

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f689-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 MEMORY ORGANIZATION

2.1 Program Memory Organization

The PIC16F631/677/685/687/689/690 has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 1K x 14 (0000h-03FFh) is physically implemented for the PIC16F631, the first 2K x 14 (0000h-07FFh) for the PIC16F687, and the first 4K x 14 (0000h-0FFFh) for the PIC16F685/PIC16F689/PIC16F690. Accessing a location above these boundaries will cause a wraparound. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figures 2-1 through 2-3).

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC16F631

FIGURE 2-2:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16F685/689/690

FIGURE 2-3:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16F677/PIC16F687

FIGURE 2-4: PIC16F631 SPECIAL FUNCTION REGISTERS

	File		File		File		File
	Address		Address		Address		Address
Indirect addr. (1)	00h	Indirect addr. (1)	80h	Indirect addr. (1)	100h	Indirect addr. (1)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h	PORTA	105h	TRISA	185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h	PORTC	107h	TRISC	187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDAT	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2 ⁽¹⁾	18Dh
TMR1L	0Eh	PCON	8Eh		10Eh		18Eh
TMR1H	0Fh	OSCCON	8Fh		10Fh		18Fh
T1CON	10h	OSCTUNE	90h		110h		190h
	11h		91h		111h		191h
	12h		92h		112h		192h
	13h		93h		113h		193h
	14h		94h		114h		194h
	15h	WPUA	95h	WPUB	115h		195h
	16h	IOCA	96h	IOCB	116h		196h
	17h	WDTCON	97h		117h		197h
	18h		98h	VRCON	118h		198h
	19h		99h	CM1CON0	119h		199h
	1Ah		9Ah	CM2CON0	11Ah		19Ah
	1Bh		9Bh	CM2CON1	11Bh		19Bh
	1Ch		9Ch		11Ch		19Ch
	1Dh		9Dh		11Dh		19Dh
	1Eh		9Eh	ANSEL	11Eh	SRCON	19Eh
	1Fh		9Fh		11Fh		19Fh
	20h		A0h		120h		1A0h
	3Fh						
General	40h						
Purpose	-011						
Registers							
	6Fh		EFh		16Fh		1EFh
64 Bytes	70h	accesses	F0h	accesses	170h	accesses	1F0h
	7Fh	70h-7Fh	FFh	70h-7Fh	17Fh	70h-7Fh	1FFh
Bank 0		Bank 1		Bank 2		Bank 3	

Unimplemented data memory locations, read as '0'.

Note 1: Not a physical register.

4.2 Additional Pin Functions

Every PORTA pin on this device family has an interrupton-change option and a weak pull-up option. RA0 also has an Ultra Low-Power Wake-up option. The next three sections describe these functions.

4.2.1 ANSEL AND ANSELH REGISTERS

The ANSEL and ANSELH registers are used to disable the input buffers of I/O pins, which allow analog voltages to be applied to those pins without causing excessive current. Setting the ANSx bit of a corresponding pin will cause all digital reads of that pin to return '0' and also permit analog functions of that pin to operate correctly.

The state of the ANSx bit has no effect on the digital output function of its corresponding pin. A pin with the TRISx bit clear and ANSx bit set will operate as a digital output, together with the analog input function of that pin. Pins with the ANSx bit set always read '0', which can cause unexpected behavior when executing read or write operations on the port due to the read-modifywrite sequence of all such operations.

4.2.2 WEAK PULL-UPS

Each of the PORTA pins, except RA3, has an individually configurable internal weak pull-up. Control bits WPUAx enable or disable each pull-up. Refer to Register 4-4. Each weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the RABPU bit of the OPTION register. A weak pull-up is automatically enabled for RA3 when configured as MCLR and disabled when RA3 is an I/O. There is no software control of the MCLR pull-up.

4.2.3 INTERRUPT-ON-CHANGE

Each PORTA pin is individually configurable as an interrupt-on-change pin. Control bits IOCAx enable or disable the interrupt function for each pin. Refer to Register 4-6. The interrupt-on-change is disabled on a Power-on Reset.

For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of PORTA. The 'mismatch' outputs of the last read are OR'd together to set the PORTA Change Interrupt Flag bit (RABIF) in the INTCON register (Register 2-6).

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, clears the interrupt by:

- a) Any read or write of PORTA. This will end the mismatch condition, then,
- b) Clear the flag bit RABIF.

A mismatch condition will continue to set flag bit RABIF. Reading PORTA will end the mismatch condition and allow flag bit RABIF to be cleared. The latch holding the last read value is not affected by a MCLR nor BOR Reset. After these Resets, the RABIF flag will continue to be set if a mismatch is present.

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RABIF interrupt flag may not get set.

4.4.3.3 RB6/SCK/SCL

Figure 4-9 shows the diagram for this pin. The RB6/ SCK/SCL⁽¹⁾ pin is configurable to function as one of the following:

- a general purpose I/O
- a SPI clock
- an l²C[™] clock

Note 1:	SCK	and	SCL	are	available	on
	PIC16	F677/	PIC16F	687/P	IC16F689/	
	PIC16	F690 (only.			

FIGURE 4-9:

BLOCK DIAGRAM OF RB6

4.5.7 RC6/AN8/SS

The RC6/AN8/ $\overline{SS}^{(1,2)}$ is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- a slave select input

Note 1:	SS is available on PIC16F687/PIC16F689/
	PIC16F690 only.

2: AN8 is not implemented on PIC16F631.

FIGURE 4-15: BLOCK DIAGRAM OF RC6

4.5.8 RC7/AN9/SDO

The RC7/AN9/SDO $^{(1,2)}$ is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- a serial data output

2: AN9 is not implemented on PIC16F631.

FIGURE 4-16: BLOCK DIAGRAM OF RC7

7.0 TIMER2 MODULE

The Timer2 module is an 8-bit timer with the following features:

- 8-bit timer register (TMR2)
- 8-bit period register (PR2)
- Interrupt on TMR2 match with PR2
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)

See Figure 7-1 for a block diagram of Timer2.

7.1 Timer2 Operation

The clock input to the Timer2 module is the system instruction clock (Fosc/4). The clock is fed into the Timer2 prescaler, which has prescale options of 1:1, 1:4 or 1:16. The output of the prescaler is then used to increment the TMR2 register.

The values of TMR2 and PR2 are constantly compared to determine when they match. TMR2 will increment from 00h until it matches the value in PR2. When a match occurs, two things happen:

- TMR2 is reset to 00h on the next increment cycle.
- The Timer2 postscaler is incremented

The match output of the Timer2/PR2 comparator is fed into the Timer2 postscaler. The postscaler has postscale options of 1:1 to 1:16 inclusive. The output of the Timer2 postscaler is used to set the TMR2IF interrupt flag bit in the PIR1 register. The TMR2 and PR2 registers are both fully readable and writable. On any Reset, the TMR2 register is set to 00h and the PR2 register is set to FFh.

Timer2 is turned on by setting the TMR2ON bit in the T2CON register to a '1'. Timer2 is turned off by clearing the TMR2ON bit to a '0'.

The Timer2 prescaler is controlled by the T2CKPS bits in the T2CON register. The Timer2 postscaler is controlled by the TOUTPS bits in the T2CON register. The prescaler and postscaler counters are cleared when:

- A write to TMR2 occurs.
- A write to T2CON occurs.
- Any device Reset occurs (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out Reset).

Note: TMR2 is not cleared when T2CON is written.

8.9 Comparator SR Latch

The SR Latch module provides additional control of the comparator outputs. The module consists of a single SR latch and output multiplexers. The SR latch can be set, reset or toggled by the comparator outputs. The SR latch may also be set or reset, independent of comparator output, by control bits in the SRCON control register. The SR latch output multiplexers select whether the latch outputs or the comparator outputs are directed to the I/O port logic for eventual output to a pin.

8.9.1 LATCH OPERATION

The latch is a Set-Reset latch that does not depend on a clock source. Each of the Set and Reset inputs are active-high. Each latch input is connected to a comparator output and a software controlled pulse generator. The latch can be set by C1OUT or the PULSS bit of the SRCON register. The latch can be reset by C2OUT or the PULSR bit of the SRCON register. The latch is reset-dominant, therefore, if both Set and Reset inputs are high, the latch will go to the Reset state. Both the PULSS and PULSR bits are self resetting which means that a single write to either of the bits is all that is necessary to complete a latch set or reset operation.

8.9.2 LATCH OUTPUT

The SR<1:0> bits of the SRCON register control the latch output multiplexers and determine four possible output configurations. In these four configurations, the CxOUT I/O port logic is connected to:

- C1OUT and C2OUT
- C1OUT and SR latch Q
- · C2OUT and SR latch Q
- SR latch Q and \overline{Q}

After any Reset, the default output configuration is the unlatched C1OUT and C2OUT mode. This maintains compatibility with devices that do not have the SR latch feature.

The applicable TRIS bits of the corresponding ports must be cleared to enable the port pin output drivers. Additionally, the CxOE comparator output enable bits of the CMxCON0 registers must be set in order to make the comparator or latch outputs available on the output pins. The latch configuration enable states are completely independent of the enable states for the comparators.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
C1VREN	C2VREN	VRR	VP6EN	VR3	VR2	VR1	VR0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 7	C1VREN: Co	mparator 1 Vol	tage Referenc	e Enable bit			
	1 = CVREF cir	cuit powered o	n and routed t	O C1VREF inpu	ut of Comparato	or C1	
	0 = 0.6 Volt c	onstant referen	ce routed to C	1VREF input o	f Comparator C	:1	
bit 6	C2VREN: Co	mparator 2 Vol	tage Referenc	e Enable bit			
	1 = CVREF cir	cuit powered o	n and routed t	O C2VREF inpu	It of Comparato	or C2	
	0 = 0.6 Volt C	onstant referen	ce routed to C	2VREF input o	r Comparator C	2	
bit 5	VRR: CVREF	Range Selection	on bit				
	1 = Low range	e					
hit 4		Deference En	abla bit				
DIL 4		Reference En					
	1 = Enabled 0 = Disabled						
bit 3-0	VR<3:0>: Co	mparator Volta	ne Reference	CVREE Value S	Selection bits (0	< VR<3.0> <	15)
bit 0 0	When VRR =	$1 \cdot CVREE = (V)$	ge ((eierenee) R∠3·0⊳/24) * \	ערבו ענומט ע חח/			10)
	When VRR =	$\underline{0}$: CVREF = VD	D/4 + (VR<3:0)>/32) * VDD			

REGISTER 8-5: VRCON: VOLTAGE REFERENCE CONTROL REGISTER

TABLE 8-2:SUMMARY OF REGISTERS ASSOCIATED WITH THE COMPARATOR AND VOLTAGE
REFERENCE MODULES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
CM1CON0	C10N	C10UT	C10E	C1POL	—	C1R	C1CH1	C1CH0	0000 -000	0000 0000
CM2CON0	C2ON	C2OUT	C2OE	C2POL	—	C2R	C2CH1	C2CH0	0000 -000	0000 -000
CM2CON1	MC1OUT	MC2OUT		_	—	—	T1GSS	C2SYNC	0010	0010
INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF	x000 000x	x000 000x
PIE2	OSFIE	C2IE	C1IE	EEIE	—	—	—	_	0000	0000
PIR2	OSFIF	C2IF	C1IF	EEIF	—	—	—	—	0000	0000
PORTA	—	—	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
SRCON	SR1	SR0	C1SEN	C2REN	PULSS	PULSR	—	_	0000 00	0000 00
TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
VRCON	C1VREN	C2VREN	VRR	VP6EN	VR3	VR2	VR1	VR0	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for comparator.

EXAMPLE 9-1: A/D CONVERSION

;This code block configures the ADC ; for polling, Vdd reference, Frc clock ;and AN0 input. ; ;Conversion start & polling for completion ; are included. BANKSELADCON1; MOVLWB'01110000'; ADC Frc clock MOVWFADCON1; BANKSELTRISA; BSF TRISA,0;Set RA0 to input BANKSELANSEL; BSF ANSEL, 0; Set RA0 to analog BANKSELADCON0; MOVLWB'10000001';Right justify, MOVWFADCON0; Vdd Vref, AN0, On CALLSampleTime;Acquisiton delay BSF ADCON0,GO;Start conversion BTFSCADCON0,GO;Is conversion done? GOTO\$-1;No, test again BANKSELADRESH; MOVFADRESH, W; Read upper 2 bits MOVWFRESULTHI; store in GPR space BANKSELADRESL; MOVFADRESL,W;Read lower 8 bits MOVWFRESULTLO; Store in GPR space

9.2.7 ADC REGISTER DEFINITIONS

The following registers are used to control the operation of the ADC.

TABLE 10-1: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
EECON1	EEPGD ⁽¹⁾	_	—	_	WRERR	WREN	WR	RD	x x000	0 d000
EECON2	2 EEPROM Control Register 2 (not a physical register)									
EEADR	EEADR7 ⁽²⁾	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0	0000 0000	0000 0000
EEADRH ⁽¹⁾	—	_	_	_	EEADRH3	EEADRH2	EEADRH1	EEADRH0	0000	0000
EEDAT	EEDAT7	EEDAT6	EEDAT5	EEDAT4	EEDAT3	EEDAT2	EEDAT1	EEDAT0	0000 0000	0000 0000
EEDATH ⁽¹⁾	_	_	EEDATH5	EEDATH4	EEDATH3	EEDATH2	EEDATH1	EEDATH0	00 0000	00 0000
INTCON	GIE	PEIE	T0IE	INTE	RABIE	T0IF	INTF	RABIF	0000 0000	0000 0000
PIE2	OSFIE	C2IE	C1IE	EEIE	_	_	_	_	0000	0000
PIR2	OSFIF	C2IF	C1IF	EEIF	_	_	_	_	0000	0000

 ${\bf x}$ = unknown, ${\bf u}$ = unchanged, – = unimplemented read as '0', ${\bf q}$ = value depends upon condition. Shaded cells are not used by data EEPROM module. PIC16F685/PIC16F689/PIC16F690 only. Legend:

Note 1:

PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only. 2:

11.4.1 HALF-BRIDGE MODE

In Half-Bridge mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the CCP1/P1A pin, while the complementary PWM output signal is output on the P1B pin (see Figure 11-6). This mode can be used for Half-Bridge applications, as shown in Figure 11-9, or for Full-Bridge applications, where four power switches are being modulated with two PWM signals.

In Half-Bridge mode, the programmable dead-band delay can be used to prevent shoot-through current in Half-Bridge power devices. The value of the PDC<6:0> bits of the PWM1CON register sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **Section 11.4.6 "Programmable Dead-Band Delay mode"** for more details of the dead-band delay operations. Since the P1A and P1B outputs are multiplexed with the PORT data latches, the associated TRIS bits must be cleared to configure P1A and P1B as outputs.

FIGURE 11-9: EXAMPLE OF HALF-BRIDGE APPLICATIONS

11.4.6 PROGRAMMABLE DEAD-BAND DELAY MODE

In Half-Bridge applications where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (*shoot-through current*) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable deadband delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 11-8 for illustration. The lower seven bits of the associated PWM1CON register (Register 11-3) sets the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

FIGURE 11-17: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 11-18: EXAMPLE OF HALF-BRIDGE APPLICATIONS

11.4.7 PULSE STEERING MODE

In Single Output mode, pulse steering allows any of the PWM pins to be the modulated signal. Additionally, the same PWM signal can be simultaneously available on multiple pins.

Once the Single Output mode is selected (CCP1M<3:2> = 11 and P1M<1:0> = 00 of the CCP1CON register), the user firmware can bring out the same PWM signal to one, two, three or four output pins by setting the appropriate STR<D:A> bits of the PSTRCON register, as shown in Figure 11-19.

Note:	The associated TRIS bits must be set to
	output ('0') to enable the pin output driver
	in order to see the PWM signal on the pin.

While the PWM Steering mode is active, CCP1M<1:0> bits of the CCP1CON register select the PWM output polarity for the P1<D:A> pins.

The PWM auto-shutdown operation also applies to PWM Steering mode as described in **Section 11.4.4** "**Enhanced PWM Auto-shutdown mode**". An autoshutdown event will only affect pins that have PWM outputs enabled.

REGISTER 11-4: PSTRCON: PULSE STEERING CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1					
	—	_	STRSYNC	STRD	STRC	STRB	STRA					
bit 7						÷	bit 0					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown					
bit 7-5	Unimplemen	ted: Read as '	0'									
bit 4	STRSYNC: Steering Sync bit											
	1 = Output ste	eering update	occurs on next	PWM period								
	0 = Output st	eering update	occurs at the b	eginning of the	e instruction cy	cle boundary						
bit 3	STRD: Steeri	ng Enable bit [)									
	1 = P1D pin h	nas the PWM w	vaveform with p	olarity control	from CCP1M<	1:0>						
	0 = P1D pin is	s assigned to p	ort pin									
bit 2	STRC: Steeri	ng Enable bit ()									
	1 = P1C pin h	nas the PWM w	vaveform with p	olarity control	from CCP1M<	1:0>						
	0 = P1C pin is	s assigned to p	ort pin									
bit 1	STRB: Steeri	ng Enable bit E	3									
	1 = P1B pin h	as the PWM w	aveform with p	olarity control	from CCP1M<	1:0>						
	0 = P1B pin is	s assigned to p	ort pin									
bit 0	STRA: Steeri	ng Enable bit A	A									
	1 = P1A pin h	as the PWM w	aveform with p	olarity control	from CCP1M<	1:0>						
	0 = P1A pin is	s assigned to p	ort pin									

Note 1: The PWM Steering mode is available only when the CCP1CON register bits CCP1M<3:2> = 11 and P1M<1:0> = 00.

FIGURE 11-19: SIMPLIFIED STEERING BLOCK DIAGRAM

14.2.4 BROWN-OUT RESET (BOR)

The BOREN0 and BOREN1 bits in the Configuration Word register select one of four BOR modes. Two modes have been added to allow software or hardware control of the BOR enable. When BOREN<1:0> = 01, the SBOREN bit (PCON<4>) enables/disables the BOR allowing it to be controlled in software. By selecting BOREN<1:0>, the BOR is automatically disabled in Sleep to conserve power and enabled on wake-up. In this mode, the SBOREN bit is disabled. See Register 14-2 for the Configuration Word definition.

If VDD falls below VBOR for greater than parameter (TBOR) (see **Section 17.0 "Electrical Specifications"**), the Brown-out situation will reset the device. This will occur regardless of VDD slew rate. A Reset is not insured to occur if VDD falls below VBOR for less than parameter (TBOR).

On any Reset (Power-on, Brown-out Reset, Watchdog Timer, etc.), the chip will remain in Reset until VDD rises above VBOR (see Figure 14-3). The Power-up Timer will now be invoked, if enabled and will keep the chip in Reset an additional 64 ms.

Note: The Power-up Timer is enabled by the PWRTE bit in the Configuration Word register.

If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOR, the Power-up Timer will execute a 64 ms Reset.

14.2.5 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows: first, PWRT time-out is invoked after POR has expired, then OST is activated after the PWRT time-out has expired. The total time-out will vary based on oscillator configuration and <u>PWRTE</u> bit status. For example, in EC mode with <u>PWRTE</u> bit erased (PWRT disabled), there will be no time-out at all. Figures 14-4, 14-5 and 14-6 depict time-out sequences. The device can execute code from the INTOSC while OST is active by enabling Two-Speed Start-up or Fail-Safe Monitor (see Section 3.7.2 "Two-speed Start-up Sequence" and Section 3.8 "Fail-Safe Clock Monitor").

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then, bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 14-5). This is useful for testing purposes or to synchronize more than one PIC16F631/677/685/ 687/689/690 device operating in parallel.

Table 14-5 shows the Reset conditions for some special registers, while Table 14-4 shows the Reset conditions for all the registers.

14.2.6 POWER CONTROL (PCON) REGISTER

The Power Control register PCON (address 8Eh) has two Status bits to indicate what type of Reset that last occurred.

Bit 0 is $\overline{\text{BOR}}$ (Brown-out Reset). $\overline{\text{BOR}}$ is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if $\overline{\text{BOR}} = 0$, indicating that a Brown-out has occurred. The $\overline{\text{BOR}}$ Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (BOREN<1:0> = 00 in the Configuration Word register).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset, if POR is '0', it will indicate that a Power-on Reset has occurred (i.e., VDD may have gone too low).

For more information, see Section 4.2.4 "Ultra Low-Power Wake-up" and Section 14.2.4 "Brown-out Reset (BOR)".

Oscillator Configuration	Powe	er-up	Brown-o	Wake-up from	
	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	Sleep
XT, HS, LP	TPWRT + 1024 • Tosc	1024 • Tosc	Tpwrt + 1024 • Tosc	1024 • Tosc	1024 • Tosc
LP, T1OSCIN = 1	TPWRT	—	TPWRT	_	—
RC, EC, INTOSC	TPWRT		TPWRT		_

TABLE 14-1:TIME-OUT IN VARIOUS SITUATIONS

TABLE 14-2: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition				
0	x	1	1	Power-on Reset				
u	0	1	1	Brown-out Reset				
u	u	0	u	WDT Reset				
u	u	0	0	WDT Wake-up				
u	u	u	u	MCLR Reset during normal operation				
u	u	1	0	MCLR Reset during Sleep				

Legend: u = unchanged, x = unknown

DS40001262F-page 198

TABLE 14-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PCON	-	-	ULPWUE	SBOREN	-	_	POR	BOR	01qq	0uuu
STATUS	IRP	RP1	RPO	TO	PD	Z	DC	С	0001 1xxx	000q quuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition. Shaded cells are not used by BOR. Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

TABLE 17-15: A/D CONVERTER (ADC) CHARACTERISTICS:

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
AD01	Nr	Resolution		—	10 bits	bit		
AD02	EIL	Integral Error	_	—	±1	LSb	VREF = 5.12V	
AD03	Edl	Differential Error		—	±1	LSb	No missing codes to 10 bits VREF = 5.12V	
AD04	EOFF	Offset Error		—	±1	LSb	VREF = 5.12V	
AD04A			—	+1.5	+3.0	LSb	(PIC16F677 only)	
AD07	Egn	Gain Error		—	±1	LSb	VREF = 5.12V	
AD06 AD06A	Vref	Reference Voltage ⁽³⁾	2.2 2.5	—	 Vdd	V	Absolute minimum to ensure 1 LSb accuracy	
AD07	VAIN	Full-Scale Range	Vss	—	Vref	V		
AD08	Zain	Recommended Impedance of Analog Voltage Source	_	—	10	kΩ		
AD09*	IREF	VREF Input Current ⁽³⁾	10	—	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN.	
			_		50	μA	During A/D conversion cycle	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

- **2:** The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.
- **3:** ADC VREF is from external VREF or VDD pin, whichever is selected as reference input.
- 4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.

COMPARATOR RESPONSE TIME (RISING EDGE)

FIGURE 18-32:

FIGURE 18-33: COMPARATOR RESPONSE TIME (FALLING EDGE)

19.2 Package Details

The following sections give the technical details of the packages.

20-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

	Units			INCHES				
Dimensio	n Limits	MIN	NOM	MAX				
Number of Pins	Ν		20					
Pitch	е	.100 BSC						
Top to Seating Plane	А	-	-	.210				
Molded Package Thickness	A2	.115	.130	.195				
Base to Seating Plane	A1	.015	-	-				
Shoulder to Shoulder Width	Е	.300	.310	.325				
Molded Package Width	E1	.240	.250	.280				
Overall Length	D	.980	1.030	1.060				
Tip to Seating Plane	L	.115	.130	.150				
Lead Thickness	с	.008	.010	.015				
Upper Lead Width	b1	.045	.060	.070				
Lower Lead Width	b	.014	.018	.022				
Overall Row Spacing §	eB	_	_	.430				

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-019B