E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f690-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: PINOUT DESCRIPTION – PIC16F685

Name	Function	Input Type	Output Type	Description	
RA0/AN0/C1IN+/ICSPDAT/ ULPWU	RA0	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.	
	AN0	AN	—	A/D Channel 0 input.	
	C1IN+	AN	—	Comparator C1 positive input.	
	ICSPDAT	TTL	CMOS	ICSP™ Data I/O.	
	ULPWU	AN	—	Ultra Low-Power Wake-up input.	
RA1/AN1/C12IN0-/VREF/ICSPCLK	RA1	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.	
	AN1	AN	—	A/D Channel 1 input.	
	C12IN0-	AN	—	Comparator C1 or C2 negative input.	
	Vref	AN	—	External Voltage Reference for A/D.	
	ICSPCLK	ST	—	ICSP™ clock.	
RA2/AN2/T0CKI/INT/C1OUT	RA2	ST	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.	
	AN2	AN	—	A/D Channel 2 input.	
	T0CKI	ST	—	Timer0 clock input.	
	INT	ST	—	External interrupt pin.	
	C1OUT		CMOS	Comparator C1 output.	
RA3/MCLR/Vpp	RA3	TTL	—	General purpose input. Individually controlled interrupt-on- change.	
	MCLR	ST	—	Master Clear with internal pull-up.	
	Vpp	ΗV	_	Programming voltage.	
RA4/AN3/T1G/OSC2/CLKOUT	RA4	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.	
	AN3	AN	—	A/D Channel 3 input.	
	T1G	ST	—	Timer1 gate input.	
	OSC2		XTAL	Crystal/Resonator.	
	CLKOUT		CMOS	Fosc/4 output.	
RA5/T1CKI/OSC1/CLKIN	RA5	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.	
	T1CKI	ST	—	Timer1 clock input.	
	OSC1	XTAL	—	Crystal/Resonator.	
	CLKIN	ST	—	External clock input/RC oscillator connection.	
RB4/AN10	RB4	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.	
	AN10	AN		A/D Channel 10 input.	
RB5/AN11	RB5	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.	
	AN11	AN	—	A/D Channel 11 input.	
RB6	RB6	TTL CMOS General purpose I/O. Individually controlled interrupt change. Individually enabled pull-up.		General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.	
RB7	RB7	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.	
RC0/AN4/C2IN+	RC0	ST	CMOS	General purpose I/O.	
	AN4	AN		A/D Channel 4 input.	
	C2IN+	AN		Comparator C2 positive input.	
Legend: AN = Analog input of TTL = TTL compatible HV = High Voltage	or output le input	CMOS= ST= S XTAL= 0	CMOS co Schmitt T Crystal	rigger input with CMOS levels	

Name	Function	Input Type	Output Type	Description
RB6/SCK/SCL	RB6	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.
	SCK	ST	CMOS	SPI clock.
	SCL	ST	OD	l ² C [™] clock.
RB7/TX/CK	RB7	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.
	ТΧ	—	CMOS	EUSART asynchronous output.
	CK	ST	CMOS	EUSART synchronous clock.
RC0/AN4/C2IN+	RC0	ST	CMOS	General purpose I/O.
	AN4	AN		A/D Channel 4 input.
	C2IN+	AN		Comparator C2 positive input.
RC1/AN5/C12IN1-	RC1	ST	CMOS	General purpose I/O.
	AN5	AN		A/D Channel 5 input.
	C12IN1-	AN		Comparator C1 or C2 negative input.
RC2/AN6/C12IN2-/P1D	RC2	ST	CMOS	General purpose I/O.
	AN6	AN	_	A/D Channel 6 input.
	C12IN2-	AN	_	Comparator C1 or C2 negative input.
	P1D	—	CMOS	PWM output.
RC3/AN7/C12IN3-/P1C	RC3	ST	CMOS	General purpose I/O.
	AN7	AN		A/D Channel 7 input.
	C12IN3-	AN		Comparator C1 or C2 negative input.
	P1C	—	CMOS	PWM output.
RC4/C2OUT/P1B	RC4	ST	CMOS	General purpose I/O.
	C2OUT	—	CMOS	Comparator C2 output.
	P1B	—	CMOS	PWM output.
RC5/CCP1/P1A	RC5	ST	CMOS	General purpose I/O.
	CCP1	ST	CMOS	Capture/Compare input.
	P1A	ST	CMOS	PWM output.
RC6/AN8/SS	RC6	ST	CMOS	General purpose I/O.
	AN8	AN		A/D Channel 8 input.
	SS	ST	—	Slave Select input.
RC7/AN9/SDO	RC7	ST	CMOS	General purpose I/O.
	AN9	AN	_	A/D Channel 9 input.
	SDO	—	CMOS	SPI data output.
Vss	Vss	Power	—	Ground reference.
Vdd	Vdd	Power	—	Positive supply.
Legend: AN = Analog input	or output	CMOS=	CMOS co	ompatible input or outputOD= Open Drain

TABLE 1-5: PINOUT DESCRIPTION – PIC16F690 (CONTINUED)

Legend:

TTL = TTL compatible input

CMOS=CMOS compatible input or outputOD=

ST= Schmitt Trigger input with CMOS levels

HV = High Voltage

XTAL= Crystal

FIGURE 2-4: PIC16F631 SPECIAL FUNCTION REGISTERS

	File		File		File		File
	Address		Address		Address		Address
Indirect addr. (1)	00h	Indirect addr. (1)	80h	Indirect addr. (1)	100h	Indirect addr. (1)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h	PORTA	105h	TRISA	185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h	PORTC	107h	TRISC	187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDAT	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2 ⁽¹⁾	18Dh
TMR1L	0Eh	PCON	8Eh		10Eh		18Eh
TMR1H	0Fh	OSCCON	8Fh		10Fh		18Fh
T1CON	10h	OSCTUNE	90h		110h		190h
	11h		91h		111h		191h
	12h		92h		112h		192h
	13h		93h		113h		193h
	14h		94h		114h		194h
	15h	WPUA	95h	WPUB	115h		195h
	16h	IOCA	96h	IOCB	116h		196h
	17h	WDTCON	97h		117h		197h
	18h		98h	VRCON	118h		198h
	19h		99h	CM1CON0	119h		199h
	1Ah		9Ah	CM2CON0	11Ah		19Ah
	1Bh		9Bh	CM2CON1	11Bh		19Bh
	1Ch		9Ch		11Ch		19Ch
	1Dh		9Dh		11Dh		19Dh
	1Eh		9Eh	ANSEL	11Eh	SRCON	19Eh
	1Fh		9Fh		11Fh		19Fh
	20h		A0h		120h		1A0h
	3Fh						
General	40h						
Purpose	-011						
Registers							
	6Fh		EFh		16Fh		1EFh
64 Bytes	70h	accesses	F0h	accesses	170h	accesses	1F0h
	7Fh	70h-7Fh	FFh	70h-7Fh	17Fh	70h-7Fh	1FFh
Bank 0		Bank 1		Bank 2		Bank 3	

Unimplemented data memory locations, read as '0'.

Note 1: Not a physical register.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank 3	ank 3										
180h	INDF	Addressing	this location	n uses conte	ents of FSR to	o address da	ata memory	(not a physi	cal register)	xxxx xxxx	43,200
181h	OPTION_REG	RABPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	36,200
182h	PCL	Program C	ounter's (PC	C) Least Sig	nificant Byte					0000 0000	43,200
183h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	35,200
184h	FSR	Indirect Da	ta Memory A	Address Poi	nter					xxxx xxxx	43,200
185h	TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	57,200
186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	_	_	_	_	1111	68,201
187h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	74,201
188h	_	Unimpleme	ented							-	
189h	_	Unimpleme	ented							-	
18Ah	PCLATH	_	_	—	Write Buffer	for the uppe	er 5 bits of th	ne Program	Counter	0 0000	43,200
18Bh	INTCON	GIE	PEIE	TOIE	INTE	RABIE	TOIF	INTF	RABIF ⁽¹⁾	0000 000x	37,200
18Ch	EECON1	EEPGD ⁽²⁾ — — — WRERR WREN WR RD x x						x x000	119,201		
18Dh	EECON2	EEPROM Control Register 2 (not a physical register)						117,201			
18Eh	—	Unimplemented –							_	_	
18Fh	—	Unimplemented —							_		
190h	_	Unimplemented —							_		
191h	_	Unimpleme	ented							_	_
192h	_	Unimplemented — —							_		
193h		Unimpleme	Unimplemented —							_	
194h	—	Unimpleme	ented							—	—
195h	_	Unimpleme	ented							—	—
196h	—	Unimpleme	ented							—	_
197h	—	Unimpleme	ented							—	_
198h	—	Unimplemented —							_		
199h	—	Unimplemented —							_		
19Ah	—	Unimplemented —									
19Bh	—	Unimplemented —									
19Ch	-	Unimplemented —						_			
19Dh	PSTRCON ⁽²⁾	—	—	—	STRSYNC	STRD	STRC	STRB	STRA	0 0001	144,201
19Eh	SRCON	SR1	SR0	C1SEN	C2REN	PULSS	PULSR	—	—	0000 00	101,201
19Fh	_	Unimpleme	ented							_	—

TABLE 2-4: PIC16F631/677/685/687/689/690 SPECIAL FUNCTION REGISTERS SUMMARY BANK 3

Legend: -= Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: MCLR and WDT Reset does not affect the previous value data latch. The RABIF bit will be cleared upon Reset but will set again if the mismatch exists.

2: PIC16F685/PIC16F690 only.

2.2.2.4 PIE1 Register

The PIE1 register contains the interrupt enable bits, as shown in Register 2-4.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 2-4: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	ADIE ⁽⁵⁾	RCIE ⁽³⁾	TXIE ⁽³⁾	SSPIE ⁽⁴⁾	CCP1IE ⁽²⁾	TMR2IE ⁽¹⁾	TMR1IE
bit 7							bit 0

Legend:									
R = Reada	able bit	W = Writable bit	U = Unimplemented bit,	read as '0'					
n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
oit 7	Unimple	mented: Read as '0'							
oit 6	ADIE: A/	ADIE: A/D Converter (ADC) Interrupt Enable bit ⁽⁵⁾							
	1 = Enat	1 = Enables the ADC interrupt							
	0 = Disal	oles the ADC interrupt							
oit 5	RCIE: EU	JSART Receive Interrupt Er	nable bit ⁽³⁾						
	1 = Enat	les the EUSART receive int	errupt						
	0 = Disal	oles the EUSART receive in	terrupt						
oit 4	TXIE: EUSART Transmit Interrupt Enable bit ⁽⁵⁾								
	1 = Enat	les the EUSART transmit in	terrupt						
	0 = Disa l	oles the EUSART transmit ir	nterrupt						
oit 3	SSPIE: S	SSPIE: Synchronous Serial Port (SSP) Interrupt Enable bit ⁽⁴⁾							
	1 = Enat	les the SSP interrupt							
	0 = Disal	oles the SSP interrupt							
oit 2	CCP1IE:	CCP1 Interrupt Enable bit ⁽²	2)						
	1 = Enat	les the CCP1 interrupt							
	0 = Disal	oles the CCP1 interrupt							
oit 1	TMR2IE:	Timer2 to PR2 Match Interr	rupt Enable bit()						
	1 = Enat	oles the Timer2 to PR2 matc	h interrupt						
	0 = Disal	bies the Timer2 to PR2 mate							
oit 0	TMR1IE:	Timer1 Overflow Interrupt E	nable bit						
	1 = Enat	oles the Timer1 overflow inte	errupt						
	0 = Disal		errupt						
Note 1:	PIC16F685/P	1016F690 only.							
2:	PIC16F685/P	IC16F689/PIC16F690 only.							
3:	PIC16F687/P	IC16F689/PIC16F690 only.							

4: PIC16F677/PIC16F687/PIC16F689/PIC16F690 only.

5: PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.

2.3 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 2-9 shows the two situations for the loading of the PC. The upper example in Figure 2-9 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 2-9 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-9: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<12:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper five bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 13 bits of the program counter will change to the values contained in the PCLATH register and those being written to the PCL register.

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). Care should be exercised when jumping into a look-up table or program branch table (computed GOTO) by modifying the PCL register. Assuming that PCLATH is set to the table start address, if the table length is greater than 255 instructions or if the lower eight bits of the memory address rolls over from 0xFF to 0x00 in the middle of the table, then PCLATH must be incremented for each address rollover that occurs between the table beginning and the target location within the table.

For more information refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

2.3.2 STACK

The PIC16F631/677/685/687/689/690 devices have an 8-level x 13-bit wide hardware stack (see Figures 2-2 and 2-3). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note I. I	There are no Status bits to indicate stack overflow or stack underflow conditions.				
2: T c ti c ii ii ii	There are no instructions/mnemonics called PUSH or POP. These are actions hat occur from the execution of the CALL, RETURN, RETLW and RETFIE nstructions or the vectoring to an interrupt address.				

2.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR and the IRP bit of the STATUS register, as shown in Figure 2-10.

A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1:	INDIRECT ADDRESSING

	MOVLW	0x20	;initialize pointer
	MOVWF	FSR	;to RAM
NEXT	CLRF	INDF	;clear INDF register
	INCF	FSR	;inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;no clear next
CONTIN	UE		;yes continue

4.4.3.3 RB6/SCK/SCL

Figure 4-9 shows the diagram for this pin. The RB6/ SCK/SCL⁽¹⁾ pin is configurable to function as one of the following:

- a general purpose I/O
- a SPI clock
- an l²C[™] clock

Note 1:	SCK	and	SCL	are	available	on
	PIC16F677/PIC16F687/PIC16F689/					
	PIC16F690 only.					

FIGURE 4-9:

BLOCK DIAGRAM OF RB6

8.10.5 FIXED VOLTAGE REFERENCE

The Fixed Voltage Reference is independent of VDD, with a nominal output voltage of 0.6V. This reference can be enabled by setting the VP6EN bit of the VRCON register to '1'. This reference is always enabled when the HFINTOSC oscillator is active.

8.10.6 FIXED VOLTAGE REFERENCE STABILIZATION PERIOD

When the Fixed Voltage Reference module is enabled, it will require some time for the reference and its amplifier circuits to stabilize. The user program must include a small delay routine to allow the module to settle. See the electrical specifications section for the minimum delay requirement.

8.10.7 VOLTAGE REFERENCE SELECTION

Multiplexers on the output of the Voltage Reference module enable selection of either the CVREF or Fixed Voltage Reference for use by the comparators.

Setting the C1VREN bit of the VRCON register enables current to flow in the CVREF voltage divider and selects the CVREF voltage for use by C1. Clearing the C1VREN bit selects the fixed voltage for use by C1.

Setting the C2VREN bit of the VRCON register enables current to flow in the CVREF voltage divider and selects the CVREF voltage for use by C2. Clearing the C2VREN bit selects the fixed voltage for use by C2.

When both the C1VREN and C2VREN bits are cleared, current flow in the CVREF voltage divider is disabled minimizing the power drain of the voltage reference peripheral.

FIGURE 8-8: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

10.0 DATA EEPROM AND FLASH PROGRAM MEMORY CONTROL

Data EEPROM memory is readable and writable and the Flash program memory (PIC16F685/PIC16F689/ PIC16F690 only) is readable during normal operation (full VDD range). These memories are not directly mapped in the register file space. Instead, they are indirectly addressed through the Special Function Registers (SFRs). There are six SFRs used to access these memories:

- EECON1
- EECON2
- EEDAT
- EEDATH (PIC16F685/PIC16F689/PIC16F690 only)
- EEADR
- EEADRH (PIC16F685/PIC16F689/PIC16F690 only)

When interfacing the data memory block, EEDAT holds the 8-bit data for read/write, and EEADR holds the address of the EEDAT location being accessed. These devices, except for the PIC16F631, have 256 bytes of data EEPROM with an address range from 0h to 0FFh. The PIC16F631 has 128 bytes of data EEPROM with an address range from 0h to 07Fh.

When accessing the program memory block of the PIC16F685/PIC16F689/PIC16F690 devices, the EEDAT and EEDATH registers form a 2-byte word that holds the 14-bit data for read/write, and the EEADR and EEADRH registers form a 2-byte word that holds the 12-bit address of the EEPROM location being read. These devices (PIC16F685/PIC16F689/PIC16F690) have 4K words of program EEPROM with an address range from 0h to 0FFFh. The program memory allows one-word reads.

The EEPROM data memory allows byte read and write. A byte write automatically erases the location and writes the new data (erase before write).

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the voltage range of the device for byte or word operations.

When the device is code-protected, the CPU may continue to read and write the data EEPROM memory and read the program memory. When code-protected, the device programmer can no longer access data or program memory.

10.1 EEADR and EEADRH Registers

The EEADR and EEADRH registers can address up to a maximum of 256 bytes of data EEPROM or up to a maximum of 4K words of program EEPROM.

When selecting a program address value, the MSB of the address is written to the EEADRH register and the LSB is written to the EEADR register. When selecting a data address value, only the LSB of the address is written to the EEADR register.

10.1.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for EE memory accesses.

Control bit EEPGD (PIC16F685/PIC16F689/PIC16F690) determines if the access will be a program or data memory access. When clear, as it is when reset, any subsequent operations will operate on the data memory. When set, any subsequent operations will operate on the program memory. Program memory can only be read.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation to data EEPROM. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a $\overline{\text{MCLR}}$ or a WDT Time-out Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and rewrite the location.

Interrupt flag bit EEIF of the PIR2 register is set when write is complete. It must be cleared in the software.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the data EEPROM write sequence.

11.0 ENHANCED CAPTURE/ COMPARE/PWM MODULE

The Enhanced Capture/Compare/PWM module is a peripheral which allows the user to time and control different events. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate a Pulse-Width Modulated signal of varying frequency and duty cycle. Table 11-1 shows the timer resources required by the ECCP module.

TABLE 11-1: ECCP MODE – TIMER RESOURCES REQUIRED

ECCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

REGISTER 11-1: CCP1CON: ENHANCED CCP1 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0
bit 7							bit 0

Legend:								
R = Readable b	pit	W = Writable bit	U = Unimplemented bit,	read as '0'				
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 7-6	P1M<1:0>: PWM Output Configuration bits If CCP1M<3:2> = 00, 01, 10: xx = P1A assigned as Capture/Compare input; P1B, P1C, P1D assigned as port pins If CCP1M<3:2> = 11: 00 =Single output; P1A modulated; P1B, P1C, P1D assigned as port pins 01 =Full-Bridge output forward; P1D modulated; P1A active; P1B, P1C inactive 10 =Half-Bridge output; P1A, P1B modulated with dead-band control; P1C, P1D assigned as port 11 =Full-Bridge output; reverse: P1B modulated; P1C, active: P1A, P1D inactive							
bit 5-4	DC1B<1:0>: F	PWM Duty Cycle Least S	Significant bits					
	Capture mode Unused. Compare mod Unused. <u>PWM mode:</u> These bits are	<u>e:</u> the two LSbs of the PW	/M duty cycle. The eight MSbs	are found in CCPR1L.				
bit 3-0	CCP1M<3:0> 0000 =Captur 0001 =Unuse 0010 =Compa 0011 =Unuse 0100 =Captur 0101 =Captur 0111 =Captur 0111 =Captur 1000 =Compa 1010 =Compa 1010 =Compa 1011 =Compa 1010 =Compa 1010 =Compa 1010 =Compa 1010 =Compa 1010 =Compa 1010 =Compa 1010 =Compa 1010 =Compa 1010 =Compa 1011 =Compa 1010 =Compa 1010 =Compa 1010 =Compa 1010 =Compa 1010 =Compa 1010 =Compa 1010 =Compa 1010 =PWM r	ECCP Mode Select bit: e/Compare/PWM off (re d (reserved) are mode, toggle output d (reserved) e mode, every falling ed e mode, every falling ed e mode, every rising ed e mode, every 16th rising are mode, set output on are mode, clear output o are mode, clear output o are mode, generate software mode; P1A, P1C active- node; P1A, P1C active- node; P1A, P1C active- node; P1A, P1C active- node; P1A, P1C active-	s sets ECCP module) on match (CCP1IF bit is set) lge ge ge dge match (CCP1IF bit is set) n match (CCP1IF bit is set) vare interrupt on match (CCP1IF event (CCP1IF bit is set; CCP1 cmodule is enabled) high; P1B, P1D active-high high; P1B, P1D active-low low; P1B, P1D active-low	⁻ bit is set, CCP1 pin is unaffected) resets TMR1 or TMR2, and starts				

11.3 PWM Mode

The PWM mode generates a Pulse-Width Modulated signal on the CCP1 pin. The duty cycle, period and resolution are determined by the following registers:

- PR2
- T2CON
- CCPR1L
- CCP1CON

In Pulse-Width Modulation (PWM) mode, the CCP module produces up to a 10-bit resolution PWM output on the CCP1 pin. Since the CCP1 pin is multiplexed with the PORT data latch, the TRIS for that pin must be cleared to enable the CCP1 pin output driver.

Note:	Clearing	the	CCP1CON	register	will
	relinquish	CCF	1 control of t	he CCP1	pin.

Figure 11-3 shows a simplified block diagram of PWM operation.

Figure 11-4 shows a typical waveform of the PWM signal.

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 11.3.7** "Setup for PWM Operation".

FIGURE 11-3: SIMPLIFIED PWM BLOCK DIAGRAM

The PWM output (Figure 11-4) has a time base (period) and a time that the output stays high (duty cycle).

FIGURE 11-4: CCP PWM OUTPUT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	0000 0000
CM1CON0	C10N	C10UT	C10E	C1POL	—	C1R	C1CH1	C1CH0	0000 -000	0000 -000
CM2CON0	C2ON	C2OUT	C2OE	C2POL	_	C2R	C2CH1	C2CH0	0000 -000	0000 -000
CM2CON1	MC10UT	MC2OUT			_		T1GSS	C2SYNC	0010	0010
CCPR1L	Capture/Compare/PWM Register 1 Low Byte									uuuu uuuu
CCPR1H	Capture/Compare/PWM Register 1 High Byte							xxxx xxxx	uuuu uuuu	
ECCPAS	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000 0000	0000 0000
INTCON	GIE	PEIE	TOIE	INTE	RABIE	TOIF	INTF	RABIF	0000 0000	0000 0000
PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIR1		ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
PSTRCON		—		STRSYNC	STRD	STRC	STRB	STRA	0 0001	0 0001
PWM1CON	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000 0000	0000 0000
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	uuuu uuuu
T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register									uuuu uuuu
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register									uuuu uuuu
TMR2	Timer2 Mo	dule Registe	er						0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

TABLE 11-5: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND PWM

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Capture, Compare and PWM.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets	
BAUDCTL	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	01-0 0-00	01-0 0-00	
INTCON	GIE	PEIE	T0IE	INTE	RABIE	T0IF	INTF	RABIF	x000 000x	x000 0000	
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000	
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000	
RCREG	EUSART	Receive Da	ita Register						0000 0000	0000 0000	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 000x	x000 0000	
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000	
SPBRGH	BRG15	BRG14	BRG13	BRG12	BRG11	BRG10	BRG9	BRG8	0000 0000	0000 0000	
TRISB	TRISB7	TRISB6	TRISB5	TRISB4					1111	1111	
TXREG	EUSART	Transmit Da		0000 0000	0000 0000						
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010	
Legend:	x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Asynchronous Transmission.										

TABLE 12-1: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

13.5 Master Mode

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 13-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and Status bits appropriately set). This could be useful in receiver applications as a Line Activity Monitor mode. The clock polarity is selected by appropriately programming the CKP bit of the SSPCON register. This then, would give waveforms for SPI communication as shown in Figure 13-3, Figure 13-5 and Figure 13-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2 (No SSP module, PIC16F690 only)

Figure 13-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

FIGURE 13-3: SPI MODE WAVEFORM (MASTER MODE)

13.6 Slave Mode

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from Sleep.

13.7 Slave Select Synchronization

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = 04h). The pin must not be driven low for the \overline{SS} pin to function as an input. The data latch must be high. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven,

even if in the middle of a transmitted byte, and becomes a floating output. External pull-up/pull-down resistors may be desirable, depending on the application.

- Note 1: When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is set to VDD.
 - 2: If the SPI is used in Slave Mode with CKE set, then the SS pin control must be enabled.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the \overline{SS} pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 13-4: SLAVE SYNCHRONIZATION WAVEFORM

13.13 Master Mode

Master mode of operation is supported in firmware using interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the SSP module is disabled. The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I²C bus may be taken when the P bit is set or the bus is idle and both the S and P bits are clear.

In Master mode, the SCL and SDA lines are manipulated by clearing the corresponding TRISB<6,4> bit(s). The output level is always low, irrespective of the value(s) in PORTB<6,4>. So when transmitting data, a '1' data bit must have the TRISB<4> bit set (input) and a '0' data bit must have the TRISB<4> bit cleared (output). The same scenario is true for the SCL line with the TRISB<6> bit. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I²C module.

The following events will cause the SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt will occur if enabled):

- Start condition
- Stop condition
- Data transfer byte transmitted/received

Master mode of operation can be done with either the Slave mode idle (SSPM<3:0> = 1011), or with the Slave active. When both Master and Slave modes are enabled, the software needs to differentiate the source(s) of the interrupt.

13.14 Multi-Master Mode

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions, allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the SSP module is disabled. The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I^2C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle and both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the Stop condition occurs.

In Multi-Master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISB<6,4>). There are two stages where this arbitration can be lost, these are:

- Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed, an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

13.14.1 CLOCK SYNCHRONIZATION AND THE CKP BIT

When the CKP bit is cleared, the SCL output is forced to '0'; however, setting the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external l^2C master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the l^2C bus have deasserted SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 13-12).

15.0 INSTRUCTION SET SUMMARY

The PIC16F690 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 15-1, while the various opcode fields are summarized in Table 15-1.

Table 15-2 lists the instructions recognized by the MPASMTM assembler.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8-bit or 11-bit constant, or literal value.

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

15.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (RMW) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a CLRF PORTA instruction will read PORTA, clear all the data bits, then write the result back to PORTA. This example would have the unintended consequence of clearing the condition that set the RAIF flag.

TABLE 15-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
х	Don't care location (= 0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$.
PC	Program Counter
TO	Time-out bit
С	Carry bit
DC	Digit carry bit
Z	Zero bit
PD	Power-down bit

FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS

FIGURE 17-8: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 17-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

-		0 10 0	\leq IA \leq +125 C						
Param No.	Sym.		Characterist	ic	Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High Pulse Width No Prescaler			0.5 TCY + 20	—	—	ns	
		With		With Prescaler	10	_	_	ns	
41*	T⊤0L	T0CKI Low P	ulse Width	No Prescaler	0.5 TCY + 20	_		ns	
			With Prescaler		10	_		ns	
42*	TT0P	T0CKI Period	1		Greater of: 20 or <u>Tcy + 40</u> N	_		ns	N = prescale value (2, 4,, 256)
45*	T⊤1H	H T1CKI High Time	Synchronous, No Prescaler		0.5 TCY + 20	_		ns	
			Synchronous, with Prescaler		15			ns	
			Asynchronous		30	—	_	ns	
46*	T⊤1L	T1CKI Low Time	Synchronous, No Prescaler Synchronous, with Prescaler		0.5 TCY + 20	_	_	ns	
					15			ns	
			Asynchronous		30	—	_	ns	
47*	TT1P T1CKI Input Synchronous Period			Greater of: 30 or <u>Tcy + 40</u> N	_	—	ns	N = prescale value (1, 2, 4, 8)	
			Asynchronous		60	—	_	ns	
48	FT1	Timer1 Oscill (oscillator en	ator Input Frequabled by setting	uency Range bit T1OSCEN)	—	32.768		kHz	
49*	TCKEZTMR1	Delay from E Increment	xternal Clock E	dge to Timer	2 Tosc	-	7 Tosc	_	Timers in Sync mode

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

