E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f689-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PINOUT DESCRIPTION – PIC16F631

Name	Function	Input Type	Output Type	Description
RA0/C1IN+/ICSPDAT/ULPWU	RA0	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	C1IN+	AN		Comparator C1 non-inverting input.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
	ULPWU	AN	_	Ultra Low-Power Wake-up input.
RA1/C12IN0-/ICSPCLK	RA1	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	C12IN0-	AN	_	Comparator C1 or C2 inverting input.
	ICSPCLK	ST	_	ICSP™ clock.
RA2/T0CKI/INT/C1OUT	RA2	ST	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	T0CKI	ST	_	Timer0 clock input.
	INT	ST	_	External interrupt pin.
	C1OUT	_	CMOS	Comparator C1 output.
RA3/MCLR/Vpp	RA3	TTL	-	General purpose input. Individually controlled interrupt-on- change.
	MCLR	ST	_	Master Clear with internal pull-up.
	Vpp	ΗV	_	Programming voltage.
RA4/T1G/OSC2/CLKOUT	RA4	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	T1G	ST	_	Timer1 gate input.
	OSC2		XTAL	Crystal/Resonator.
	CLKOUT	_	CMOS	Fosc/4 output.
RA5/T1CKI/OSC1/CLKIN	RA5	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	T1CKI	ST	—	Timer1 clock input.
	OSC1	XTAL	_	Crystal/Resonator.
	CLKIN	ST	—	External clock input/RC oscillator connection.
RB4	RB4	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
RB5	RB5	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
RB6	RB6	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
RB7	RB7	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
RC0/C2IN+	RC0	ST	CMOS	General purpose I/O.
	C2IN+	AN	—	Comparator C2 non-inverting input.
RC1/C12IN1-	RC1	ST	CMOS	General purpose I/O.
	C12IN1-	AN	—	Comparator C1 or C2 inverting input.
RC2/C12IN2-	RC2	ST	CMOS	General purpose I/O.
	C12IN2-	AN	—	Comparator C1 or C2 inverting input.
RC3/C12IN3-	RC3	ST	CMOS	General purpose I/O.
	C12IN3-	AN	_	Comparator C1 or C2 inverting input.
RC4/C2OUT	RC4	ST	CMOS	General purpose I/O.
	C2OUT	_	CMOS	Comparator C2 output.
RC5	RC5	ST	CMOS	General purpose I/O.
Legend: AN = Analog input	or output	CMOS	=CMOS	compatible input or output
IIL = TTL compat HV = High Voltage	ble input	ST= XTAL=	Schmitt Crvstal	I rigger input with CMOS levels

2.2 Data Memory Organization

The data memory (see Figures 2-6 through 2-8) is partitioned into four banks which contain the General Purpose Registers (GPR) and the Special Function Registers (SFR). The Special Function Registers are located in the first 32 locations of each bank. The General Purpose Registers, implemented as static RAM, are located in the last 96 locations of each Bank. Register locations F0h-FFh in Bank 1, 170h-17Fh in Bank 2 and 1F0h-1FFh in Bank 3 point to addresses 70h-7Fh in Bank 0. The actual number of General Purpose Resisters (GPR) in each Bank depends on the device. Details are shown in Figures 2-4 through 2-8. All other RAM is unimplemented and returns '0' when read. RP<1:0> of the STATUS register are the bank select bits:

<u>RP1</u> <u>RP0</u>

0	0	\rightarrow	Bank 0 is selected
0	1	\rightarrow	Bank 1 is selected
1	0	\rightarrow	Bank 2 is selected

1 1 \rightarrow Bank 3 is selected

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 128 x 8 in the PIC16F687 and 256 x 8 in the PIC16F685/PIC16F689/ PIC16F690. Each register is accessed, either directly or indirectly, through the File Select Register (FSR) (see **Section 2.4 "Indirect Addressing, INDF and FSR Registers"**).

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Tables 2-1 through 2-4). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Registers related to the operation of peripheral features are described in the section of that peripheral feature.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank	1										
80h	INDF	Addressing	this location	n uses conte	ents of FSR	to address c	ata memory	(not a physic	cal register)	xxxx xxxx	43,200
81h	OPTION_REG	RABPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	36,200
82h	PCL	Program C	ounter's (PC	C) Least Sig	nificant Byte)				0000 0000	43,200
83h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	35,200
84h	FSR	Indirect Dat	ta Memory A	Address Poi	nter					xxxx xxxx	43,200
85h	TRISA	-	- TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0						11 1111	57,200	
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	—	_	_	—	1111	68,201
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	74,200
88h	—	Unimpleme	nted		—	—					
89h	—	Unimpleme	nted							—	—
8Ah	PCLATH	—	—	—	Write Buffe	er for the upp	per 5 bits of t	he Program	Counter	0 0000	43,200
8Bh	INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF ⁽¹⁾	0000 000x	37,200
8Ch	PIE1	—	ADIE ⁽⁴⁾	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE ⁽⁵⁾	CCP1IE ⁽³⁾	TMR2IE ⁽³⁾	TMR1IE	-000 0000	38,201
8Dh	PIE2	OSFIE	C2IE	C1IE	EEIE	—			_	0000	39,201
8Eh	PCON	—	—	ULPWUE	SBOREN	—		POR	BOR	01qq	42,201
8Fh	OSCCON	_	IRCF2	IRCF1	IRCF0	OSTS	HTS	LTS	SCS	-110 q000	46,201
90h	OSCTUNE	—	—	—	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	50,201
91h	_	Unimpleme	nted							_	_
92h	PR2 ⁽³⁾	Timer2 Per	iod Register							1111 1111	89,201
93h	SSPADD ^(5,7)	Synchrono	us Serial Po	rt (l ² C mode	e) Address I	Register				0000 0000	184,201
93h	SSPMSK ^(5,7)	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	1111 1111	187,201
94h	SSPSTAT ⁽⁵⁾	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	176,201
95h	WPUA ⁽⁶⁾	_	_	WPUA5	WPUA4	_	WPUA2	WPUA1	WPUA0	11 -111	60,201
96h	IOCA	—	_	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0	00 0000	60,201
97h	WDTCON	_	—	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	0 1000	208,201
98h	TXSTA ⁽²⁾	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	157,201
99h	SPBRG ⁽²⁾	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	160,201
9Ah	SPBRGH(2)	BRG15	BRG14	BRG13	BRG12	BRG11	BRG10	BRG9	BRG8	0000 0000	160,201
9Bh	BAUDCTL ⁽²⁾	ABDOVF RCIDL - SCKP BRG16 - WUE ABDEN								01-0 0-00	159,201
9Ch	_	Unimplemented									—
9Dh	—	Unimplemented									—
9Eh	ADRESL ⁽⁴⁾	A/D Result	Register Lo	w Byte						xxxx xxxx	113,201
9Fh	ADCON1 ⁽⁴⁾	_	ADCS2	ADCS1	ADCS0	_	_	_	_	-000	112,201

TABLE 2-2: PIC16F631/677/685/687/689/690 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1

Legend: -= Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented Note 1: MCLR and WDT Reset do not affect the previous value data latch. The RABIF bit will be cleared upon Reset but will set again if the mismatch exists.

2: PIC16F687/PIC16F689/PIC16F690 only.

EIGENERS//PIC16F689/PIC1
 BIC16F685/PIC16F690 only.
 PIC16F677/PIC16F697 (PIC16F697 (PIC16F697

4: PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.

5: PIC16F677/PIC16F687/PIC16F689/PIC16F690 only.

6: RA3 pull-up is enabled when pin is configured as MCLR in Configuration Word.

7: Accessible only when SSPCON register bits SSPM<3:0> = 1001.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page	
Bank	2											
100h	INDF	Addressing	this location	uses conten	ts of FSR to	address data	memory (no	t a physical i	register)	xxxx xxxx	43,200	
101h	TMR0	Timer0 Mod	ule Register							xxxx xxxx	79,200	
102h	PCL	Program Co	unter's (PC)	Least Signif	icant Byte					0000 0000	43,200	
103h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	35,200	
104h	FSR	Indirect Data	Indirect Data Memory Address Pointer xxxx xxxx									
105h	PORTA ⁽⁴⁾	—	-	RA5	xx xxxx	57,200						
106h	PORTB ⁽⁴⁾	RB7	RB6	RB5	RB4	—	—		—	xxxx	67,200	
107h	PORTC ⁽⁴⁾	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	74,200	
108h	_	Unimplemen	nted							—	_	
109h		Unimplemen	nted							—	—	
10Ah	PCLATH	—	—	_	Write Bu	ffer for the up	oper 5 bits of	the Program	Counter	0 0000	43,200	
10Bh	INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF ⁽¹⁾	0000 000x	37,200	
10Ch	EEDAT	EEDAT7	EEDAT6	EEDAT5	EEDAT4	EEDAT3	EEDAT2	EEDAT1	EEDAT0	0000 0000	118,201	
10Dh	EEADR	EEADR7 ⁽³⁾	EEADR6	EEADR5	5 EEADR4 EEADR3 EEADR2 EEADR1 EEADR0 00					0000 0000	118,201	
10Eh	EEDATH ⁽²⁾	_	_	EEDATH5	ATH5 EEDATH4 EEDATH3 EEDATH2 EEDATH1 EEDATH0					00 0000	118,201	
10Fh	EEADRH ⁽²⁾	_	_	_	_	EEADRH3	EEADRH2	EEADRH1	EEADRH0	0000	118,201	
110h	—	Unimplemen	nted							_	_	
111h	—	Unimplemen	nted							_	_	
112h	—	Unimplemen	nted							_	_	
113h	—	Unimplemen	nted							_	_	
114h	—	Unimplemen	nted							—	—	
115h	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	—	—		—	1111	68,201	
116h	IOCB	IOCB7	IOCB6	IOCB5	IOCB4	—	—		—	0000	68,201	
117h	—	Unimplemen	nted							—	—	
118h	VRCON	C1VREN	C2VREN	VRR	VP6EN	VR3	VR2	VR1	VR0	0000 0000	103,201	
119h	CM1CON0	C10N	C1OUT	C10E	C1POL	—	C1R	C1CH1	C1CH0	0000 -000	96,201	
11Ah	CM2CON0	C2ON	C2OUT	C2OE	C2POL	—	C2R	C2CH1	C2CH0	0000 -000	97,201	
11Bh	CM2CON1	MC1OUT MC2OUT T1GSS C2SYNC 00								0010	99,201	
11Ch		Unimplemented —										
11Dh	_	Unimplemen	nted							_	_	
11Eh	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3 ⁽³⁾	ANS2 ⁽³⁾	ANS1	ANS0	1111 1111	59,201	
11Fh	ANSELH ⁽³⁾	—	—	—	—	ANS11	ANS10	ANS9	ANS8	1111	113,201	

TABLE 2-3: PIC16F631/677/685/687/689/690 SPECIAL FUNCTION REGISTERS SUMMARY BANK 2

Legend: -= Unimplemented locations read as '0', u = unchanged, x = unknown, g = value depends on condition, shaded = unimplemented Note 1: MCLR and WDT Reset does not affect the previous value data latch. The RABIF bit will be cleared upon Reset but will set again if the mismatch exists.

2: PIC16F685/PIC16F689/PIC16F690 only.

3: PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.

4: Port pins with analog functions controlled by the ANSEL and ANSELH registers will read '0' immediately after a Reset even though the data latches are either undefined (POR) or unchanged (other Resets).

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets ⁽¹⁾
CONFIG ⁽²⁾	CPD	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	_	_
OSCCON	—	IRCF2	IRCF1	IRCF0	OSTS	HTS	LTS	SCS	-110 x000	-110 x000
OSCTUNE	—	—	—	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	u uuuu
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by oscillators.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

2: See Configuration Word register (Register 14-1) for operation of all register bits.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0
bit 7			•		•		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	nown		

REGISTER 4-3: ANSEL: ANALOG SELECT REGISTER

bit 7-0 ANS<7:0>: Analog Select bits Analog select between analog or digital function on pins AN<7:0>, respectively. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. 0 = Digital I/O. Pin is assigned to port or special function.

REGISTER 4-4: ANSELH: ANALOG SELECT HIGH REGISTER⁽²⁾

U-0	U-0	U-0 U-0		R/W-1	R/W-1 R/W-1		R/W-1
—			ANS11	ANS10	ANS9	ANS8	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 3-0 ANS<11:8>: Analog Select bits

Analog select between analog or digital function on pins AN<7:0>, respectively.

1 = Analog input. Pin is assigned as analog input⁽¹⁾.

0 = Digital I/O. Pin is assigned to port or special function.

Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups and interrupt-on-change if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

2: PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.

Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups and interrupt-on-change if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

4.4.3.4 RB7/TX/CK

Figure 4-10 shows the diagram for this pin. The RB7/ $TX/CK^{(1)}$ pin is configurable to function as one of the following:

- a general purpose I/O
- an asynchronous serial output
- a synchronous clock I/O

Note 1: TX and CK are available on PIC16F687/ PIC16F689/PIC16F690 only.

FIGURE 4-10: BLOCK DIAGRAM OF RB7

4.5.5 RC4/C2OUT/P1B

The RC4/C2OUT/P1B^(1, 2) is configurable to function as one of the following:

- a general purpose I/O
- a digital output from Comparator C2
- a PWM output
 - Note 1: Enabling both C2OUT and P1B will cause a conflict on RC4 and create unpredictable results. Therefore, if C2OUT is enabled, the ECCP+ can not be used in Half-Bridge or Full-Bridge mode and vise-versa.
 - 2: P1B is available on PIC16F685/ PIC16F690 only.

Available on PIC16F685/PIC16F690 only.

FIGURE 4-13: BLOCK DIAGRAM OF RC4

4.5.6 RC5/CCP1/P1A

The RC5/CCP1/P1A⁽¹⁾ is configurable to function as one of the following:

- a general purpose I/O
- a digital input/output for the Enhanced CCP
- a PWM output

Note 1: CCP1 and P1A are available on PIC16F685/PIC16F690 only.

FIGURE 4-14: BLOCK DIAGRAM OF RC5

RD TRISC RD PORTC

11.4.1 HALF-BRIDGE MODE

In Half-Bridge mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the CCP1/P1A pin, while the complementary PWM output signal is output on the P1B pin (see Figure 11-6). This mode can be used for Half-Bridge applications, as shown in Figure 11-9, or for Full-Bridge applications, where four power switches are being modulated with two PWM signals.

In Half-Bridge mode, the programmable dead-band delay can be used to prevent shoot-through current in Half-Bridge power devices. The value of the PDC<6:0> bits of the PWM1CON register sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **Section 11.4.6 "Programmable Dead-Band Delay mode"** for more details of the dead-band delay operations. Since the P1A and P1B outputs are multiplexed with the PORT data latches, the associated TRIS bits must be cleared to configure P1A and P1B as outputs.

FIGURE 11-9: EXAMPLE OF HALF-BRIDGE APPLICATIONS

11.4.6 PROGRAMMABLE DEAD-BAND DELAY MODE

In Half-Bridge applications where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (*shoot-through current*) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable deadband delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 11-8 for illustration. The lower seven bits of the associated PWM1CON register (Register 11-3) sets the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

FIGURE 11-17: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 11-18: EXAMPLE OF HALF-BRIDGE APPLICATIONS

BAUD	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fos	c = 2.00	0 MHz	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_	_	_	_	_	_	_	_	_	300	0.16	207
1200	1202	0.16	207	1200	0.00	191	1202	0.16	103	1202	0.16	51
2400	2404	0.16	103	2400	0.00	95	2404	0.16	51	2404	0.16	25
9600	9615	0.16	25	9600	0.00	23	9615	0.16	12	—	—	—
10417	10417	0.00	23	10473	0.53	21	10417	0.00	11	10417	0.00	5
19.2k	19.23k	0.16	12	19.2k	0.00	11	—	_	—	—	—	_
57.6k	—	—	—	57.60k	0.00	3	—	—	—	—	—	—
115.2k	—	_	—	115.2k	0.00	1	—	—	—	_	—	

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc	= 11.059	92 MHz	Fos	Fosc = 8.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303	299.9	-0.02	1666	
1200	1200	-0.03	1041	1200	0.00	959	1200	0.00	575	1199	-0.08	416	
2400	2399	-0.03	520	2400	0.00	479	2400	0.00	287	2404	0.16	207	
9600	9615	0.16	129	9600	0.00	119	9600	0.00	71	9615	0.16	51	
10417	10417	0.00	119	10378	-0.37	110	10473	0.53	65	10417	0.00	47	
19.2k	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	19.23k	0.16	25	
57.6k	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	55556	-3.55	8	
115.2k	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	—	—	—	

	SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.1	0.04	832	300.0	0.00	767	299.8	-0.108	416	300.5	0.16	207
1200	1202	0.16	207	1200	0.00	191	1202	0.16	103	1202	0.16	51
2400	2404	0.16	103	2400	0.00	95	2404	0.16	51	2404	0.16	25
9600	9615	0.16	25	9600	0.00	23	9615	0.16	12	—	_	_
10417	10417	0.00	23	10473	0.53	21	10417	0.00	11	10417	0.00	5
19.2k	19.23k	0.16	12	19.20k	0.00	11	—	_	_	_	_	_
57.6k	—	_	_	57.60k	0.00	3	_	_	_	—	_	_
115.2k	—	_	_	115.2k	0.00	1	—	_	_	—	_	_

U-0	U-0	U-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	
_			WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN ⁽¹⁾	
bit 7	·			•			bit 0	
L								
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unknown		
bit 7-5	Unimplemer	nted: Read as	0'					
bit 4-1	WDTPS<3:0	>: Watchdog T	imer Period Se	elect bits				
	Bit Value = F	Prescale Rate						
	0000 = 1:32	2						
	0001 = 1:64	1						
	0010 = 1:12	28						
	0011 = 1:25	56						
	0100 = 1:51	12 (Reset value	e)					
	0101 = 1:10)24						
	0110 = 1:20	048						
	0111 = 1:40	096						
	1000 = 1:81	192						
	1001 = 1:16	6384						
	1010 = 1:32	2768						
	1011 = 1:65	0536						
	1100 = rese	erved						
	1101 = 1050	arved						
	1110 = 1050	arved						
					L ·· (1)			
Dit U	SWDIEN: S	oftware Enable	or Disable the	e vvatchdog I in	ner bit			
	1 = WDT is to	urned on						
	0 = WDI is to	urned off (Rese	et value)					
Note 1: If	WDTE Configu	uration bit = 1 ,	then WDT is	always enable	ed, irrespective	of this contro	I bit. If WDTE	

REGISTER 14-2: WDTCON: WATCHDOG TIMER CONTROL REGISTER

Note 1: If WDTE Configuration bit = 1, then WDT is always enabled, irrespective of this control bit. If WDTE Configuration bit = 0, then it is possible to turn WDT on/off with this control bit.

TABLE 14-8: SUMMARY OF WATCHDOG TIMER REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CONFIG ⁽¹⁾	CPD	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	-	_
OPTION_REG	RABPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
WDTCON	_	—		WDTPS3	WDTPS2	WSTPS1	WDTPS0	SWDTEN	0 1000	0 1000

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 14-1 for operation of all Configuration Word register bits.

14.6 Power-Down Mode (Sleep)

The Power-Down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If the Watchdog Timer is enabled:

- WDT will be cleared but keeps running.
- PD bit in the STATUS register is cleared.
- TO bit is set.
- Oscillator driver is turned off.
- I/O ports maintain the status they had before SLEEP was executed (driving high, low or highimpedance).

For lowest current consumption in this mode, all I/O pins should be either at VDD or Vss, with no external circuitry drawing current from the I/O pin and the comparators and CVREF should be disabled. I/O pins that are highimpedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pullups on PORTA should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level.

Note: It should be noted that a Reset generated by a WDT time-out does not drive MCLR pin low.

14.6.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from RA2/INT pin, PORTA change or a peripheral interrupt.

The first event will cause a device Reset. The two latter events are considered a continuation of program execution. The TO and PD bits in the STATUS register can be used to determine the cause of device Reset. The PD bit, which is set on power-up, is cleared when Sleep is invoked. TO bit is cleared if WDT Wake-up occurred.

The following peripheral interrupts can wake the device from Sleep:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. ECCP Capture mode interrupt.
- 3. A/D conversion (when A/D clock source is FRC).
- 4. EEPROM write operation completion.
- 5. Comparator output changes state.
- 6. Interrupt-on-change.
- 7. External Interrupt from INT pin.
- 8. EUSART Break detect, I²C slave.

Other peripherals cannot generate interrupts since during Sleep, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up occurs regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction, then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

Note:	If the global interrupts are disabled (GIE is						
	cleared), but any interrupt source has both						
	its interrupt enable bit and the						
	corresponding interrupt flag bits set, the						
	device will immediately wake-up from						
	Sleep. The SLEEP instruction is completely						
	executed.						

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

14.6.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will not be cleared, the TO bit will not be set and the PD bit will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from Sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

17.4 DC Characteristics: PIC16F631/677/685/687/689/690-I (Industrial) PIC16F631/677/685/687/689/690-E (Extended) (Continued)

DC CHARACTERISTICS			Standard Operating Conditions (unle Operating temperature $-40^{\circ}C \le T$ $-40^{\circ}C \le T$				l ess otherwise stated) TA ≤ +85°C for industrial TA ≤ +125°C for extended		
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
D101*	COSC2	OSC2 pin	_	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1		
D101A*	Сю	All I/O pins	_	_	50	pF			
		Data EEPROM Memory							
D120	ED	Byte Endurance	100K	1M	_	E/W	$-40^{\circ}C \le TA \le +85^{\circ}C$		
D120A	ED	Byte Endurance	10K	100K	_	E/W	+85°C \leq TA \leq +125°C		
D121	Vdrw	VDD for Read/Write	Vmin	_	5.5	V	Using EECON1 to read/write VMIN = Minimum operating voltage		
D122	TDEW	Erase/Write Cycle Time	_	5	6	ms			
D123	Tretd	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated		
D124	Tref	Number of Total Erase/Write Cycles before Refresh ⁽⁴⁾	1M	10M	—	E/W	$-40^{\circ}C \leq TA \leq +85^{\circ}C$		
		Program Flash Memory							
D130	Eр	Cell Endurance	10K	100K	—	E/W	$-40^{\circ}C \le TA \le +85^{\circ}C$		
D130A	ED	Cell Endurance	1K	10K	—	E/W	$+85^{\circ}C \le TA \le +125^{\circ}C$		
D131	Vpr	VDD for Read	Vmin	_	5.5	V	Vміn = Minimum operating voltage		
D132	VPEW	VDD for Erase/Write	4.5	—	5.5	V			
D133	TPEW	Erase/Write cycle time	-	2	2.5	ms			
D134	TRETD	Characteristic Retention	40	-	_	Year	Provided no other specifications are violated		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined <u>as cur</u>rent sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: See Section 10.2.1 "Using the Data EEPROM" for additional information.

5: Including OSC2 in CLKOUT mode.

17.7 AC Characteristics: PIC16F631/677/685/687/689/690 (Industrial, Extended)

TABLE 17-1: CLOCK OSCILLATOR TIMING REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	—	37	kHz	LP Oscillator mode
			DC	—	4	MHz	XT Oscillator mode
			DC	—	20	MHz	HS Oscillator mode
			DC	—	20	MHz	EC Oscillator mode
		Oscillator Frequency ⁽¹⁾	—	32.768	_	kHz	LP Oscillator mode
			0.1	—	4	MHz	XT Oscillator mode
			1	—	20	MHz	HS Oscillator mode
			DC	—	4	MHz	RC Oscillator mode
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	_	8	μS	LP Oscillator mode
			250	—	∞	ns	XT Oscillator mode
			50	—	∞	ns	HS Oscillator mode
			50	—	∞	ns	EC Oscillator mode
		Oscillator Period ⁽¹⁾	—	30.5	_	μS	LP Oscillator mode
			250	—	10,000	ns	XT Oscillator mode
			50	—	1,000	ns	HS Oscillator mode
			250	—	_	ns	RC Oscillator mode
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	200	TCY	DC	ns	TCY = 4/FOSC
OS04*	TosH,	External CLKIN High,	2	—	—	μS	LP oscillator
	TosL	External CLKIN Low	100	—	—	ns	XT oscillator
			20	—	_	ns	HS oscillator
OS05*	TosR,	External CLKIN Rise,	0		∞	ns	LP oscillator
	TosF	External CLKIN Fall	0	—	∞	ns	XT oscillator
			0	—	∞	ns	HS oscillator

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at 'min' values with an external clock applied to OSC1 pin. When an external clock input is used, the 'max' cycle time limit is 'DC' (no clock) for all devices.

FIGURE 18-15: COMPARATOR IPD vs. VDD (BOTH COMPARATORS ENABLED)

BOR IPD vs. VDD OVER TEMPERATURE

FIGURE 18-16:

19.0 PACKAGING INFORMATION

19.1 Package Marking Information

20-Lead PDIP

20-Lead SOIC (7.50 mm)

20-Lead SSOP

20-Lead QFN

Example

Example

Example

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the even be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.