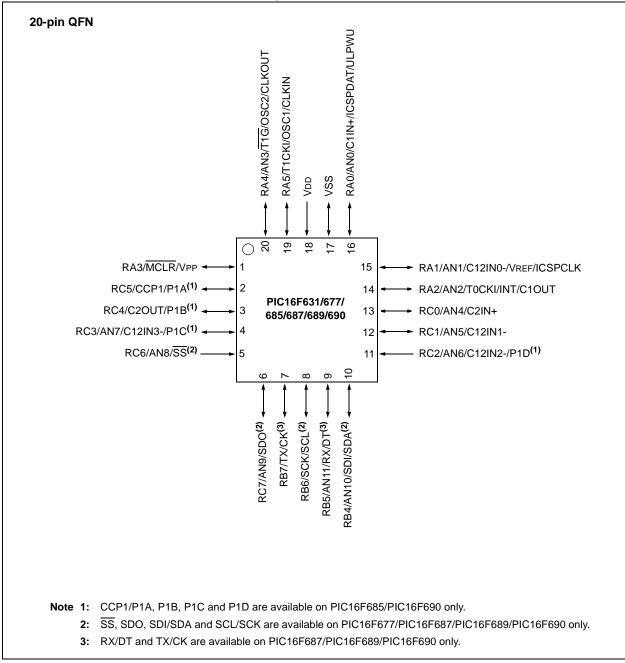


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f689-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F631/677/685/687/689/690 Pin Diagram (QFN)

GURE 2-7:	File	F687/PIC16F68	File				File
					File		File
Indirect addr. (1)	Address	ladias et e dela (1)	Address	ladias et e dala (1)	Address	Indinent ender (1)	Addres
		Indirect addr. ⁽¹⁾		Indirect addr. ⁽¹⁾		Indirect addr. (1)	
TMR0 PCL	01h	OPTION_REG PCL	81h 82b	TMR0 PCL	101h 102h	OPTION_REG PCL	181h
STATUS	02h 03h	STATUS	82h 83h	STATUS	102h 103h	STATUS	182h 183h
FSR	-	FSR		FSR		FSR	
	04h		84h	PORTA	104h 105h		184h
PORTA PORTB	05h 06h	TRISA TRISB	85h 86h	PORTA	105h 106h	TRISA TRISB	185h 186h
PORTE	00n 07h	TRISE	87h	PORTE	106h 107h	TRISE	187h
FURIC	0711 08h	TRIBC	88h	FORTC	107h 108h	TRISC	188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	1031 10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10An 10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDAT	10Dh	EECON1	18Ch
	-					EECON2 ⁽¹⁾	
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECONZY	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH ⁽³⁾	10Eh		18Eh
TMR1H	0Fh	OSCCON	8Fh	EEADRH ⁽³⁾	10Fh		18Fh
T1CON	10h	OSCTUNE	90h		110h		190h
	11h		91h		111h		191h
	12h	(2)	92h		112h		192h
SSPBUF	13h	SSPADD ⁽²⁾	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
	15h	WPUA	95h	WPUB	115h		195h
	16h	IOCA	96h	IOCB	116h		196h
	17h	WDTCON	97h		117h		197h
RCSTA	18h	TXSTA	98h	VRCON	118h		198h
TXREG	19h	SPBRG	99h	CM1CON0	119h		199h
RCREG	1Ah	SPBRGH	9Ah	CM2CON0	11Ah		19Ah
	1Bh	BAUDCTL	9Bh	CM2CON1	11Bh		19Bh
	1Ch		9Ch		11Ch		19Ch
	1Dh		9Dh		11Dh	00001	19Dh
ADRESH	1Eh	ADRESL	9Eh	ANSEL	11Eh	SRCON	19Eh
ADCON0	1Fh	ADCON1	9Fh	ANSELH	11Fh		19Fh
General Purpose Register	20h	General Purpose Register 32 Bytes 48 Bytes	A0h BFh C0h	General Purpose Register 80 Bytes (PIC16F689	120h		1A0h
96 Bytes		(PIC16F689 only)	EFh	only)			
	7Fh	accesses 70h-7Fh	F0h FFh	accesses 70h-7Fh	170h 17Fh	accesses 70h-7Fh	1F0h 1FFh
Bank 0	1	Bank 1	I	Bank 2	I	Bank 3	
lote 1: Not a p 2: Addres See Re	ohysical reg s 93h also	•	P Mask (SS	as '0'. SPMSK) register u	nder certai	n conditions.	

2.2.2.4 PIE1 Register

The PIE1 register contains the interrupt enable bits, as shown in Register 2-4.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 2-4: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	ADIE ⁽⁵⁾	RCIE ⁽³⁾	TXIE ⁽³⁾	SSPIE ⁽⁴⁾	CCP1IE ⁽²⁾	TMR2IE ⁽¹⁾	TMR1IE
bit 7							bit 0

Legend:								
R = Read	able bit	W = Writable bit	U = Unimplemented bit,	read as '0'				
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
L : L 7	11							
bit 7	-	mented: Read as '0'	. –					
bit 6		D Converter (ADC) Interrupt	t Enable bit					
		bles the ADC interrupt bles the ADC interrupt						
bit 5		USART Receive Interrupt Er	able hit(3)					
Dit J								
	 1 = Enables the EUSART receive interrupt 0 = Disables the EUSART receive interrupt 							
bit 4		JSART Transmit Interrupt Er						
		1 = Enables the EUSART transmit interrupt						
	0 = Disa	bles the EUSART transmit ir	nterrupt					
bit 3	SSPIE: S	Synchronous Serial Port (SS	P) Interrupt Enable bit ⁽⁴⁾					
		bles the SSP interrupt						
		bles the SSP interrupt						
bit 2		CCP1 Interrupt Enable bit ⁽²)					
		bles the CCP1 interrupt bles the CCP1 interrupt						
bit 1		: Timer2 to PR2 Match Interr	upt Enable bit ⁽¹⁾					
		bles the Timer2 to PR2 match	•					
		0 = Disables the Timer2 to PR2 match interrupt						
bit 0	TMR1IE:	: Timer1 Overflow Interrupt E	Enable bit					
		oles the Timer1 overflow inte	•					
	0 = Disa	bles the Timer1 overflow inte	errupt					
Note 1:		IC16F690 only.						
2:		IC16F689/PIC16F690 only.						
3:	PIC16F687/P	IC16F689/PIC16F690 only.						

4: PIC16F677/PIC16F687/PIC16F689/PIC16F690 only.

5: PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.

3.6 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS) bit of the OSCCON register.

3.6.1 SYSTEM CLOCK SELECT (SCS) BIT

The System Clock Select (SCS) bit of the OSCCON register selects the system clock source that is used for the CPU and peripherals.

- When the SCS bit of the OSCCON register = 0, the system clock source is determined by configuration of the FOSC<2:0> bits in the Configuration Word register (CONFIG).
- When the SCS bit of the OSCCON register = 1, the system clock source is chosen by the internal oscillator frequency selected by the IRCF<2:0> bits of the OSCCON register. After a Reset, the SCS bit of the OSCCON register is always cleared.
- Note: Any automatic clock switch, which may occur from Two-Speed Start-up or Fail-Safe Clock Monitor, does not update the SCS bit of the OSCCON register. The user can monitor the OSTS bit of the OSCCON register to determine the current system clock source.

3.6.2 OSCILLATOR START-UP TIME-OUT STATUS (OSTS) BIT

The Oscillator Start-up Time-out Status (OSTS) bit of the OSCCON register indicates whether the system clock is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Word register (CONFIG), or from the internal clock source. In particular, OSTS indicates that the Oscillator Start-up Timer (OST) has timed out for LP, XT or HS modes.

3.7 Two-Speed Clock Start-up Mode

Two-Speed Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device.

This mode allows the application to wake-up from Sleep, perform a few instructions using the INTOSC as the clock source and go back to Sleep without waiting for the primary oscillator to become stable.

Note: Executing a SLEEP instruction will abort the oscillator start-up time and will cause the OSTS bit of the OSCCON register to remain clear. When the Oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) is enabled (see **Section 3.4.1 "Oscillator Start-up Timer (OST)"**). The OST will suspend program execution until 1024 oscillations are counted. Two-Speed Start-up mode minimizes the delay in code execution by operating from the internal oscillator as the OST is counting. When the OST count reaches 1024 and the OSTS bit of the OSCCON register is set, program execution switches to the external oscillator.

3.7.1 TWO-SPEED START-UP MODE CONFIGURATION

Two-Speed Start-up mode is configured by the following settings:

- IESO (of the Configuration Word register) = 1; Internal/External Switchover bit (Two-Speed Startup mode enabled).
- SCS (of the OSCCON register) = 0.
- FOSC<2:0> bits in the Configuration Word register (CONFIG) configured for LP, XT or HS mode.

Two-Speed Start-up mode is entered after:

- Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or
- Wake-up from Sleep.

If the external clock oscillator is configured to be anything other than LP, XT or HS mode, then Twospeed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep.

3.7.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- Instructions begin execution by the internal oscillator at the frequency set in the IRCF<2:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 clock cycles.
- 4. OST timed out, wait for falling edge of the internal oscillator.
- 5. OSTS is set.
- 6. System clock held low until the next falling edge of new clock (LP, XT or HS mode).
- 7. System clock is switched to external clock source.

4.0 I/O PORTS

There are as many as eighteen general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

4.1 **PORTA and the TRISA Registers**

PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 4-2). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). The exception is RA3, which is input only and its TRIS bit will always read as '1'. Example 4-1 shows how to initialize PORTA.

Reading the PORTA register (Register 4-1) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write

REGISTER 4-1: PORTA: PORTA REGISTER

operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch. RA3 reads '0' when MCLRE = 1.

The TRISA register controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

The ANSEL register must be initialized to Note: configure an analog channel as a digital input. Pins configured as analog inputs will read '0'.

EXAMPLE 4-1: **INITIALIZING PORTA**

BCF	STATUS, RP0; Bank 0
BCF	STATUS, RP1;
CLRF	PORTA ;Init PORTA
BSF	STATUS, RP1; Bank 2
CLRF	ANSEL ;digital I/O
BSF	STATUS, RP0; Bank 1
BCF	STATUS, RP1;
MOVLW	0Ch ;Set RA<3:2> as inputs
MOVWF	TRISA ;and set RA<5:4,1:0>
	;as outputs
BCF	STATUS, RP0; Bank 0

U-0	U-0	R/W-x	R/W-x	R-x	R/W-x	R/W-x	R/W-x
—	—	RA5	RA4	RA3	RA2	RA1	RA0
bit 7							bit 0
Legend:							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	'0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5-0	RA<5:0> : PORTA I/O Pin bit 1 = Port pin is > VIH
	0 = Port pin is < VIL

REGISTER 4-2: TRISA: PORTA TRI-STATE REGISTER

U-0	U-0	R/W-1	R/W-1	R-1	R/W-1	R/W-1	R/W-1
—	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

TRISA<5:0>: PORTA Tri-State Control bit

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

Note 1: TRISA<3> always reads '1'.

bit 5-0

TRISA<5:4> always reads '1' in XT, HS and LP Oscillator modes. 2:

5.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A single software programmable prescaler is available for use with either Timer0 or the Watchdog Timer (WDT), but not both simultaneously. The prescaler assignment is controlled by the PSA bit of the OPTION register. To assign the prescaler to Timer0, the PSA bit must be cleared to a '0'.

There are eight prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be assigned to the WDT module.

The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, all instructions writing to the TMR0 register will clear the prescaler.

When the prescaler is assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT.

5.1.3.1 Switching Prescaler Between Timer0 and WDT Modules

As a result of having the prescaler assigned to either Timer0 or the WDT, it is possible to generate an unintended device Reset when switching prescaler values. When changing the prescaler assignment from Timer0 to the WDT module, the instruction sequence shown in Example 5-1, must be executed.

EXAMPLE 5-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)

BANKSEL	TMR0	;
CLRWDT		;Clear WDT
CLRF	TMR0	;Clear TMR0 and
		;prescaler
BANKSEL	OPTION_REG	;
BSF	OPTION_REG,	PSA;Select WDT
CLRWDT		;
		i
MOVLW	b'11111000'	; ;Mask prescaler
MOVLW ANDWF	b'11111000' OPTION_REG,	-
	OPTION_REG,	-
ANDWF	OPTION_REG,	W; bits ;Set WDT prescaler

When changing the prescaler assignment from the WDT to the Timer0 module, the following instruction sequence must be executed (see Example 5-2).

EXAMPLE 5-2: CHANGING PRESCALER (WDT \rightarrow TIMER0)

CLRWDT	;Clear WDT and
	;prescaler
BANKSEL	OPTION_REG ;
MOVLW	b'11110000';Mask TMR0 select and
ANDWF	OPTION_REG,W; prescaler bits
IORLW	b'00000011';Set prescale to 1:16
MOVWF	OPTION_REG ;

5.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The T0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The T0IF bit must be cleared in software. The Timer0 interrupt enable is the T0IE bit of the INTCON register.

Note:	The Timer0 interrupt cannot wake the
	processor from Sleep since the timer is
	frozen during Sleep.

5.1.5 USING TIMER0 WITH AN EXTERNAL CLOCK

When Timer0 is in Counter mode, the synchronization of the T0CKI input and the Timer0 register is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, the high and low periods of the external clock source must meet the timing requirements as shown in Section 17.0 "Electrical Specifications".

8.10 Comparator Voltage Reference

The comparator voltage reference module provides an internally generated voltage reference for the comparators. The following features are available:

- Independent from Comparator operation
- Two 16-level voltage ranges
- · Output clamped to Vss
- Ratiometric with VDD
- Fixed Reference (0.6)

The VRCON register (Register 8-5) controls the Voltage Reference module shown in Figure 8-8.

8.10.1 INDEPENDENT OPERATION

The comparator voltage reference is independent of the comparator configuration. Setting the VREN bit of the VRCON register will enable the voltage reference.

8.10.2 OUTPUT VOLTAGE SELECTION

The CVREF voltage reference has two ranges with 16 voltage levels in each range. Range selection is controlled by the VRR bit of the VRCON register. The 16 levels are set with the VR<3:0> bits of the VRCON register.

The CVREF output voltage is determined by the following equations:

EQUATION 8-1: CVREF OUTPUT VOLTAGE

VRR = 1 (low range): $CVREF = (VR < 3:0 > /24) \times VDD$ VRR = 0 (high range): $CVREF = (VDD/4) + (VR < 3:0 > \times VDD/32)$

The full range of Vss to VDD cannot be realized due to the construction of the module. See Figure 8-8.

8.10.3 OUTPUT CLAMPED TO Vss

The CVREF output voltage can be set to Vss with no power consumption by clearing the VP6EN bit of the VRCON register.

This allows the comparator to detect a zero-crossing while not consuming additional CVREF module current.

8.10.4 OUTPUT RATIOMETRIC TO VDD

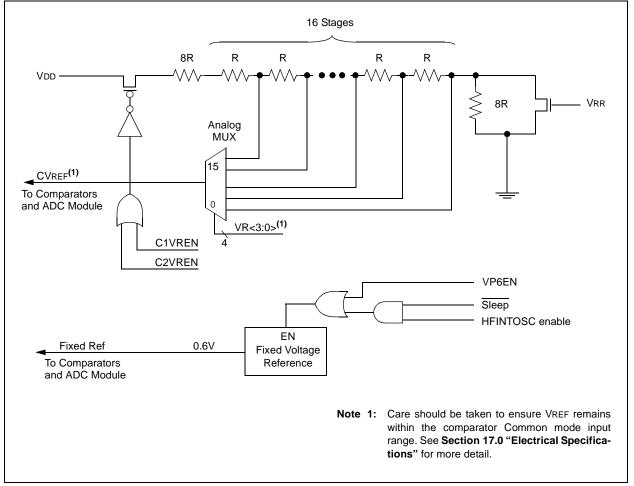
The comparator voltage reference is VDD derived and therefore, the CVREF output changes with fluctuations in VDD. The tested absolute accuracy of the Comparator Voltage Reference can be found in **Section 17.0 "Electrical Specifications"**.

8.10.5 FIXED VOLTAGE REFERENCE

The Fixed Voltage Reference is independent of VDD, with a nominal output voltage of 0.6V. This reference can be enabled by setting the VP6EN bit of the VRCON register to '1'. This reference is always enabled when the HFINTOSC oscillator is active.

8.10.6 FIXED VOLTAGE REFERENCE STABILIZATION PERIOD

When the Fixed Voltage Reference module is enabled, it will require some time for the reference and its amplifier circuits to stabilize. The user program must include a small delay routine to allow the module to settle. See the electrical specifications section for the minimum delay requirement.


8.10.7 VOLTAGE REFERENCE SELECTION

Multiplexers on the output of the Voltage Reference module enable selection of either the CVREF or Fixed Voltage Reference for use by the comparators.

Setting the C1VREN bit of the VRCON register enables current to flow in the CVREF voltage divider and selects the CVREF voltage for use by C1. Clearing the C1VREN bit selects the fixed voltage for use by C1.

Setting the C2VREN bit of the VRCON register enables current to flow in the CVREF voltage divider and selects the CVREF voltage for use by C2. Clearing the C2VREN bit selects the fixed voltage for use by C2.

When both the C1VREN and C2VREN bits are cleared, current flow in the CVREF voltage divider is disabled minimizing the power drain of the voltage reference peripheral.

FIGURE 8-8: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
_	ADCS2	ADCS1	ADCS0	—		—	_			
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown			
bit 7 bit 6-4	it 7 Unimplemented: Read as '0'									
bit 3-0	Unimplemen	ted: Read as '	0'							

REGISTER 9-2: ADCON1: A/D CONTROL REGISTER 1

10.1.2 READING THE DATA EEPROM MEMORY

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit of the EECON1 register, and then set control bit RD. The data is available at the very next cycle, in the EEDAT register; therefore, it can be read in the next instruction. EEDAT will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 10-1: DATA EEPROM READ

BANKSEL	EEADR ;	
MOVF	DATA_EE_ADD	R, W;
MOVWF	EEADR	;Data Memory
		;Address to read
BANKSEL	EECON1	;
BCF	EECON1, EEP	GD;Point to DATA memory
BSF	EECON1, RD	;EE Read
BANKSEL	EEDAT	;
MOVF	EEDAT, W	;W = EEDAT
BANKSEL	PORTA	;Bank 0

10.1.3 WRITING TO THE DATA EEPROM MEMORY

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDAT register. Then the user must follow a specific sequence to initiate the write for each byte.

The write will not initiate if the specific sequence is not followed exactly (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. Interrupts should be disabled during this code segment.

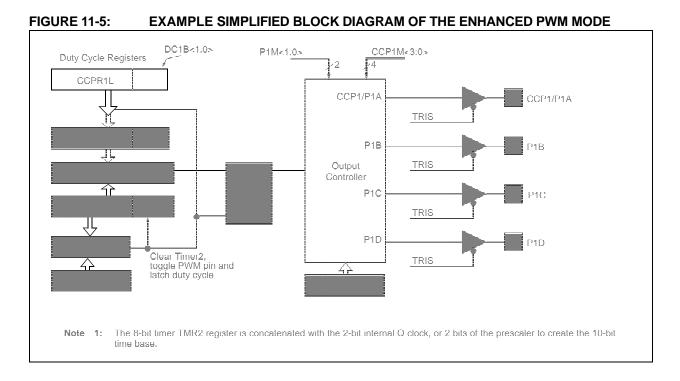
Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

BANKSELEEADR MOVFDATA_EE_ADDR, W; MOVWFEEADR ;Data Memory Address to write MOVFDATA_EE_DATA, W; MOVWFEEDAT ;Data Memory Value to write BANKSELEECON1 ; BCF EECON1, EEPGD; Point to DATA memory BSF EECON1, WREN; Enable writes BCF INTCON, GIE ; Disable INTs. BTFSCINTCON, GIE;SEE AN576 GOTO\$-2 MOVLW55h ; Required Sequence MOVWFEECON2 ;Write 55h MOVLWAAh ; MOVWFEECON2 ;Write AAh BSF EECON1, WR ;Set WR bit to begin write BSF INTCON, GIE ; Enable INTs. SLEEP ;Wait for interrupt to signal write complete (optional) BCF EECON1, WREN; Disable writes BANKSEL0x00 ;Bank 0

EXAMPLE 10-2: DATA EEPROM WRITE


TABLE 10-1: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
EECON1	EEPGD ⁽¹⁾	—	_		WRERR	WREN	WR	RD	x x000	0 q000
EECON2	EEPROM C	ontrol Regis	ster 2 (not a p	hysical regis	ter)					
EEADR	EEADR7 ⁽²⁾	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0	0000 0000	0000 0000
EEADRH ⁽¹⁾	_	-	_	_	EEADRH3	EEADRH2	EEADRH1	EEADRH0	0000	0000
EEDAT	EEDAT7	EEDAT6	EEDAT5	EEDAT4	EEDAT3	EEDAT2	EEDAT1	EEDAT0	0000 0000	0000 0000
EEDATH ⁽¹⁾	_	_	EEDATH5	EEDATH4	EEDATH3	EEDATH2	EEDATH1	EEDATH0	00 0000	00 0000
INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF	0000 0000	0000 0000
PIE2	OSFIE	C2IE	C1IE	EEIE	_	_	_	_	0000	0000
PIR2	OSFIF	C2IF	C1IF	EEIF	-	_	_	_	0000	0000

 ${\bf x}$ = unknown, ${\bf u}$ = unchanged, – = unimplemented read as '0', ${\bf q}$ = value depends upon condition. Shaded cells are not used by data EEPROM module. PIC16F685/PIC16F689/PIC16F690 only. Legend:

Note 1:

PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only. 2:

Note 1: The TRIS register value for each PWM output must be configured appropriately.

- 2: Clearing the CCP1CON register will relinquish ECCP control of all PWM output pins.
- **3:** Any pin not used by an Enhanced PWM mode is available for alternate pin functions

TABLE 11-4: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES

ECCP Mode	P1M<1:0>	CCP1/P1A	P1B	P1C	P1D
Single	00	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾
Half-Bridge	10	Yes	Yes	No	No
Full-Bridge, Forward	01	Yes	Yes	Yes	Yes
Full-Bridge, Reverse	11	Yes	Yes	Yes	Yes

Note 1: Pulse Steering enables outputs in Single mode.

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1												
BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz			Fosc = 8.000 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215	300.0	0.00	6666		
1200	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303	1200	-0.02	1666		
2400	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151	2401	0.04	832		
9600	9597	-0.03	520	9600	0.00	479	9600	0.00	287	9615	0.16	207		
10417	10417	0.00	479	10425	0.08	441	10433	0.16	264	10417	0	191		
19.2k	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143	19.23k	0.16	103		
57.6k	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47	57.14k	-0.79	34		
115.2k	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23	117.6k	2.12	16		

			BRG16 = 1									
BAUD	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.01	3332	300.0	0.00	3071	299.9	-0.02	1666	300.1	0.04	832
1200	1200	0.04	832	1200	0.00	767	1199	-0.08	416	1202	0.16	207
2400	2398	0.08	416	2400	0.00	383	2404	0.16	207	2404	0.16	103
9600	9615	0.16	103	9600	0.00	95	9615	0.16	51	9615	0.16	25
10417	10417	0.00	95	10473	0.53	87	10417	0.00	47	10417	0.00	23
19.2k	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	25	19.23k	0.16	12
57.6k	58.82k	2.12	16	57.60k	0.00	15	55.56k	-3.55	8	—	—	_
115.2k	111.1k	-3.55	8	115.2k	0.00	7	_	_	—	_	—	—

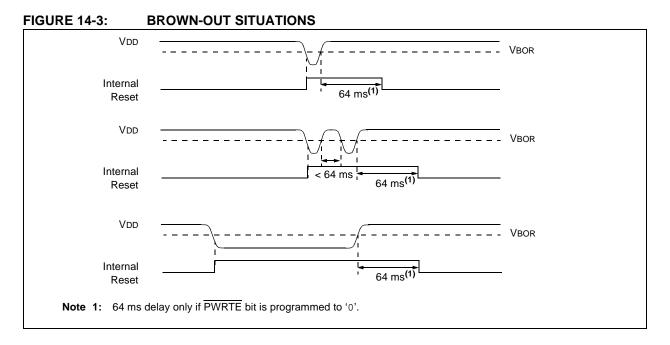
TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

REGISTER 13-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER⁽¹⁾

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/A	Р	S	R/W	UA	BF
bit 7							bit (
Legend:						(
R = Readable b		W = Writable bit			iented bit, read a		
-n = Value at PC	DR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	wn
bit 7	SPI Master mo 1 = Input data = 0 = Input data = SPI Slave mod SMP must be o I^2C^{TM} mode:	sampled at end of sampled at middle	data output ti of data outpu is used in Sla	ut time (Microwire	e)		
bit 6	SPI mode. CKI 1 = Data transi 0 = Data transi SPI mode. CKI 1 = Data transi 0 = Data transi l^2C mode:	mitted on rising ed mitted on falling ed	dge of SCK dge of SCK (N lge of SCK				
bit 5	1 = Indicates the	DRESS bit (I ² C m nat the last byte re nat the last byte re	eceived or trar				
bit 4	SSPEN is clea 1 = Indicates th	red when the SSP	been detected			tected last.	
bit 3	SSPEN is clea 1 = Indicates th	red when the SSP	been detected			ected last.	
bit 2	This bit holds th	RITE bit Information ne R/W bit informa rt bit, Stop bit or A	tion following		match. This bit is	only valid from the	address match
bit 1	1 = Indicates th	ldress bit (10-bit l ² nat the user needs bes not need to be	s to update the		SSPADD registe	r	
bit 0	1 = Receive co 0 = Receive not $\frac{\text{Transmit (I}^2\text{C r})}{1 = \text{Transmit in}}$	and I ² C modes): omplete, SSPBUF ot complete, SSPE	BUF is empty JF is full				
		689/PIC16F690 or	•				

2: Does not update if receive was ignored.

14.2.4 BROWN-OUT RESET (BOR)


The BOREN0 and BOREN1 bits in the Configuration Word register select one of four BOR modes. Two modes have been added to allow software or hardware control of the BOR enable. When BOREN<1:0> = 01, the SBOREN bit (PCON<4>) enables/disables the BOR allowing it to be controlled in software. By selecting BOREN<1:0>, the BOR is automatically disabled in Sleep to conserve power and enabled on wake-up. In this mode, the SBOREN bit is disabled. See Register 14-2 for the Configuration Word definition.

If VDD falls below VBOR for greater than parameter (TBOR) (see **Section 17.0 "Electrical Specifications"**), the Brown-out situation will reset the device. This will occur regardless of VDD slew rate. A Reset is not insured to occur if VDD falls below VBOR for less than parameter (TBOR).

On any Reset (Power-on, Brown-out Reset, Watchdog Timer, etc.), the chip will remain in Reset until VDD rises above VBOR (see Figure 14-3). The Power-up Timer will now be invoked, if enabled and will keep the chip in Reset an additional 64 ms.

Note: The Power-up Timer is enabled by the PWRTE bit in the Configuration Word register.

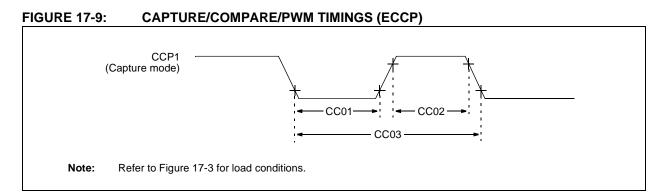
If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOR, the Power-up Timer will execute a 64 ms Reset.

RETFIE	Return from Interrupt	RETLW	Return with literal in W
Syntax:	[label] RETFIE	Syntax:	[<i>label</i>] RETLW k
Operands:	None	Operands:	$0 \le k \le 255$
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$	Operation:	$k \rightarrow (W);$ TOS \rightarrow PC
Status Affected:	None	Status Affected:	None
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE	Description:	The W register is loaded with the 8-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.
	(INTCON<7>). This is a 2-cycle instruction.	Words:	1
Words:	instruction. 1	Cycles:	2
Cycles: Example:	2 RETFIE	Example:	CALL TABLE;W contains table ;offset value
	After Interrupt PC = TOS GIE = 1	TABLE	<pre>% now has ;table value * ADDWF PC;W = offset RETLW k1;Begin table</pre>

RETURN	Return from Subroutine					
Syntax:	[label] RETURN					
Operands:	None					
Operation:	$TOS \rightarrow PC$					
Status Affected:	None					
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruc- tion.					

RETLW k2 ;

Before Instruction


After Instruction

RETLW kn ; End of table

W = 0x07

W = value of k8

•

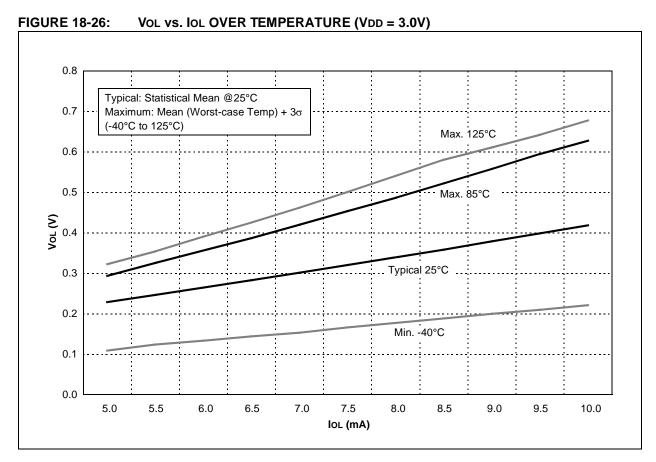
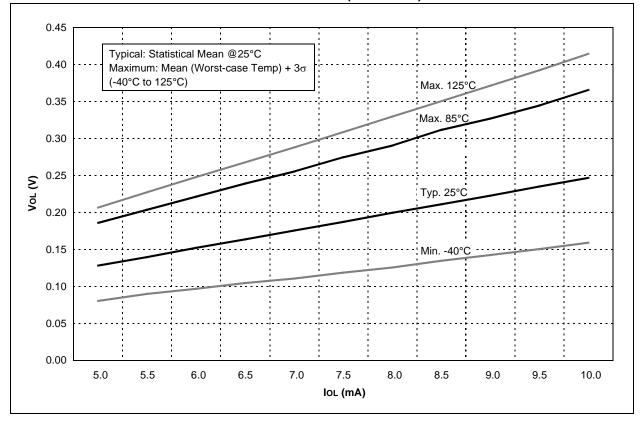
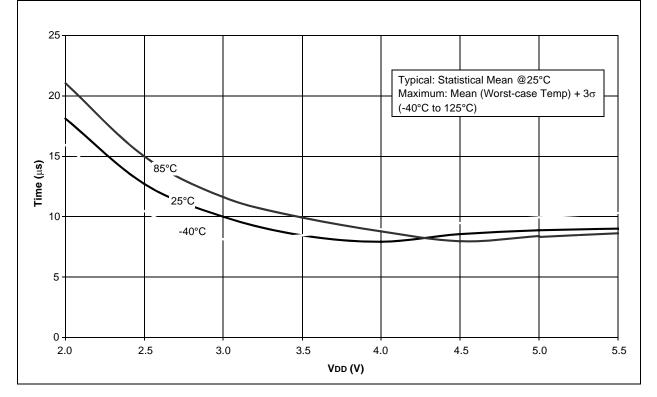


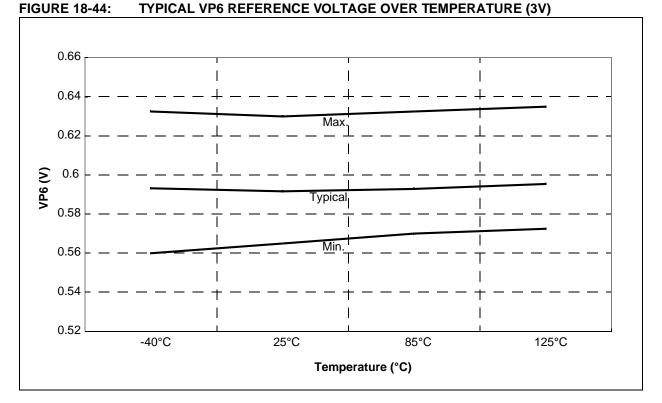
TABLE 17-6: CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP)


	Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Sym.	Character	istic	Min.	Тур†	Max.	Units	Conditions			
CC01*	TccL	CCP1 Input Low Time	No Prescaler	0.5Tcy + 20	—	—	ns				
			With Prescaler	20	—	—	ns				
CC02*	ТссН	CCP1 Input High Time	No Prescaler	0.5Tcy + 20	_	—	ns				
			With Prescaler	20	_	—	ns				
CC03*	TccP	CCP1 Input Period		<u>3Tcy + 40</u> N	—	—	ns	N = prescale value (1, 4 or 16)			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.




© 2005-2015 Microchip Technology Inc.

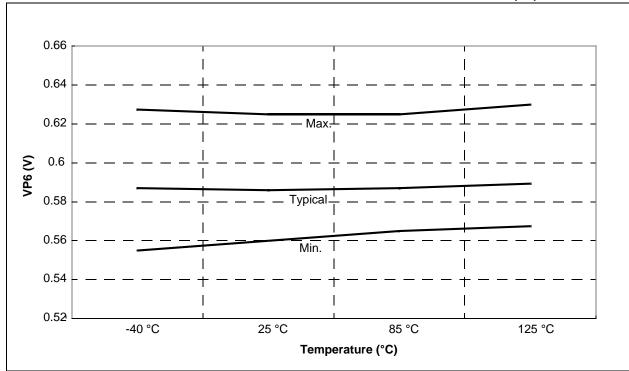

16 Typical: Statistical Mean @25°C 14 Maximum: Mean (Worst-case Temp) + 3o (-40°C to 125°C) 85°C 12 25°C 10-Time (µs) -40°C 8 6 4 2 0 2.5 3.0 3.5 4.5 5.0 5.5 2.0 4.0 VDD (V)

FIGURE 18-36: TYPICAL HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE

FIGURE 18-45: TYPICAL VP6 REFERENCE VOLTAGE OVER TEMPERATURE (5V)