

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f690-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RB7	RB7	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
RC0/AN4/C2IN+	RC0	ST	CMOS	General purpose I/O.
	AN4	AN	—	A/D Channel 4 input.
	C2IN+	AN	—	Comparator C2 non-inverting input.
RC1/AN5/C12IN1-	RC1	ST	CMOS	General purpose I/O.
	AN5	AN	—	A/D Channel 5 input.
	C12IN1-	AN	—	Comparator C1 or C2 inverting input.
RC2/AN6/C12IN2-	RC2	ST	CMOS	General purpose I/O.
	AN6	AN	—	A/D Channel 6 input.
	C12IN2-	AN	—	Comparator C1 or C2 inverting input.
RC3/AN7/C12IN3-	RC3	ST	CMOS	General purpose I/O.
	AN7	AN	—	A/D Channel 7 input.
	C12IN3-	AN	—	Comparator C1 or C2 inverting input.
RC4/C2OUT	RC4	ST	CMOS	General purpose I/O.
	C2OUT	—	CMOS	Comparator C2 output.
RC5	RC5	ST	CMOS	General purpose I/O.
RC6/AN8/SS	RC6	ST	CMOS	General purpose I/O.
	AN8	AN	—	A/D Channel 8 input.
	SS	ST	—	Slave Select input.
RC7/AN9/SDO	RC7	ST	CMOS	General purpose I/O.
	AN9	AN	—	A/D Channel 9 input.
	SDO	—	CMOS	SPI data output.
Vss	Vss	Power	_	Ground reference.
Vdd	Vdd	Power	_	Positive supply.

TABLE 1-2: PINOUT DESCRIPTION – PIC16F677 (CONTINUED)

Legend: AN = Analog input or output

TTL = TTL compatible input

HV = High Voltage

XTAL= Crystal

CMOS=CMOS compatible input or output

ST= Schmitt Trigger input with CMOS levels

FIGURE 2-8: PIC16F690 SPECIAL FUNCTION REGISTERS

	File		File		File		File
	Address		Address		Address		Address
Indirect addr. (1)	00h	Indirect addr. (1)	80h	Indirect addr. (1)	100h	Indirect addr. (1)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h	PORTA	105h	TRISA	185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h	PORTC	107h	TRISC	187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDAT	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2 ⁽¹⁾	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh		18Eh
TMR1H	0Fh	OSCCON	8Fh	EEADRH	10Fh		18Fh
T1CON	10h	OSCTUNE	90h		110h		190h
TMR2	11h		91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD ⁽²⁾	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h	-	194h
CCPR1L	15h	WPUA	95h	WPUB	115h	-	195h
CCPR1H	16h	IOCA	96h	IOCB	116h	-	196h
CCP1CON	17h	WDTCON	97h		117h	-	197h
RCSTA	18h	TXSTA	98h	VRCON	118h	-	198h
TXREG	19h	SPBRG	99h	CM1CON0	119h		199h
RCREG	1Ah	SPBRGH	9Ah	CM2CON0	11Ah		19Ah
	1Bh	BAUDCTL	9Bh	CM2CON1	11Bh		19Bh
PWM1CON	1Ch		9Ch		11Ch		19Ch
ECCPAS	1Dh		9Dh		11Dh	PSTRCON	19Dh
ADRESH	1Eh	ADRESL	9Eh	ANSEL	11Eh	SRCON	19Eh
ADCON0	1Fh	ADCON1	9Fh	ANSELH	11Fh		19Fh
	20h		A0h		120h		1A0h
General		General		General			
General Purpose		Purpose Register		Purpose Register			
Register		register		register			
-		80 Bytes		80 Bytes			
96 Bytes			EFh		16Fh		
		accesses	F0h	accesses	170h	accesses	1F0h
	7Fh	70h-7Fh	FFh	70h-7Fh	17Fh	70h-7Fh	1FFh
Bank 0	1	Bank 1	1	Bank 2	I	Bank 3	I

Unimplemented data memory locations, read as '0'.

Note 1: Not a physical register.

2: Address 93h also accesses the SSP Mask (SSPMSK) register under certain conditions. See Registers 13-2 and 13-3 for more details.

3.2 Oscillator Control

The Oscillator Control (OSCCON) register (Figure 3-1) controls the system clock and frequency selection options. The OSCCON register contains the following bits:

- Frequency selection bits (IRCF)
- Frequency Status bits (HTS, LTS)
- System clock control bits (OSTS, SCS)

REGISTER 3-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R/W-1	R/W-1	R/W-0	R-1	R-0	R-0	R/W-0
—	IRCF2	IRCF1	IRCF0	OSTS ⁽¹⁾	HTS	LTS	SCS
bit 7							bit 0
Legend:							

Logona.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7	Unimplemented: Read as '0'
bit 6-4	IRCF<2:0>: Internal Oscillator Frequency Select bits 111 = 8 MHz 110 = 4 MHz (default) 101 = 2 MHz 100 = 1 MHz 011 = 500 kHz 010 = 250 kHz 001 = 125 kHz 000 = 31 kHz (LFINTOSC)
bit 3	OSTS: Oscillator Start-up Time-out Status bit ⁽¹⁾ 1 = Device is running from the clock defined by FOSC<2:0> of the CONFIG register 0 = Device is running from the internal oscillator (HFINTOSC or LFINTOSC)
bit 2	 HTS: HFINTOSC Status bit (High Frequency – 8 MHz to 125 kHz) 1 = HFINTOSC is stable 0 = HFINTOSC is not stable
bit 1	LTS: LFINTOSC Stable bit (Low Frequency – 31 kHz) 1 = LFINTOSC is stable 0 = LFINTOSC is not stable
bit 0	 SCS: System Clock Select bit 1 = Internal oscillator is used for system clock 0 = Clock source defined by FOSC<2:0> of the CONFIG register
Note 1.	Discrete to (o) with Two Greed Oters up and LD VT or LIC collected on the Opeillater mode on Feil

Note 1: Bit resets to '0' with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe mode is enabled.

3.5.2.1 OSCTUNE Register

-n = Value at POR

The HFINTOSC is factory calibrated but can be adjusted in software by writing to the OSCTUNE register (Register 3-2).

The default value of the OSCTUNE register is '0'. The value is a 5-bit two's complement number.

When the OSCTUNE register is modified, the HFINTOSC frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

x = Bit is unknown

REGISTER 3-2: OSCTUNE: OSCILLATOR TUNING REGISTER

'1' = Bit is set

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—	TUN4	TUN3	TUN2	TUN1	TUN0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				

'0' = Bit is cleared

bit 7-5	Unimplemented: Read as '0'
bit 4-0	TUN<4:0>: Frequency Tuning bits
	01111 = Maximum frequency
	01110 =
	•
	•
	•
	00001 =
	00000 = Oscillator module is running at the factory-calibrated frequency.
	11111 =
	•
	•
	•
	10000 = Minimum frequency

4.2 Additional Pin Functions

Every PORTA pin on this device family has an interrupton-change option and a weak pull-up option. RA0 also has an Ultra Low-Power Wake-up option. The next three sections describe these functions.

4.2.1 ANSEL AND ANSELH REGISTERS

The ANSEL and ANSELH registers are used to disable the input buffers of I/O pins, which allow analog voltages to be applied to those pins without causing excessive current. Setting the ANSx bit of a corresponding pin will cause all digital reads of that pin to return '0' and also permit analog functions of that pin to operate correctly.

The state of the ANSx bit has no effect on the digital output function of its corresponding pin. A pin with the TRISx bit clear and ANSx bit set will operate as a digital output, together with the analog input function of that pin. Pins with the ANSx bit set always read '0', which can cause unexpected behavior when executing read or write operations on the port due to the read-modifywrite sequence of all such operations.

4.2.2 WEAK PULL-UPS

Each of the PORTA pins, except RA3, has an individually configurable internal weak pull-up. Control bits WPUAx enable or disable each pull-up. Refer to Register 4-4. Each weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the RABPU bit of the OPTION register. A weak pull-up is automatically enabled for RA3 when configured as MCLR and disabled when RA3 is an I/O. There is no software control of the MCLR pull-up.

4.2.3 INTERRUPT-ON-CHANGE

Each PORTA pin is individually configurable as an interrupt-on-change pin. Control bits IOCAx enable or disable the interrupt function for each pin. Refer to Register 4-6. The interrupt-on-change is disabled on a Power-on Reset.

For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of PORTA. The 'mismatch' outputs of the last read are OR'd together to set the PORTA Change Interrupt Flag bit (RABIF) in the INTCON register (Register 2-6).

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, clears the interrupt by:

- a) Any read or write of PORTA. This will end the mismatch condition, then,
- b) Clear the flag bit RABIF.

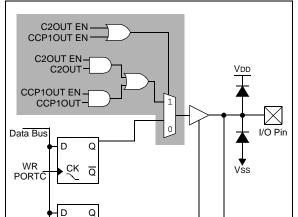
A mismatch condition will continue to set flag bit RABIF. Reading PORTA will end the mismatch condition and allow flag bit RABIF to be cleared. The latch holding the last read value is not affected by a MCLR nor BOR Reset. After these Resets, the RABIF flag will continue to be set if a mismatch is present.

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RABIF interrupt flag may not get set.

4.5.5 RC4/C2OUT/P1B

The RC4/C2OUT/P1B^(1, 2) is configurable to function as one of the following:

- a general purpose I/O
- a digital output from Comparator C2
- a PWM output


WR

TRISC

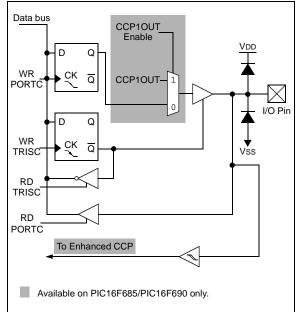
RD TRISC RD PORTC

<u>CK</u> Q

- Note 1: Enabling both C2OUT and P1B will cause a conflict on RC4 and create unpredictable results. Therefore, if C2OUT is enabled, the ECCP+ can not be used in Half-Bridge or Full-Bridge mode and vise-versa.
 - 2: P1B is available on PIC16F685/ PIC16F690 only.

Available on PIC16F685/PIC16F690 only.

FIGURE 4-13: BLOCK DIAGRAM OF RC4


4.5.6 RC5/CCP1/P1A

The RC5/CCP1/P1A⁽¹⁾ is configurable to function as one of the following:

- a general purpose I/O
- a digital input/output for the Enhanced CCP
- a PWM output

Note 1: CCP1 and P1A are available on PIC16F685/PIC16F690 only.

FIGURE 4-14: BLOCK DIAGRAM OF RC5

6.12 Timer1 Control Register

The Timer1 Control register (T1CON), shown in Register 6-1, is used to control Timer1 and select the various features of the Timer1 module.

REGISTER 6-1: T1CON: TIMER 1 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
T1GINV ⁽¹⁾) TMR1GE ⁽²⁾	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N				
bit 7							bit 0				
Legend:											
R = Readab		W = Writable		U = Unimplen							
-n = Value a	IT POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown				
bit 7	T1GINV: Time	er1 Gate Invert	bit(1)								
				ints when Timer	1 gate signal	is high)					
			te is active-high (Timer1 counts when Timer1 gate signal is high) te is active-low (Timer1 counts when gate is low)								
bit 6	TMR1GE: Tin	ner1 Gate Ena	ble bit ⁽²⁾								
	If TMR1ON =										
	This bit is igno										
	<u>If TMR1ON =</u> 1 = Timer1 co		olled by the Ti	mer1 Gate fund	tion						
		always countir									
bit 5-4	T1CKPS<1:0	>: Timer1 Inpu	t Clock Presca	ale Select bits							
	11 = 1:8 Pres	cale Value									
	10 = 1:4 Pres										
	01 = 1:2 Pres 00 = 1:1 Pres										
bit 3		P Oscillator En	able Control b	it							
	If INTOSC wit	thout CLKOUT	oscillator is a	<u>ctive:</u>							
		tor is enabled	for Timer1 cloc	ck							
	0 = LP oscilla <u>Else:</u>	tor is off									
	This bit is igno	ored									
bit 2	0		lock Input Syr	hchronization Co	ontrol bit						
	<u>TMR1CS = 1</u> :										
		nchronize exte		ıt							
		ize external clo	ock input								
	<u>TMR1CS = 0:</u> This bit is igne	ored. Timer1 u	ses the interna	al clock							
bit 1	0	ner1 Clock Sou									
	1 = External clock from T1CKI pin (on the rising edge)										
	0 = Internal clock (Fosc/4)										
bit 0	TMR1ON: Tin	ner1 On bit									
	1 = Enables Timer1										
	0 = Stops Tim	ner1									
	1GINV bit inverts	-									
2: TMR1GE bit must be set to use either $\overline{T1G}$ pin or C2OUT, as selected by the T1GSS bit of the CM2CO							ne CM2CON1				
r	egister, as a Time	era gate source									

8.5 Operation During Sleep

The comparator, if enabled before entering Sleep mode, remains active during Sleep. The additional current consumed by the comparator is shown separately in the **Section 17.0** "**Electrical Specifications**". If the comparator is not used to wake the device, power consumption can be minimized while in Sleep mode by turning off the comparator. Each comparator is turned off by clearing the CxON bit of the CMxCON0 register.

A change to the comparator output can wake-up the device from Sleep. To enable the comparator to wake the device from Sleep, the CxIE bit of the PIE1 register and the PEIE bit of the INTCON register must be set. The instruction following the Sleep instruction always executes following a wake from Sleep. If the GIE bit of the INTCON register is also set, the device will then execute the Interrupt Service Routine.

8.6 Effects of a Reset

A device Reset forces the CMxCON0 and CM2CON1 registers to their Reset states. This forces both comparators and the voltage references to their OFF states.

R/W-0	R-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
C10N	C1OUT	C1OE	C1POL		C1R	C1CH1	C1CH0				
bit 7	·	·			·		bit				
Legend:											
R = Readal	hle hit	W = Writable	bit	LI = Unimple	mented bit, rea	ad as 'O'					
-n = Value a		'1' = Bit is se		'0' = Bit is cle		x = Bit is unk	nown				
bit 7	C1ON: Con	nparator C1 Ena	ble bit								
		rator C1 is enab									
h:+ C	•	rator C1 is disab									
bit 6		mparator C1 Ou	•								
		$\frac{\text{If C1POL} = 1}{\text{(inverted polarity)}}$									
		C1OUT = 0 when $C1VIN + > C1VIN$ - C1OUT = 1 when $C1VIN + < C1VIN$ -									
	$\frac{1601}{1600} = 1 \text{ when } C1010 + < C1010 - \frac{1600}{1600}$										
		C1OUT = 1 when C1VIN+ > C1VIN-									
		DUT = 0 when $C1VIN + < C1VIN$ -									
bit 5	C1OE: Com	nparator C1 Out	put Enable bit								
	1 = C1OUT	C1OUT is present on the C1OUT pin ⁽¹⁾									
	0 = C1OUT	= C1OUT is internal only									
bit 4	C1POL: Co	POL: Comparator C1 Output Polarity Select bit									
	1 = C1OUT logic is inverted										
	0 = C1OUT	= C1OUT logic is not inverted									
bit 3	Unimpleme	ented: Read as	'0'								
bit 2	C1R: Comp	arator C1 Refer	ence Select bi	it (non-inverting	g input)						
	1 = C1VIN+ connects to C1VREF output										
	0 = C1VIN+ connects to C1IN+ pin										
bit 1-0	C1CH<1:0>	C1CH<1:0>: Comparator C1 Channel Select bit									
	00 = C1VIN- of C1 connects to C12IN0- pin										
		- of C1 connects									
		 of C1 connects 									
	11 = C1VIN	- of C1 connects	s to C12IN3- p	in							
Note 1:	Comparator outp	out requires the	following three	e conditions: C1	10E = 1. C10N	N = 1 and corres	spondina				
			5		,						

REGISTER 8-1: CM1CON0: COMPARATOR C1 CONTROL REGISTER 0

Note 1: Comparator output requires the following three conditions: C1OE = 1, C1ON = 1 and corresponding PORT TRIS bit = 0.

11.3.4 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCP1 pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

11.3.5 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 3.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for additional details.

11.3.6 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

11.3.7 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Disable the PWM pin (CCP1) output driver by setting the associated TRIS bit.
- 2. Set the PWM period by loading the PR2 register.
- Configure the CCP module for the PWM mode by loading the CCP1CON register with the appropriate values.
- Set the PWM duty cycle by loading the CCPR1L register and DC1B<1:0> bits of the CCP1CON register.
- 5. Configure and start Timer2:
 - •Clear the TMR2IF interrupt flag bit of the PIR1 register.

•Set the Timer2 prescale value by loading the T2CKPS bits of the T2CON register.

•Enable Timer2 by setting the TMR2ON bit of the T2CON register.

6. Enable PWM output after a new PWM cycle has started:

•Wait until Timer2 overflows (TMR2IF bit of the PIR1 register is set).

• Enable the CCP1 pin output driver by clearing the associated TRIS bit.

11.4 PWM (Enhanced Mode)

The Enhanced PWM Mode can generate a PWM signal on up to four different output pins with up to ten bits of resolution. It can do this through four different PWM Output modes:

- Single PWM
- Half-Bridge PWM
- Full-Bridge PWM, Forward mode
- Full-Bridge PWM, Reverse mode

To select an Enhanced PWM mode, the P1M bits of the CCP1CON register must be set appropriately.

The PWM outputs are multiplexed with I/O pins and are designated P1A, P1B, P1C and P1D. The polarity of the PWM pins is configurable and is selected by setting the CCP1M bits in the CCP1CON register appropriately.

Table 11-4 shows the pin assignments for each Enhanced PWM mode.

Figure 11-5 shows an example of a simplified block diagram of the Enhanced PWM module.

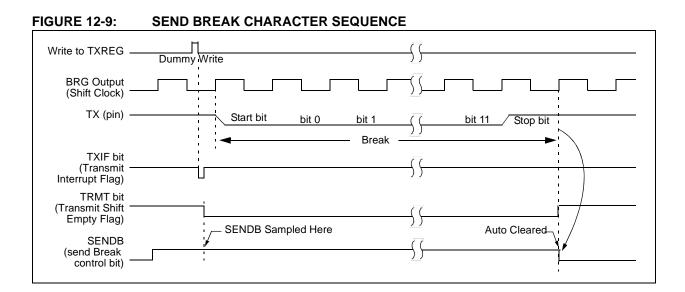
Note: To prevent the generation of an incomplete waveform when the PWM is first enabled, the ECCP module waits until the start of a new PWM period before generating a PWM signal.

11.4.7 PULSE STEERING MODE

In Single Output mode, pulse steering allows any of the PWM pins to be the modulated signal. Additionally, the same PWM signal can be simultaneously available on multiple pins.

Once the Single Output mode is selected (CCP1M<3:2> = 11 and P1M<1:0> = 00 of the CCP1CON register), the user firmware can bring out the same PWM signal to one, two, three or four output pins by setting the appropriate STR<D:A> bits of the PSTRCON register, as shown in Figure 11-19.

Note: The associated TRIS bits must be set to output ('0') to enable the pin output driver in order to see the PWM signal on the pin.


While the PWM Steering mode is active, CCP1M<1:0> bits of the CCP1CON register select the PWM output polarity for the P1<D:A> pins.

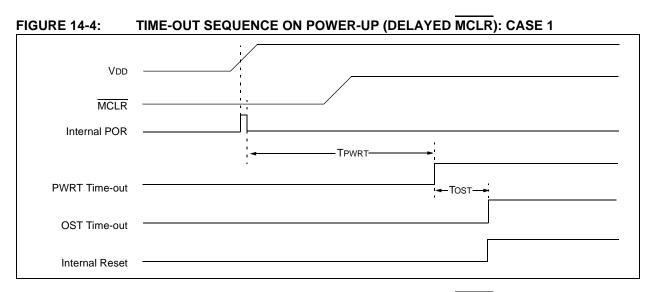
The PWM auto-shutdown operation also applies to PWM Steering mode as described in **Section 11.4.4** "**Enhanced PWM Auto-shutdown mode**". An autoshutdown event will only affect pins that have PWM outputs enabled.

REGISTER 11-4: PSTRCON: PULSE STEERING CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1				
_		_	STRSYNC	STRD	STRC	STRB	STRA				
bit 7		·					bit (
Legend:											
R = Readat	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'					
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 7-5	Unimpleme	ented: Read as	'0'								
bit 4	STRSYNC:	Steering Sync I	pit								
	1 = Output	L = Output steering update occurs on next PWM period									
	0 = Output	steering update	occurs at the be	eginning of the	instruction cyc	le boundary					
bit 3	STRD: Stee	STRD: Steering Enable bit D									
		has the PWM		olarity control	from CCP1M<	1:0>					
	0 = P1D pir	n is assigned to	port pin								
bit 2	STRC: Stee	ering Enable bit	С								
	1 = P1C pir	has the PWM	waveform with p	olarity control	from CCP1M<	1:0>					
	0 = P1C pir	0 = P1C pin is assigned to port pin									
bit 1	STRB: Stee	STRB: Steering Enable bit B									
	1 = P1B pir	1 = P1B pin has the PWM waveform with polarity control from CCP1M<1:0>									
	0 = P1B pir	0 = P1B pin is assigned to port pin									
bit 0	STRA: Stee	STRA: Steering Enable bit A									
	1 = P1A pir	has the PWM	vaveform with p	olarity control	from CCP1M<	1:0>					
	0 = P1A pir	n is assigned to	port pin								

Note 1: The PWM Steering mode is available only when the CCP1CON register bits CCP1M<3:2> = 11 and P1M<1:0> = 00.

13.12.2 RECEPTION


When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address <u>byte</u> overflow condition exists, then no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF of the SSPSTAT register is set, or bit SSPOV of the SSPCON register is set. This is an error condition due to the user's firmware.

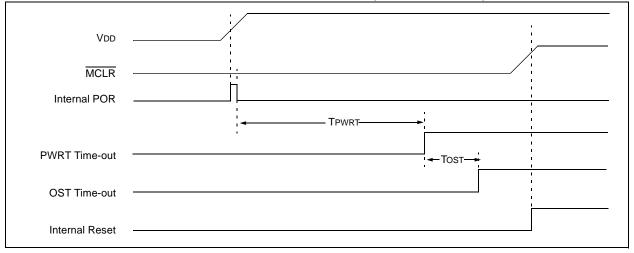
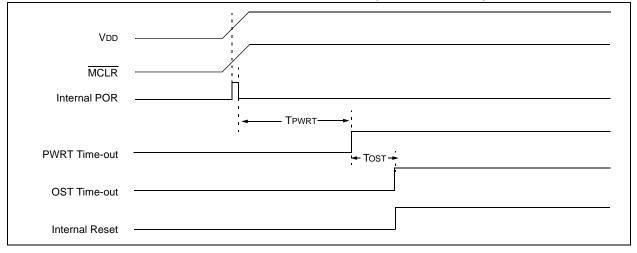

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF of the PIR1 register must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

FIGURE 13-8:	I ² C [™] WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)


- R/	$\overline{V} = 0$				
Receiving Address	ACK Receivi	ng Data AC	CK Receiving Data	ACK	
SDA 1 / A7 XA6 XA5 XA4 XA3 XA2 XA1	/D7/D6/D5/D4	D3/D2/D1/D0/	/D7/D6/D5/D4/D3/D2/		
SCL <u>'IS</u> ! <u>1</u> 2 <u>3</u> 4 <u>5</u> 6 <u>7</u> 8	9 - 1 / 3 / 4	5 6 7 8 9		/7_/8 \ _/9\ / P	
			1	<u>i T</u>	
SSPIF (PIR1<3>)	Cleare	d in software		Bus Maste	
		1		terminates	s
BF (SSPSTAT<0>)	SSPBUF r	egister is read			
		giotorioredu		I I	
				I I	
SSPOV (SSPCON<6>)					
	Dit		se the SSPBUF register is stil	U 6.0	
	DIL	SSPOV is set becau	8		
			ACK is not	t sent.	

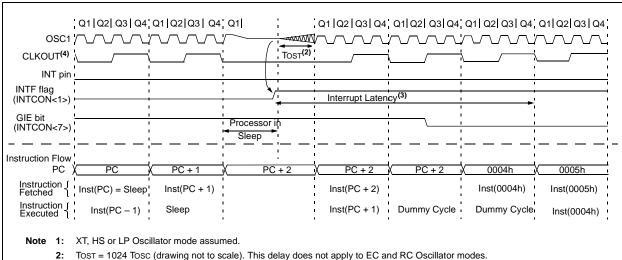

FIGURE 14-5: TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 2

FIGURE 14-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD)

© 2005-2015 Microchip Technology Inc.

- **3:** GIE = 1 assumed. In this case after wake-up, the processor jumps to 0004h. If GIE = 0, execution will continue in-line.
- 4. CLKOLIT is not subject to VT HS LD as EC Oscillator mades but a base for their sectors
 - 4: CLKOUT is not available in XT, HS, LP or EC Oscillator modes, but shown here for timing reference.

WAKE-UP FROM SLEEP THROUGH INTERRUPT

14.7 Code Protection

FIGURE 14-10:

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out using ICSP^{TM} for verification purposes.

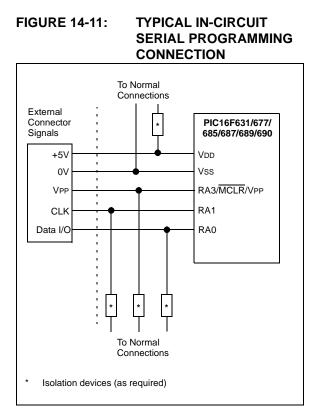
Note:	The entire data EEPROM and Flash					
	program memory will be erased when the					
	code protection is switched from on to off.					
	See the "PIC12F6XX/16F6XX Memory					
	Programming Specification" (DS41204)					
	for more information.					

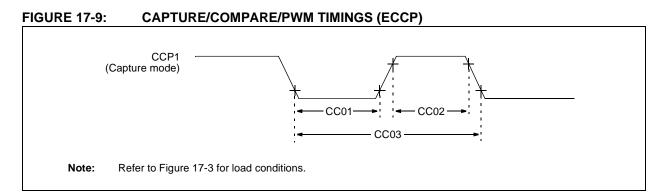
14.8 ID Locations

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable during Program/Verify mode. Only the Least Significant seven bits of the ID locations are used.

14.9 In-Circuit Serial Programming

The PIC16F631/677/685/687/689/690 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for:


- power
- ground
- programming voltage


This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a Program/Verify mode by holding the RA0/AN0/C1IN+/ICSPDAT/ULPWU and RA1/AN1/C12IN-/VREF/ICSPCLK pins low, while raising the MCLR (VPP) pin from VIL to VIHH. See the "PIC12F6XX/16F6XX Memory Programming Specification" (DS41204) for more information. RA0 becomes the programming data and RA1 becomes the programming clock. Both RA0 and RA1 are Schmitt Trigger inputs in this mode.

After Reset, to place the device into Program/Verify mode, the Program Counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14 bits of program data are then supplied to or from the device, depending on whether the command was a load or a read. For complete details of serial programming, please refer to the "*PIC12F6XX/16F6XX Memory Programming Specification*" (DS41204).

A typical In-Circuit Serial Programming connection is shown in Figure 14-11.

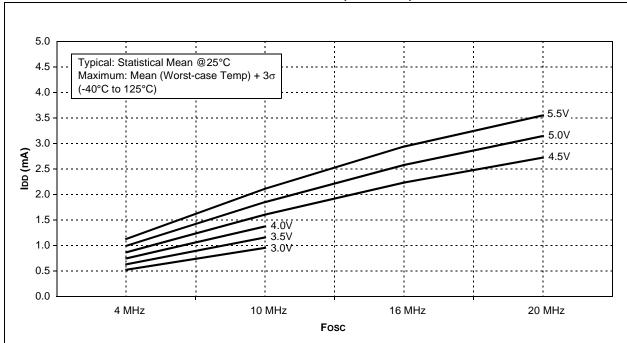
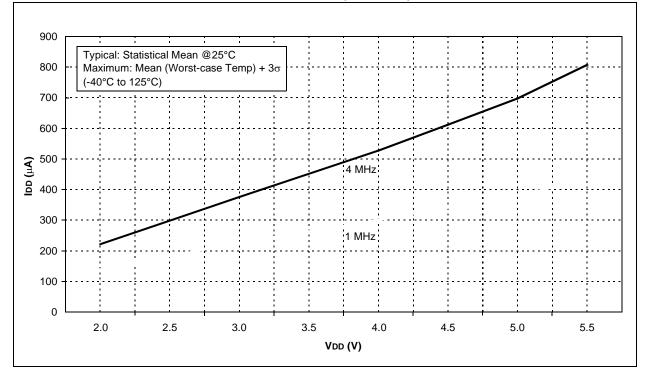
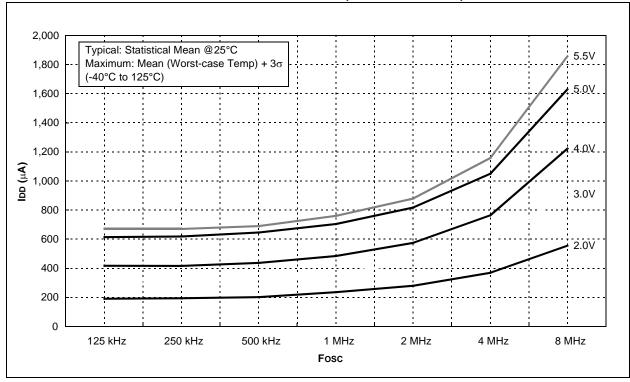


TABLE 17-6: CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP)

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Sym.	Characteristic		Min.	Тур†	Max.	Units	Conditions		
CC01*	TccL	CCP1 Input Low Time	No Prescaler	0.5Tcy + 20	—	—	ns			
			With Prescaler	20	—	—	ns			
CC02*	ТссН	CCP1 Input High Time	No Prescaler	0.5Tcy + 20	_	—	ns			
			With Prescaler	20	_	—	ns			
CC03*	TccP	CCP1 Input Period		<u>3Tcy + 40</u> N	—	—	ns	N = prescale value (1, 4 or 16)		


These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

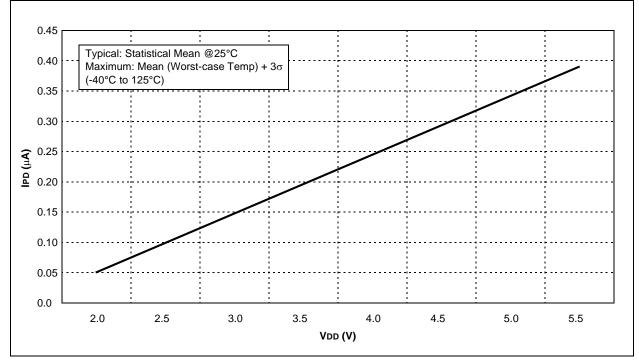


FIGURE 18-12: MAXIMUM IDD vs. Fosc OVER VDD (HFINTOSC MODE)

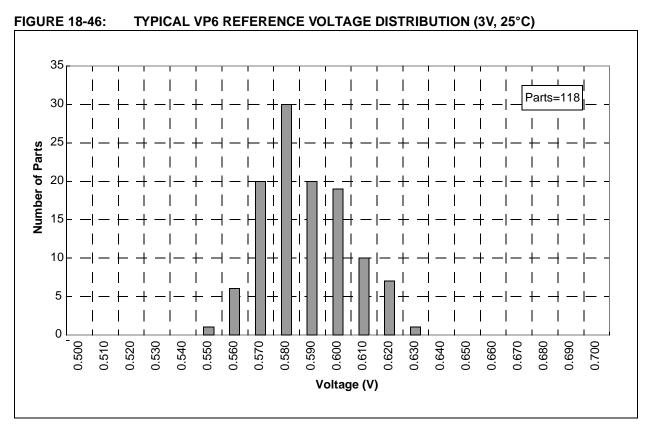
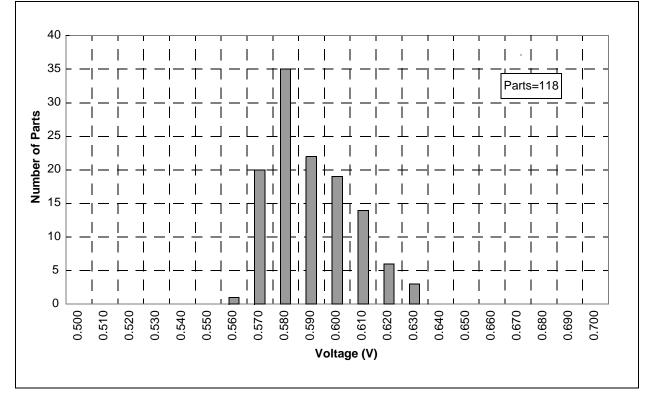



FIGURE 18-47: TYPICAL VP6 REFERENCE VOLTAGE DISTRIBUTION (3V, 85°C)

