOCKI	ST	—	Timer0 clock input.		
	INT	ST	—	External interrupt.		
	C10UT	—	CMOS	Comparator C1 output.		
RA3/MCLR/Vpp	RA3	TTL	—	General purpose input. Individually controlled interrupt-on- change.		
	MCLR	ST	—	Master Clear with internal pull-up.		
	Vpp	HV	—	Programming voltage.		
RA4/AN3/T1G/OSC2/CLKOUT	RA4	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.		
	AN3	AN	_	A/D Channel 3 input.		
	T1G	ST	—	Timer1 gate input.		
	OSC2	_	XTAL	Crystal/Resonator.		
	CLKOUT		CMOS	Fosc/4 output.		
RA5/T1CKI/OSC1/CLKIN	RA5	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.		
	T1CKI	ST	—	Timer1 clock input.		
	OSC1	XTAL	—	Crystal/Resonator.		
	CLKIN	ST	—	External clock input/RC oscillator connection.		
RB4/AN10/SDI/SDA	RB4	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.		
	AN10	AN	_	A/D Channel 10 input.		
	SDI	ST	_	SPI data input.		
	SDA	ST	OD	I ² C [™] data input/output.		
RB5/AN11/RX/DT	RB5	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.		
	AN11	AN	_	A/D Channel 11 input.		
	RX	ST	_	EUSART asynchronous input.		
	DT	ST	CMOS	EUSART synchronous data.		
Legend: AN = Analog input of	or output	CMOS=	CMOS co	ompatible input or outputOD= Open Drain		
TTL = TTL compatibl	le input	ST=	Schmitt T	rigger input with CMOS levels		

XTAL= Crystal

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page	
Bank	Bank 2											
100h	INDF	Addressing this location uses contents of FSR to address data memory (not a physical register)										
101h	TMR0	Timer0 Mod	ule Register							xxxx xxxx	79,200	
102h	PCL	Program Co	unter's (PC)	Least Signif	icant Byte					0000 0000	43,200	
103h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	35,200	
104h	FSR	Indirect Data	a Memory Ad	Idress Pointe	er					xxxx xxxx	43,200	
105h	PORTA ⁽⁴⁾	—	-	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	57,200	
106h	PORTB ⁽⁴⁾	RB7	RB6	RB5	RB4	—	—		—	xxxx	67,200	
107h	PORTC ⁽⁴⁾	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	74,200	
108h	_	Unimplemen	nted							—	_	
109h		Unimplemen	nted							—	—	
10Ah	PCLATH	—	—	_	Write Bu	ffer for the up	oper 5 bits of	the Program	Counter	0 0000	43,200	
10Bh	INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF ⁽¹⁾	0000 000x	37,200	
10Ch	EEDAT	EEDAT7	EEDAT6	EEDAT5	EEDAT4	EEDAT3	EEDAT2	EEDAT1	EEDAT0	0000 0000	118,201	
10Dh	EEADR	EEADR7 ⁽³⁾	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0	0000 0000	118,201	
10Eh	EEDATH ⁽²⁾	_	_	EEDATH5	EEDATH4	EEDATH3	EEDATH2	EEDATH1	EEDATH0	00 0000	118,201	
10Fh	EEADRH ⁽²⁾	_	_	_	_	EEADRH3	EEADRH2	EEADRH1	EEADRH0	0000	118,201	
110h	—	Unimplemen	nted							_	_	
111h	—	Unimplemen	nted							_	_	
112h	—	Unimplemen	nted							_	_	
113h	—	Unimplemen	nted							_	_	
114h	—	Unimplemen	nted							—	—	
115h	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	—	—		—	1111	68,201	
116h	IOCB	IOCB7	IOCB6	IOCB5	IOCB4	—	—		—	0000	68,201	
117h	—	Unimplemen	nted							—	—	
118h	VRCON	C1VREN	C2VREN	VRR	VP6EN	VR3	VR2	VR1	VR0	0000 0000	103,201	
119h	CM1CON0	C10N	C1OUT	C10E	C1POL	—	C1R	C1CH1	C1CH0	0000 -000	96,201	
11Ah	CM2CON0	C2ON	C2OUT	C2OE	C2POL	—	C2R	C2CH1	C2CH0	0000 -000	97,201	
11Bh	CM2CON1	MC1OUT	MC2OUT	—	—	—	—	T1GSS	C2SYNC	0010	99,201	
11Ch		Unimplemen	nted							—	—	
11Dh	_	Unimplemen	nted							_	_	
11Eh	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3 ⁽³⁾	ANS2 ⁽³⁾	ANS1	ANS0	1111 1111	59,201	
11Fh	ANSELH ⁽³⁾	—	—	—	—	ANS11	ANS10	ANS9	ANS8	1111	113,201	

TABLE 2-3: PIC16F631/677/685/687/689/690 SPECIAL FUNCTION REGISTERS SUMMARY BANK 2

Legend: -= Unimplemented locations read as '0', u = unchanged, x = unknown, g = value depends on condition, shaded = unimplemented Note 1: MCLR and WDT Reset does not affect the previous value data latch. The RABIF bit will be cleared upon Reset but will set again if the mismatch exists.

2: PIC16F685/PIC16F689/PIC16F690 only.

3: PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.

4: Port pins with analog functions controlled by the ANSEL and ANSELH registers will read '0' immediately after a Reset even though the data latches are either undefined (POR) or unchanged (other Resets).

3.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

3.1 Overview

The Oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 3-1 illustrates a block diagram of the Oscillator module.

Clock sources can be configured from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be configured from one of two internal oscillators, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal via software.
- Two-Speed Start-up mode, which minimizes latency between external oscillator start-up and code execution.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, EC or RC modes) and switch automatically to the internal oscillator.

The Oscillator module can be configured in one of eight clock modes.

- 1. EC External clock with I/O on OSC2/CLKOUT.
- 2. LP 32 kHz Low-Power Crystal mode.
- 3. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode.
- 4. HS High Gain Crystal or Ceramic Resonator mode.
- 5. RC External Resistor-Capacitor (RC) with Fosc/4 output on OSC2/CLKOUT.
- 6. RCIO External Resistor-Capacitor (RC) with I/O on OSC2/CLKOUT.
- 7. INTOSC Internal oscillator with Fosc/4 output on OSC2 and I/O on OSC1/CLKIN.
- 8. INTOSCIO Internal oscillator with I/O on OSC1/CLKIN and OSC2/CLKOUT.

Clock Source modes are configured by the FOSC<2:0> bits in the Configuration Word register (CONFIG). The internal clock can be generated from two internal oscillators. The HFINTOSC is a calibrated highfrequency oscillator. The LFINTOSC is an uncalibrated low-frequency oscillator.

FIGURE 3-1: SIMPLIFIED PIC[®] MCU CLOCK SOURCE BLOCK DIAGRAM

4.2.5.2 RA1/AN1/C12IN0-/VREF/ICSPCLK

Figure 4-2 shows the diagram for this pin. The RA1/ AN1/C12IN0-/VREF/ICSPCLK pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- an analog input to Comparator C1 or C2
- a voltage reference input for the ADC
- In-Circuit Serial Programming clock

BLOCK DIAGRAM OF RA1 FIGURE 4-2: Analog(1) Input Mode Data Bus D Q Vdd WR CK Q Weak WPU RABPU RD WPU/ Vdd D Q WR СК Q PORTA I/O Pin D G Vss WR СК Q TRIS Analog⁽¹⁾ Input Mode RD TRIS/ RD PORT/ D Q D Q WR Q IOCA ΕN Q3 RD IOCA Q D ΕN Interrupt-on-Change **RD PORTA** To Comparator To A/D Converter(2) ANSEL determines Analog Input mode. Note 1: Not implemented on PIC16F631. 2:

4.2.5.3 RA2/AN2/T0CKI/INT/C1OUT

Figure 4-3 shows the diagram for this pin. The RA2/AN2/ T0CKI/INT/C1OUT pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- the clock input for Timer0
- an external edge triggered interrupt
- a digital output from Comparator C1

FIGURE 4-3: BLOCK DIAGRAM OF RA2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
IOCB	IOCB7	IOCB6	IOCB5	IOCB4	_	_	_	_	0000	0000
INTCON	GIE	PEIE	TOIE	INTE	RABIE	TOIF	INTF	RABIF	0000 000x	0000 000x
PORTB	RB7	RB6	RB5	RB4	_		_	_	xxxx	uuuu
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	_	_	_	_	1111	1111
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	—	—	—	—	1111	1111

TABLE 4-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTB.

4.5.1 RC0/AN4/C2IN+

The RC0 is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- an analog input to Comparator C2

4.5.2 RC1/AN5/C12IN1-

The RC1 is configurable to function as one of the following:

- a general purpose I/O
- · an analog input for the ADC
- an analog input to Comparator C1 or C2

FIGURE 4-11:

BLOCK DIAGRAM OF RC0 AND RC1

RC2/AN6/C12IN2-/P1D 4.5.3

The RC2/AN6/P1D⁽¹⁾ is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- · a PWM output
- an analog input to Comparator C1 or C2

Note 1: P1D is available on PIC16F685/ PIC16F690 only.

4.5.4 RC3/AN7/C12IN3-/P1C

The RC3/AN7/P1C⁽¹⁾ is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- · a PWM output
- · a PWM output
- an analog input to Comparator C1 or C2

Note 1: P1C is available on PIC16F685/ PIC16F690 only.

FIGURE 4-12:

BLOCK DIAGRAM OF RC2 AND RC3

1: ANSEL determines Analog Input mode.

2: Not implemented on PIC16F631.

7.0 TIMER2 MODULE

The Timer2 module is an 8-bit timer with the following features:

- 8-bit timer register (TMR2)
- 8-bit period register (PR2)
- Interrupt on TMR2 match with PR2
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)

See Figure 7-1 for a block diagram of Timer2.

7.1 Timer2 Operation

The clock input to the Timer2 module is the system instruction clock (Fosc/4). The clock is fed into the Timer2 prescaler, which has prescale options of 1:1, 1:4 or 1:16. The output of the prescaler is then used to increment the TMR2 register.

The values of TMR2 and PR2 are constantly compared to determine when they match. TMR2 will increment from 00h until it matches the value in PR2. When a match occurs, two things happen:

- TMR2 is reset to 00h on the next increment cycle.
- The Timer2 postscaler is incremented

The match output of the Timer2/PR2 comparator is fed into the Timer2 postscaler. The postscaler has postscale options of 1:1 to 1:16 inclusive. The output of the Timer2 postscaler is used to set the TMR2IF interrupt flag bit in the PIR1 register. The TMR2 and PR2 registers are both fully readable and writable. On any Reset, the TMR2 register is set to 00h and the PR2 register is set to FFh.

Timer2 is turned on by setting the TMR2ON bit in the T2CON register to a '1'. Timer2 is turned off by clearing the TMR2ON bit to a '0'.

The Timer2 prescaler is controlled by the T2CKPS bits in the T2CON register. The Timer2 postscaler is controlled by the TOUTPS bits in the T2CON register. The prescaler and postscaler counters are cleared when:

- A write to TMR2 occurs.
- A write to T2CON occurs.
- Any device Reset occurs (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out Reset).

Note: TMR2 is not cleared when T2CON is written.

11.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin CCP1. An event is defined as one of the following and is configured by the CCP1M<3:0> bits of the CCP1CON register:

- · Every falling edge
- · Every rising edge
- Every 4th rising edge
- Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCP1IF of the PIR1 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPR1H, CCPR1L register pair is read, the old captured value is overwritten by the new captured value (see Figure 11-1).

11.1.1 CCP1 PIN CONFIGURATION

In Capture mode, the CCP1 pin should be configured as an input by setting the associated TRIS control bit.

Note:	If the CCP1 pin is configured as an output,
	a write to the port can cause a capture
	condition.

FIGURE 11-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

11.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

11.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCP1IE interrupt enable bit of the PIE1 register clear to avoid false interrupts. Additionally, the user should clear the CCP1IF interrupt flag bit of the PIR1 register following any change in operating mode.

11.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCP1M<3:0> bits of the CCP1CON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCP1CON register before changing the prescaler (see Example 11-1).

EXAMPLE 11-1: CHANGING BETWEEN CAPTURE PRESCALERS

BANKSEL CCP1CON	;Set Bank bits to point
	; to CCP1CON
CLRF CCP1CON	;Turn CCP module off
MOVLW NEW_CAPT_F	S;Load the W reg with
	; the new prescaler
	; move value and CCP ON
MOVWF CCP1CON	;Load CCP1CON with this
	; value

12.1.2.8 Asynchronous Reception Set-up:

- Initialize the SPBRGH, SPBRG register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 12.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Enable reception by setting the CREN bit.
- 6. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 7. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 8. Get the received 8 Least Significant data bits from the receive buffer by reading the RCREG register.
- 9. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

12.1.2.9 9-bit Address Detection Mode Set-up

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGH, SPBRG register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 12.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. Enable 9-bit reception by setting the RX9 bit.
- 5. Enable address detection by setting the ADDEN bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 8. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

FIGURE 12-5: ASYNCHRONOUS RECEPTION

12.3 EUSART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUDCTL register selects 16-bit mode.

The SPBRGH, SPBRG register pair determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by both the BRGH bit of the TXSTA register and the BRG16 bit of the BAUDCTL register. In Synchronous mode, the BRGH bit is ignored.

Table 12-3 contains the formulas for determining the baud rate. Example 12-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various asynchronous modes have been computed for your convenience and are shown in Table 12-3. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

Writing a new value to the SPBRGH, SPBRG register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate. If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is Idle before changing the system clock.

EXAMPLE 12-1: CALCULATING BAUD RATE ERROR

C	Configuration Bi	ts		Baud Rate Formula			
SYNC	BRG16	BRGH	BRG/EUSART Mode	Bauu Kale Forniula			
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]			
0	0	1	8-bit/Asynchronous	Eccc/[16 (p+1)]			
0	1	0	16-bit/Asynchronous	FOSC/[16 (II+1)]			
0	1	1	16-bit/Asynchronous				
1	0	x	8-bit/Synchronous	Fosc/[4 (n+1)]			
1	1	x	16-bit/Synchronous				

TABLE 12-3: BAUD RATE FORMULAS

Legend: x = Don't care, n = value of SPBRGH, SPBRG register pair

TABLE 12-4: REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ABDOVF	RCIDL	_	SCKP	BRG16		WUE	ABDEN	01-0 0-00	01-0 0-00
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 000x	x000 000x
BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
BRG15	BRG14	BRG13	BRG12	BRG11	BRG10	BRG9	BRG8	0000 0000	0000 0000
CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
	Bit 7 ABDOVF SPEN BRG7 BRG15 CSRC	Bit 7Bit 6ABDOVFRCIDLSPENRX9BRG7BRG6BRG15BRG14CSRCTX9	Bit 7Bit 6Bit 5ABDOVFRCIDL—SPENRX9SRENBRG7BRG6BRG5BRG15BRG14BRG13CSRCTX9TXEN	Bit 7Bit 6Bit 5Bit 4ABDOVFRCIDL—SCKPSPENRX9SRENCRENBRG7BRG6BRG5BRG4BRG15BRG14BRG13BRG12CSRCTX9TXENSYNC	Bit 7Bit 6Bit 5Bit 4Bit 3ABDOVFRCIDL—SCKPBRG16SPENRX9SRENCRENADDENBRG7BRG6BRG5BRG4BRG3BRG15BRG14BRG13BRG12BRG11CSRCTX9TXENSYNCSENDB	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2ABDOVFRCIDL—SCKPBRG16—SPENRX9SRENCRENADDENFERRBRG7BRG6BRG5BRG4BRG3BRG2BRG15BRG14BRG13BRG12BRG11BRG10CSRCTX9TXENSYNCSENDBBRGH	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1ABDOVFRCIDL—SCKPBRG16—WUESPENRX9SRENCRENADDENFERROERRBRG7BRG6BRG5BRG4BRG3BRG2BRG1BRG15BRG14BRG13BRG12BRG11BRG10BRG9CSRCTX9TXENSYNCSENDBBRGHTRMT	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0ABDOVFRCIDL—SCKPBRG16—WUEABDENSPENRX9SRENCRENADDENFERROERRRX9DBRG7BRG6BRG5BRG4BRG3BRG2BRG1BRG0BRG15BRG14BRG13BRG12BRG11BRG10BRG9BRG8CSRCTX9TXENSYNCSENDBBRGHTRMTTX9D	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Value on POR BORABDOVFRCIDL-SCKPBRG16-WUEABDEN01-0 0-00SPENRX9SRENCRENADDENFERROERRRX9D0000 000xBRG7BRG6BRG5BRG4BRG3BRG2BRG1BRG00000 000xBRG15BRG14BRG13BRG12BRG11BRG10BRG9BRG80000 000xCSRCTX9TXENSYNCSENDBBRGHTRMTTX9D0000 001

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for the Baud Rate Generator.

TABLE 17-3: CLKOUT AND I/O TIMING PARAMETERS

Standar Operatin	d Operating g Temperatu	Conditions (unless otherwise stated) re -40°C \leq TA \leq +125°C)				
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS11	TosH2cкL	Fosc↑ to CLKOUT↓ ⁽¹⁾	—	_	70	ns	VDD = 5.0V
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—		72	ns	VDD = 5.0V
OS13	TCKL2IOV	CLKOUT↓ to port out valid ⁽¹⁾	—	—	20	ns	
OS14	ТюV2скН	Port input valid before CLKOUT ⁽¹⁾	Tosc + 200 ns	—	_	ns	
OS15	TosH2IoV	Fosc↑ (Q1 cycle) to port out valid	—	50	70*	ns	VDD = 5.0V
OS16	TosH2IOI	Fosc↑ (Q2 cycle) to port input invalid (I/O in hold time)	50	—	-	ns	VDD = 5.0V
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20			ns	
OS18	TIOR	Port output rise time ⁽²⁾		15 40	72 32	ns	VDD = 2.0V VDD = 5.0V
OS19	TIOF	Port output fall time ⁽²⁾	_	28 15	55 30	ns	VDD = 2.0V VDD = 5.0V
OS20*	TINP	INT pin input high or low time	25	—	—	ns	
OS21*	Trap	PORTA interrupt-on-change new input level time	Тсү	—		ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

2: Includes OSC2 in CLKOUT mode.

FIGURE 17-15: SPI SLAVE MODE TIMING (CKE = 1)

TABLE 17-15: A/D CONVERTER (ADC) CHARACTERISTICS:

Standa Operatii	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$											
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions					
AD01	Nr	Resolution		—	10 bits	bit						
AD02	EIL	Integral Error	_	—	±1	LSb	VREF = 5.12V					
AD03	Edl	Differential Error		—	±1	LSb	No missing codes to 10 bits VREF = 5.12V					
AD04	EOFF	Offset Error		—	±1	LSb	VREF = 5.12V					
AD04A			—	+1.5	+3.0	LSb	(PIC16F677 only)					
AD07	Egn	Gain Error		—	±1	LSb	VREF = 5.12V					
AD06 AD06A	Vref	Reference Voltage ⁽³⁾	2.2 2.5	—	 Vdd	V	Absolute minimum to ensure 1 LSb accuracy					
AD07	VAIN	Full-Scale Range	Vss	—	Vref	V						
AD08	Zain	Recommended Impedance of Analog Voltage Source	-	—	10	kΩ						
AD09*	IREF	VREF Input Current ⁽³⁾	10	—	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN.					
			_		50	μA	During A/D conversion cycle					

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

- **2:** The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.
- **3:** ADC VREF is from external VREF or VDD pin, whichever is selected as reference input.
- 4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.

A/D CONVERSION REQUIREMENTS (SLEEP MODE)

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
130*	Tad	A/D Internal RC Oscillator Period	3.0* 2.0*	6.0 4.0	9.0* 6.0*	μs μs	ADCS<1:0> = 11 (RC mode) At VDD = 2.5V At VDD = 5.0V			
131	Тсм∨	Conversion Time (not including Acquisition Time) ⁽¹⁾	_	11	_	TAD				
132*	TACQ	Acquisition Time	(2)	11.5	_	μs				
			5*	_		μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 4.1 mV @ 4.096V) from the last sampled voltage (as stored on CHOLD).			
134	TGO	Q4 to A/D Clock Start		Tosc/2 + Tcy		_	If the A/D clock source is selected as RC, a time of TcY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Table 9-1 for minimum conditions.

TARIE 1.

Param No.	Device Characteristics	Min.	Тур.	Max.	Units	Condition	
						Vdd	Note
D001	Vdd	2.1	_	5.5	V	—	Fosc \leq 8 MHz: HFINTOSC, EC
		2.1	—	5.5	V	—	Fosc ≤ 4 MHz
D010	Supply Current (IDD)	_	_	47	μΑ	2.1	Fosc = 32 kHz LP Oscillator
		_	_	69		3.0	
		_	_	108		5.0	
D011		_	_	357	μΑ	2.1	Fosc = 1 MHz XT Oscillator
		_		533		3.0	
		_	_	729		5.0	
D012		_	_	535	μΑ	2.1	Fosc = 4 MHz XT Oscillator
		_		875		3.0	
		_	_	1.32	mA	5.0	
D013		_	_	336		2.1	Fosc = 1 MHz EC Oscillator
		_		477	μΑ	3.0	
		_	_	777		5.0	
D014		_		505	μА	2.1	Fosc = 4 MHz
		_		724		3.0	
				1.30	mA	5.0	
D015		_		51		2.1	Fosc = 31 kHz
		_	_	92	μΛ	3.0	
				117	mA	5.0	
D016		_	_	665		2.1	
		_	_	970	μΛ	3.0	HFINTOSC
				1.56	mA	5.0	
D017		_	_	936	μA	2.1	Fosc = 8 MHz HFINTOSC
		_		1.34	m۸	3.0	
				2.27		5.0	
D018		_	_	- 605	μΑ	2.1	Fosc = 4 MHz
		_	_	903		3.0	
				1.43	mA	5.0	
D019		—	—	6.61	mA	4.5	Fosc = 20 MHz HS Oscillator
		_	—	7.81		5.0	

TABLE 17-19: DC CHARACTERISTICS FOR IDD SPECIFICATIONS FOR PIC16F685/687/689/690-H (High Temp.)

FIGURE 18-48: TYPICAL VP6 REFERENCE VOLTAGE DISTRIBUTION (3V, 125°C)