

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f690-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Data Memory Organization

The data memory (see Figures 2-6 through 2-8) is partitioned into four banks which contain the General Purpose Registers (GPR) and the Special Function Registers (SFR). The Special Function Registers are located in the first 32 locations of each bank. The General Purpose Registers, implemented as static RAM, are located in the last 96 locations of each Bank. Register locations F0h-FFh in Bank 1, 170h-17Fh in Bank 2 and 1F0h-1FFh in Bank 3 point to addresses 70h-7Fh in Bank 0. The actual number of General Purpose Resisters (GPR) in each Bank depends on the device. Details are shown in Figures 2-4 through 2-8. All other RAM is unimplemented and returns '0' when read. RP<1:0> of the STATUS register are the bank select bits:

<u>RP1</u> <u>RP0</u>

0	0	\rightarrow	Bank 0 is selected
0	1	\rightarrow	Bank 1 is selected
1	0	\rightarrow	Bank 2 is selected

1 1 \rightarrow Bank 3 is selected

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 128 x 8 in the PIC16F687 and 256 x 8 in the PIC16F685/PIC16F689/ PIC16F690. Each register is accessed, either directly or indirectly, through the File Select Register (FSR) (see **Section 2.4 "Indirect Addressing, INDF and FSR Registers"**).

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Tables 2-1 through 2-4). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Registers related to the operation of peripheral features are described in the section of that peripheral feature.

FIGURE 2-8: PIC16F690 SPECIAL FUNCTION REGISTERS

	File		File		File		File
	Address		Address		Address		Address
Indirect addr. (1)	00h	Indirect addr. (1)	80h	Indirect addr. (1)	100h	Indirect addr. (1)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h	PORTA	105h	TRISA	185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h	PORTC	107h	TRISC	187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDAT	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2 ⁽¹⁾	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh		18Eh
TMR1H	0Fh	OSCCON	8Fh	EEADRH	10Fh		18Fh
T1CON	10h	OSCTUNE	90h		110h		190h
TMR2	11h		91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD ⁽²⁾	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h	WPUA	95h	WPUB	115h		195h
CCPR1H	16h	IOCA	96h	IOCB	116h		196h
CCP1CON	17h	WDTCON	97h		117h		197h
RCSTA	18h	TXSTA	98h	VRCON	118h		198h
TXREG	19h	SPBRG	99h	CM1CON0	119h		199h
RCREG	1Ah	SPBRGH	9Ah	CM2CON0	11Ah		19Ah
	1Bh	BAUDCTL	9Bh	CM2CON1	11Bh		19Bh
PWM1CON	1Ch		9Ch		11Ch		19Ch
ECCPAS	1Dh		9Dh		11Dh	PSTRCON	19Dh
ADRESH	1Eh	ADRESL	9Eh	ANSEL	11Eh	SRCON	19Eh
ADCON0	1Fh	ADCON1	9Fh	ANSELH	11Fh		19Fh
	20h		A0h		120h		1A0h
		General		General			
General		Purpose		Purpose			
Purpose		Register		Register			
Register							
		80 Bytes		80 Bytes			
96 Bytes			EFh		16Fh		
		accesses	F0h	accesses	170h	accesses	1F0h
	7Fh	/UN-/Fh	FFh	/Un-/Fh	17Fh	/Un-/Fh	1FFh
Bank 0		Bank 1		Bank 2		Bank 3	

Unimplemented data memory locations, read as '0'.

Note 1: Not a physical register.

2: Address 93h also accesses the SSP Mask (SSPMSK) register under certain conditions. See Registers 13-2 and 13-3 for more details.

3.2 Oscillator Control

The Oscillator Control (OSCCON) register (Figure 3-1) controls the system clock and frequency selection options. The OSCCON register contains the following bits:

- Frequency selection bits (IRCF)
- Frequency Status bits (HTS, LTS)
- System clock control bits (OSTS, SCS)

REGISTER 3-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R/W-1	R/W-1	R/W-0	R-1	R-0	R-0	R/W-0
—	IRCF2	IRCF1	IRCF0	OSTS ⁽¹⁾	HTS	LTS	SCS
bit 7							bit 0
Legend:							

Logonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6-4	IRCF<2:0>: Internal Oscillator Frequency Select bits
	111 = 8 MHz
	110 = 4 MHz (default)
	101 = 2 MHz
	100 = 1 MHz
	011 = 500 kHz
	010 = 250 kHz
	001 = 125 kHz
	000 = 31 kHz (LFINTOSC)
bit 3	OSTS: Oscillator Start-up Time-out Status bit ⁽¹⁾
	 1 = Device is running from the clock defined by FOSC<2:0> of the CONFIG register 0 = Device is running from the internal oscillator (HFINTOSC or LFINTOSC)
bit 2	HTS: HFINTOSC Status bit (High Frequency – 8 MHz to 125 kHz)
	1 = HFINTOSC is stable
	0 = HFINTOSC is not stable
bit 1	LTS: LFINTOSC Stable bit (Low Frequency – 31 kHz)
	1 = 1 EINTOSC is stable
	0 = LFINTOSC is not stable
bit 0	SCS: System Clock Select bit
	1 = Internal oscillator is used for system clock
	0 = Clock source defined by FOSC<2:0> of the CONFIG register

Note 1: Bit resets to '0' with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe mode is enabled.

4.5.1 RC0/AN4/C2IN+

The RC0 is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- an analog input to Comparator C2

4.5.2 RC1/AN5/C12IN1-

The RC1 is configurable to function as one of the following:

- a general purpose I/O
- · an analog input for the ADC
- an analog input to Comparator C1 or C2

FIGURE 4-11:

BLOCK DIAGRAM OF RC0 AND RC1

RC2/AN6/C12IN2-/P1D 4.5.3

The RC2/AN6/P1D⁽¹⁾ is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- · a PWM output
- an analog input to Comparator C1 or C2

Note 1: P1D is available on PIC16F685/ PIC16F690 only.

4.5.4 RC3/AN7/C12IN3-/P1C

The RC3/AN7/P1C⁽¹⁾ is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- · a PWM output
- · a PWM output
- an analog input to Comparator C1 or C2

Note 1: P1C is available on PIC16F685/ PIC16F690 only.

FIGURE 4-12:

BLOCK DIAGRAM OF RC2 AND RC3

1: ANSEL determines Analog Input mode.

2: Not implemented on PIC16F631.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-3	TOUTPS<3:0	I>: Timer2 Out	put Postscaler	Select bits			
	0000 =1:1 Pc	ostscaler					
	0001 =1:2 Pc	ostscaler					
	0010 =1:3 Pc	ostscaler					
	0011 =1:4 Pc	ostscaler					
	0100 =1:5 PC	ostscaler					
	0110 -1.7 Pc	stecalor					
	0111 =1:8 Pc	ostscaler					
	1000 =1:9 Pc	stscaler					
	1001 =1:10 F	ostscaler					
	1010 =1:11 P	ostscaler					
	1011 =1:12 F	ostscaler					
	1100 =1:13 F	Postscaler					
	1101 =1:14 F	ostscaler					
	1110 =1:15 F	Postscaler					
	1111 =1:16 F	ostscaler					
bit 2	TMR2ON: Tir	ner2 On bit					
	1 = Timer2 is 0 = Timer2 is	s on s off					
bit 1-0	T2CKPS<1:0	>: Timer2 Cloc	k Prescale Se	lect bits			
	00 =Prescale	r is 1					
	01 =Prescale	r is 4					
	1x =Prescale	r is 16					
Note 1:	PIC16F685/PIC16	F690 only.					

T2CON: TIMER 2 CONTROL REGISTER⁽¹⁾ **REGISTER 7-1:**

TABLE 7-1: SUMMARY OF ASSOCIATED TIMER2⁽¹⁾ REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF	x000 0000x	x000 0000x
PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
PR2	2 Timer2 Module Period Register								1111 1111	1111 1111
TMR2	2 Holding Register for the 8-bit TMR2 Register								0000 0000	0000 0000
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000

 Legend:
 x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for Timer2 module.

 Note
 1:
 PIC16F685/PIC16F690 only.

8.2 Comparator Control

Each comparator has a separate control and Configuration register: CM1CON0 for Comparator C1 and CM2CON0 for Comparator C2. In addition, Comparator C2 has a second control register, CM2CON1, for controlling the interaction with Timer1 and simultaneous reading of both comparator outputs.

The CM1CON0 and CM2CON0 registers (see Registers 8-1 and 8-2, respectively) contain the control and Status bits for the following:

- Enable
- Input selection
- Reference selection
- Output selection
- Output polarity

8.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

8.2.2 COMPARATOR INPUT SELECTION

The CxCH<1:0> bits of the CMxCON0 register direct one of four analog input pins to the comparator inverting input.

Note:	To use CxIN+ and C12INx- pins as analog inputs, the appropriate bits must be set in						
	the	ANSEL	register	and	the		
	corre	sponding Tl	RIS bits mus	st also b	e set		
	to dis	able the ou	tput drivers.				

8.2.3 COMPARATOR REFERENCE SELECTION

Setting the CxR bit of the CMxCON0 register directs an internal voltage reference or an analog input pin to the non-inverting input of the comparator. See **Section 8.9 "Comparator SR Latch"** for more information on the Internal Voltage Reference module.

8.2.4 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CM2CON1 register. In order to make the output available for an external connection, the following conditions must be true:

- CxOE bit of the CMxCON0 register must be set
- · Corresponding TRIS bit must be cleared
- CxON bit of the CMxCON0 register must be set
 - Note 1: The CxOE bit overrides the PORT data latch. Setting the CxON has no impact on the port override.
 - 2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

8.2.5 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 8-1 shows the output state versus input conditions, including polarity control.

TABLE 8-1:	COMPARATOR OUTPUT				
	STATE VS. INPUT CONDITIONS				

Input Condition	CxPOL	CxOUT
CxVIN - > CxVIN +	0	0
CxVIN- < CxVIN+	0	1
CxVIN - > CxVIN +	1	1
CxVIN- < CxVIN+	1	0

8.3 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in **Section 17.0 "Electrical Specifications"** for more details.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
C1VREN	C2VREN	VRR	VP6EN	VR3	VR2	VR1	VR0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown	
bit 7	C1VREN: Co	mparator 1 Vol	tage Referenc	e Enable bit				
	1 = CVREF cir	cuit powered o	n and routed t	O C1VREF inpu	ut of Comparato	or C1		
	0 = 0.6 Volt c	onstant referen	ce routed to C	1VREF input o	f Comparator C	:1		
bit 6	C2VREN: Co	mparator 2 Vol	tage Referenc	e Enable bit				
	1 = CVREF cir	cuit powered o	n and routed t	O C2VREF inpu	It of Comparato	or C2		
	0 = 0.6 Volt C	onstant referen	ce routed to C	2VREF input o	r Comparator C	2		
bit 5	VRR: CVREF	Range Selection	on bit					
	1 = Low range	e						
hit 4		Deference En	abla bit					
DIL 4		Reference En						
	1 = Enabled 0 = Disabled							
bit 3-0	VR<3:0>: Co	mparator Volta	ne Reference	CVREE Value S	Selection bits (0	< VR<3.0> <	15)	
bit 0 0	When VRR =	$1 \cdot CVREE = (V)$	ge ((eierenee) R∠3·0⊳/24) * \	ערבו ענומט ע חח/			10)	
	<u>When VRR = 1</u> . $CVREF = (VR<3.0)/24) = VDDWhen VRR = 0: CVREF = VDD/4 + (VR<3:0)/32) * VDD$							

REGISTER 8-5: VRCON: VOLTAGE REFERENCE CONTROL REGISTER

TABLE 8-2:SUMMARY OF REGISTERS ASSOCIATED WITH THE COMPARATOR AND VOLTAGE
REFERENCE MODULES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
CM1CON0	C10N	C10UT	C10E	C1POL	—	C1R	C1CH1	C1CH0	0000 -000	0000 0000
CM2CON0	C2ON	C2OUT	C2OE	C2POL	—	C2R	C2CH1	C2CH0	0000 -000	0000 -000
CM2CON1	MC1OUT	MC2OUT		_	—	—	T1GSS	C2SYNC	0010	0010
INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF	x000 000x	x000 000x
PIE2	OSFIE	C2IE	C1IE	EEIE	—	—	—	_	0000	0000
PIR2	OSFIF	C2IF	C1IF	EEIF	—	—	—	—	0000	0000
PORTA	—	—	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
SRCON	SR1	SR0	C1SEN	C2REN	PULSS	PULSR	—	_	0000 00	0000 00
TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
VRCON	C1VREN	C2VREN	VRR	VP6EN	VR3	VR2	VR1	VR0	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for comparator.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0	ADFM	VCFG	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	0000 0000	0000 0000
ADCON1	_	ADCS2	ADCS1	ADCS0	—	_	—	—	-000	-000
ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
ANSELH	_	_	—	_	ANS11	ANS10	ANS9	ANS8	1111	1111
ADRESH	A/D Resul	t Register H	ligh Byte						xxxx xxxx	uuuu uuuu
ADRESL	A/D Resul	t Register L	ow Byte						xxxx xxxx	uuuu uuuu
INTCON	GIE	PEIE	T0IE	INTE	RABIE	T0IF	INTF	RABIF	0000 000x	0000 000x
PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
PORTA	—	—	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
PORTB	RB7	RB6	RB5	RB4	—	_	—	—	xxxx	uuuu
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
TRISA		_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	—		—	—	1111	1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

TABLE 9-2: SUMMARY OF ASSOCIATED ADC REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for ADC module.

	Table 0-1:
	Q Q
Flash ADDR	PC PC + 1 VEEADRH,EEADR PC + 3 PC + 4 PC + 5
Flash Data	INSTR (PC) INSTR (PC + 1) EEDATH,EEDAT INSTR (PC + 3) INSTR (PC + 4)
	INSTR(PC - 1) BSF EECON1,RD INSTR(PC + 1) Forced NOP INSTR(PC + 3) INSTR(PC + 4) executed here executed here executed here executed here executed here
RD bit	
EEDATH EEDAT Register	
EERHLT	

FIGURE 10-1: FLASH PROGRAM MEMORY READ CYCLE EXECUTION

13.2 Operation

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

The SSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the eight bits of data have been received, that byte is moved to the SSPBUF register. Then, the Buffer Full Status bit BF of the SSPSTAT register, and the interrupt flag bit SSPIF, are set. This double-buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored and the Write Collision Detect bit, WCOL of the SSPCON register, will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. Buffer Full bit BF of the SSPSTAT register indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the SSP interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 13-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register. Additionally, the SSP Status register (SSPSTAT) indicates the various status conditions.

I OADING THE SSPRUE	(SSPSR) REGISTER

	BSF	STATUS, RPO	;Bank 1
	BCF	STATUS, RP1	;
LOOP	BTFSS	SSPSTAT, BF	;Has data been received(transmit complete)?
	GOTO	LOOP	'No
	BCF	STATUS, RPO	;Bank 0
	MOVF	SSPBUF, W	;WREG reg = contents of SSPBUF
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
	MOVF	TXDATA, W	;W reg = contents of TXDATA
	MOVWF	SSPBUF	;New data to xmit
1			

13.12.1 ADDRESSING

Once the SSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the eight bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF of the PIR1 register is set (interrupt is generated if enabled) on the falling edge of the ninth SCL pulse.

In 10-bit Address mode, two address bytes need to be received by the slave (Figure 13-8). The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address.

The sequence of events for 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of address (bits SSPIF, BF and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of address (bits SSPIF, BF and UA are set).
- 5. Update the SSPADD register with the first (high) byte of address; if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated Start condition.
- 8. Receive first (high) byte of address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

TABLE 13-3: DATA TRANSFER RECEIVED BYTE ACTIONS

Status Bits as Data Transfer is Received		$SSPSR \to SSPBUF$	Generate ACK	Set bit SSPIF (SSP Interrupt occurs	
BF	SSPOV		r uise	if enabled)	
0	0	Yes	Yes	Yes	
1	0	No	No	Yes	
1	1	No	No	Yes	
0	1	No	No	Yes	

Note: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

14.4 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W and STATUS registers). This must be implemented in software.

Since the upper 16 bytes of all GPR banks are common in the PIC16F631/677/685/687/689/690 (see Figures 2-2 and 2-3), temporary holding registers, W_TEMP and STATUS_TEMP, should be placed in here. These 16 locations do not require banking and therefore, make it easier to context save and restore. The same code shown in Example 14-1 can be used to:

- Store the W register
- Store the STATUS register
- Execute the ISR code
- Restore the Status (and Bank Select Bit register)
- Restore the W register

Note: The PIC16F631/677/685/687/689/690 normally does not require saving the PCLATH. However, if computed GOTO's are used in the ISR and the main code, the PCLATH must be saved and restored in the ISR.

EXAMPLE 14-1: SAVING STATUS AND W REGISTERS IN RAM

MOVWF SWAPF CLRF MOVWF	W_TEMP STATUS,W STATUS STATUS_TEMP	<pre>;Copy W to TEMP register ;Swap status to be saved into W ;bank 0, regardless of current bank, Clears IRP,RP1,RP0 ;Save status to bank zero STATUS_TEMP register</pre>
:(ISR) :		;Insert user code here
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W ;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF SWAPF	W_TEMP,F W_TEMP,W	;Swap W_TEMP ;Swap W_TEMP into W

WDT CONTROL

enable it and clearing the bit will disable it.

register. When set, the WDT runs continuously.

The WDTE bit is located in the Configuration Word

When the WDTE bit in the Configuration Word register

is set, the SWDTEN bit of the WDTCON register has no

effect. If WDTE is clear, then the SWDTEN bit can be

used to enable and disable the WDT. Setting the bit will

The PSA and PS<2:0> bits of the OPTION register

have the same function as in previous versions of the PIC16F631/677/685/687/689/690 Family of microcon-

trollers. See Section 5.0 "Timer0 Module" for more

14.5.2

information.

14.5 Watchdog Timer (WDT)

The WDT has the following features:

- Operates from the LFINTOSC (31 kHz)
- Contains a 16-bit prescaler
- Shares an 8-bit prescaler with Timer0
- Time-out period is from 1 ms to 268 seconds
- · Configuration bit and software controlled

WDT is cleared under certain conditions described in Table 14-7.

14.5.1 WDT OSCILLATOR

The WDT derives its time base from the 31 kHz LFINTOSC. The LTS bit of the OSCCON register does not reflect that the LFINTOSC is enabled.

The value of WDTCON is '---0 1000' on all Resets. This gives a nominal time base of 17 ms.

Note:	When the Oscillator Start-up Timer (OST)		
	is invoked, the WDT is held in Reset,		
	because the WDT Ripple Counter is used		
	by the OST to perform the oscillator delay		
	count. When the OST count has expired,		
	the WDT will begin counting (if enabled).		

FIGURE 14-9: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 14-7: WDT STATUS

Conditions	WDT
WDTE = 0	Cleared
CLRWDT Command	
Oscillator Fail Detected	
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK	
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST

MOVF	Move f			
Syntax:	[<i>label</i>] MOVF f,d			
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in \left[0,1\right] \end{array}$			
Operation:	(f) \rightarrow (dest)			
Status Affected:	Z			
Description:	The contents of register 'f' is moved to a destination dependent upon the status of 'd'. If $d = 0$, destination is W register. If $d = 1$, the destination is file register 'f' itself. $d = 1$ is useful to test a file register since status flag Z is affected.			
Words:	1			
Cycles:	1			
Example:	MOVF FSR, 0			
	After Instruction W = value in FSR register Z = 1			

MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example:	MOVW OPTION F
	Before Instruction
	OPTION = 0xFF
	W = 0x4F
	After Instruction
	OPTION = 0x4F
	W = 0x4F

MOVLW	Move literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The 8-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.
Words:	1
Cycles:	1
Example:	MOVLW 0x5A
	After Instruction W = 0x5A

NOP	No Operation		
Syntax:	[label] NOP		
Operands:	None		
Operation:	No operation		
Status Affected:	None		
Description:	No operation.		
Words:	1		
Cycles:	1		
Example:	NOP		

17.5 Thermal Considerations

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
Param No.	Sym.	Characteristic	Тур.	Units	Conditions	
TH01 θJA	θja	Thermal Resistance Junction to Ambient	62.4	C/W	20-pin PDIP package	
			85.2	C/W	20-pin SOIC package	
			108.1	C/W	20-pin SSOP package	
			40	C/W	20-pin QFN 4x4mm package	
TH02	θJC	Thermal Resistance Junction to Case	28.1	C/W	20-pin PDIP package	
			24.2	C/W	20-pin SOIC package	
			32.2	C/W	20-pin SSOP package	
			2.5	C/W	20-pin QFN 4x4mm package	
TH03	TDIE	Die Temperature	150	С	For derated power calculations	
TH04	PD	Power Dissipation	—	W	PD = PINTERNAL + PI/O	
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD (Note 1)	
TH06	Pi/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$	
TH07	Pder	Derated Power	—	W	PDER = PDMAX (TDIE - TA)/θJA (Note 2, 3)	

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature.

3: Maximum allowable power dissipation is the lower value of either the absolute maximum total power dissipation or derated power.

