

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f690t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-8: PIC16F690 SPECIAL FUNCTION REGISTERS

	File		File		File		File
	Address		Address		Address		Address
Indirect addr. (1)	00h	Indirect addr. (1)	80h	Indirect addr. (1)	100h	Indirect addr. (1)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h	PORTA	105h	TRISA	185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h	PORTC	107h	TRISC	187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDAT	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2 ⁽¹⁾	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh		18Eh
TMR1H	0Fh	OSCCON	8Fh	EEADRH	10Fh		18Fh
T1CON	10h	OSCTUNE	90h		110h		190h
TMR2	11h		91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD ⁽²⁾	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h	-	194h
CCPR1L	15h	WPUA	95h	WPUB	115h	-	195h
CCPR1H	16h	IOCA	96h	IOCB	116h	-	196h
CCP1CON	17h	WDTCON	97h		117h	-	197h
RCSTA	18h	TXSTA	98h	VRCON	118h	-	198h
TXREG	19h	SPBRG	99h	CM1CON0	119h		199h
RCREG	1Ah	SPBRGH	9Ah	CM2CON0	11Ah		19Ah
	1Bh	BAUDCTL	9Bh	CM2CON1	11Bh		19Bh
PWM1CON	1Ch		9Ch		11Ch		19Ch
ECCPAS	1Dh		9Dh		11Dh	PSTRCON	19Dh
ADRESH	1Eh	ADRESL	9Eh	ANSEL	11Eh	SRCON	19Eh
ADCON0	1Fh	ADCON1	9Fh	ANSELH	11Fh		19Fh
	20h		A0h		120h		1A0h
General		General		General			
General Purpose		Purpose Register		Purpose Register			
Register		register		register			
-		80 Bytes		80 Bytes			
96 Bytes			EFh		16Fh		
		accesses	F0h	accesses	170h	accesses	1F0h
	7Fh	70h-7Fh	FFh	70h-7Fh	17Fh	70h-7Fh	1FFh
Bank 0	1	Bank 1	1	Bank 2	I	Bank 3	I

Unimplemented data memory locations, read as '0'.

Note 1: Not a physical register.

2: Address 93h also accesses the SSP Mask (SSPMSK) register under certain conditions. See Registers 13-2 and 13-3 for more details.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page	
Bank	0											
00h	INDF	Addressing	this location	uses conten	ts of FSR to a	address data	memory (no	t a physical r	egister)	xxxx xxxx	43,200	
01h	TMR0	Timer0 Mod	mer0 Module Register xxxx xx									
02h	PCL	Program Co	Program Counter's (PC) Least Significant Byte									
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	35,200	
04h	FSR	Indirect Dat	a Memory A	ddress Pointe	ər					xxxx xxxx	43,200	
05h	PORTA ⁽⁷⁾	_	_	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	57,200	
06h	PORTB ⁽⁷⁾	RB7	RB6	RB5	RB4	_	_	_	_	xxxx	67,200	
07h	PORTC ⁽⁷⁾	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	74,200	
08h	—	Unimpleme	nted							—	—	
09h	—	Unimpleme	nted							—	—	
0Ah	PCLATH		_		Write Buffer	for upper 5 l	oits of Progra	am Counter		0 0000	43,200	
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RABIE	TOIF	INTF	RABIF ⁽¹⁾	0000 000x	37,200	
0Ch	PIR1	_	ADIF ⁽⁴⁾	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF ⁽⁵⁾	CCP1IF ⁽³⁾	TMR2IF ⁽³⁾	TMR1IF	-000 0000	40,200	
0Dh	PIR2	OSFIF	C2IF	C1IF	EEIF	—	—	_	_	0000	41,200	
0Eh	TMR1L	Holding Re	gister for the	Least Signifi	cant Byte of	the 16-bit TM	R1 Register			xxxx xxxx	85,200	
0Fh	TMR1H	Holding Re	gister for the	Most Signific	cant Byte of t	he 16-bit TM	R1 Register			xxxx xxxx	85,200	
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	87,200	
11h	TMR2 ⁽³⁾	Timer2 Mod	ule Register							0000 0000	89,200	
12h	T2CON ⁽³⁾	-	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	90,200	
13h	SSPBUF ⁽⁵⁾	Synchronou	us Serial Port	Receive But	ffer/Transmit	Register				xxxx xxxx	178,200	
14h	SSPCON ^(5, 6)	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	177,200	
15h	CCPR1L ⁽³⁾	Capture/Co	mpare/PWM	Register 1 (I	LSB)					xxxx xxxx	126,200	
16h	CCPR1H ⁽³⁾	Capture/Co	mpare/PWM	Register 1 (I	MSB)					xxxx xxxx	126,200	
17h	CCP1CON ⁽³⁾	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	125,200	
18h	RCSTA ⁽²⁾	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	158,200	
19h	TXREG ⁽²⁾	EUSART T	ransmit Data	Register						0000 0000	150	
1Ah	RCREG ⁽²⁾	EUSART R	eceive Data	Register						0000 0000	155	
1Bh	_	Unimpleme	nted							_	_	
1Ch	PWM1CON ⁽³⁾	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000 0000	143,200	
1Dh	ECCPAS ⁽³⁾	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000 0000	140,200	
1Eh	ADRESH ⁽⁴⁾	A/D Result	Register Hig	h Byte						xxxx xxxx	113,200	
1Fh	ADCON0 ⁽⁴⁾	ADFM	VCFG	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	0000 0000	111,200	

TABLE 2-1:	PIC16F631/677/685/687/689/690 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0
------------	---

Legend:- = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplementedNote1:MCLR and WDT Reset do not affect the previous value data latch. The RABIF bit will be cleared upon Reset but will set again if the

mismatch exists.

2: PIC16F687/PIC16F689/PIC16F690 only.

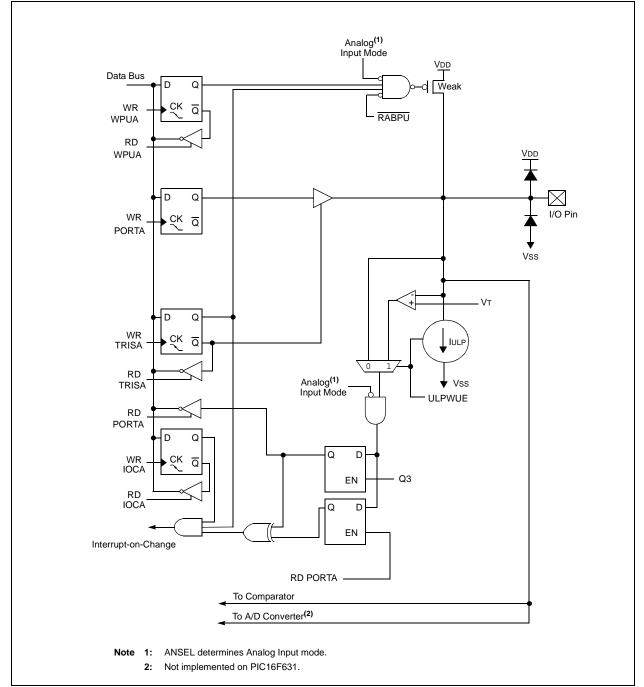
3: PIC16F685/PIC16F690 only.

4: PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.

5: PIC16F677/PIC16F687/PIC16F689/PIC16F690 only.

6: When SSPCON register bits SSPM<3:0> = 1001, any reads or writes to the SSPADD SFR address are accessed through the SSPMSK register. See Registers 13-2 and 13-3 for more detail.

7: Port pins with analog functions controlled by the ANSEL and ANSELH registers will read '0' immediately after a Reset even though the data latches are either undefined (POR) or unchanged (other Resets).


4.2.5 PIN DESCRIPTIONS AND DIAGRAMS

Each PORTA pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the comparator or the A/D Converter (ADC), refer to the appropriate section in this data sheet.

4.2.5.1 RA0/AN0/C1IN+/ICSPDAT/ULPWU

Figure 4-2 shows the diagram for this pin. The RA0/ AN0/C1IN+/ICSPDAT/ULPWU pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- an analog input to Comparator C1
- In-Circuit Serial Programming[™] data
- · an analog input for the Ultra Low-Power Wake-up

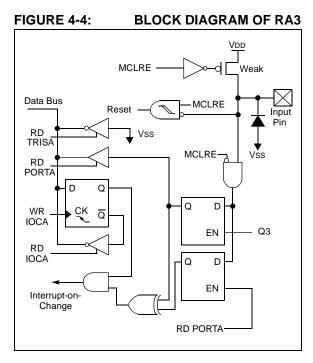
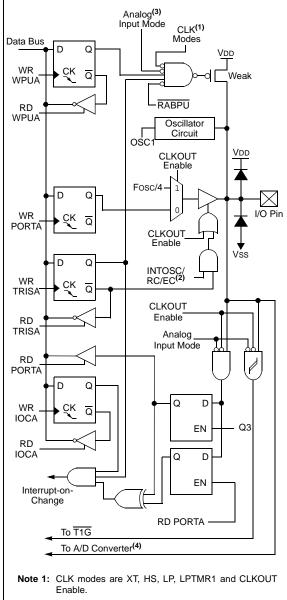


FIGURE 4-1: BLOCK DIAGRAM OF RA0

4.2.5.4 RA3/MCLR/VPP

Figure 4-4 shows the diagram for this pin. The RA3/ MCLR/VPP pin is configurable to function as one of the following:

- a general purpose input
- as Master Clear Reset with weak pull-up



4.2.5.5 RA4/AN3/T1G/OSC2/CLKOUT

Figure 4-5 shows the diagram for this pin. The RA4/ AN3/T1G/OSC2/CLKOUT pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC (except PIC16F631)
- a Timer1 gate input
- a crystal/resonator connection
- · a clock output

- 2: With CLKOUT option.
- 3: ANSEL determines Analog Input mode.
- 4: Not implemented on PIC16F631.

6.12 Timer1 Control Register

The Timer1 Control register (T1CON), shown in Register 6-1, is used to control Timer1 and select the various features of the Timer1 module.

REGISTER 6-1: T1CON: TIMER 1 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
T1GINV ⁽¹⁾) TMR1GE ⁽²⁾	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N						
bit 7							bit 0						
Legend:													
R = Readab		W = Writable		U = Unimplen									
-n = Value a	IT POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown						
bit 7	T1GINV: Time	er1 Gate Invert	bit(1)										
		T1GINV: Timer1 Gate Invert bit ⁽¹⁾ 1 = Timer1 gate is active-high (Timer1 counts when Timer1 gate signal is high)											
		0 = Timer1 gate is active-low (Timer1 counts when gate is low)											
bit 6	TMR1GE: Tin	TMR1GE: Timer1 Gate Enable bit ⁽²⁾											
		<u>If TMR1ON = 0:</u>											
	This bit is igno												
		<u>If TMR1ON = 1:</u> 1 = Timer1 counting is controlled by the Timer1 Gate function											
		always countir											
bit 5-4	T1CKPS<1:0	>: Timer1 Inpu	t Clock Presca	ale Select bits									
	11 = 1:8 Pres	11 = 1:8 Prescale Value											
		10 = 1:4 Prescale Value											
		01 = 1:2 Prescale Value 00 = 1:1 Prescale Value											
bit 3		TIOSCEN: LP Oscillator Enable Control bit											
	If INTOSC wit	If INTOSC without CLKOUT oscillator is active:											
		1 = LP oscillator is enabled for Timer1 clock											
		0 = LP oscillator is off											
		Else: This bit is ignored											
bit 2	0		lock Input Syr	hchronization Co	ontrol bit								
	<u>TMR1CS = 1</u> :												
		1 = Do not synchronize external clock input											
		0 = Synchronize external clock input											
	<u>TMR1CS = 0:</u> This bit is ign		ses the interna	al clock									
bit 1	0	his bit is ignored. Timer1 uses the internal clock MR1CS: Timer1 Clock Source Select bit											
	1 = External o	clock from T1C	KI pin (on the	rising edge)									
	0 = Internal cl												
bit 0 TMR10N: Timer1 On bit													
	1 = Enables T												
	0 = Stops Tim	ner1											
	1GINV bit inverts	-											
	MR1GE bit must			or C2OUT, as s	elected by the	T1GSS bit of the	ne CM2CON1						
r	egister, as a Time	era gate source											

REGISTER 10-4: EEADRH: EEPROM ADDRESS HIGH BYTE REGISTER⁽¹⁾ (CONTINUED)

Note 1: PIC16F685/PIC16F689/PIC16F690 only.

REGISTER 10-5: EECON1: EEPROM CONTROL REGISTER

R/W-x	U-0	U-0	U-0	R/W-x	R/W-0	R/S-0	R/S-0				
EEPGD ⁽¹⁾			_	WRERR	WREN	WR	RD				
bit 7							bit C				
Legend:											
S = Bit can or	ly be set										
R = Readable	bit	W = Writable b	pit	U = Unimpler	nented bit, rea	d as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 7		gram/Data EEPF		bit ⁽¹⁾							
		s program mem	ory								
bit 6-4		s data memory	,								
	-	ted: Read as '0									
bit 3	WRERR: EEPROM Error Flag bit 1 = A write operation is prematurely terminated (any MCLR Reset, any WDT Reset during										
	normal operation or BOR Reset)										
		operation com									
bit 2	WREN: EEPF	WREN: EEPROM Write Enable bit									
		1 = Allows write cycles									
	0 = Inhibits w	rite to the data E	EPROM								
bit 1	WR: Write Co	ontrol bit									
		EEPGD = 1:									
	This bit is ignored										
		<u>EEPGD = 0</u> : 1 = Initiates a write cycle (The bit is cleared by hardware once write is complete. The WR bit can only									
		ot cleared, in so		5		·					
	0 = Write cycle to the data EEPROM is complete										
bit 0	RD: Read Co	ntrol bit									
		•	(the RD is	cleared in har	dware and car	n only be set, r	ot cleared, i				
	software.) initiate a memo	ny read								
			ny ieau								

Note 1: PIC16F685/PIC16F689/PIC16F690 only.

10.1.4 READING THE FLASH PROGRAM MEMORY (PIC16F685/PIC16F689/ PIC16F690)

To read a program memory location, the user must write the Least and Most Significant address bits to the EEADR and EEADRH registers, set the EEPGD control bit of the EECON1 register, and then set control bit RD. Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF EECON1, RD" instruction to be ignored. The data is available in the very next cycle, in the EEDAT and EEDATH registers; therefore, it can be read as two bytes in the following instructions. EEDAT and EEDATH registers will hold this value until another read or until it is written to by the user.

- Note 1: The two instructions following a program memory read are required to be NOPS. This prevents the user from executing a 2-cycle instruction on the next instruction after the RD bit is set.
 - If the WR bit is set when EEPGD = 1, it will be immediately reset to '0' and no operation will take place.

EXAMPLE 10-3: FLASH PROGRAM READ

	BANKSEL	EEADR		;
	MOVF	MS_PROG_EE_ADDR,	W	;
	MOVWF	EEADRH		;MS Byte of Program Address to read
	MOVF	LS_PROG_EE_ADDR,	W	;
	MOVWF	EEADR		;LS Byte of Program Address to read
	BANKSEL	EECON1	;	
	BSF	EECON1, EEPGD		;Point to PROGRAM memory
т 8	BSF	EECON1, RD		;EE Read
Required Sequence	NOP			;First instruction after BSF EECON1,RD executes normally
	NOP			;Any instructions here are ignored as program
				;memory is read in second cycle after BSF EECON1,RD
;				
	BANKSEL	EEDAT	;	
	MOVF	EEDAT, W		;W = LS Byte of Program Memory
	MOVWF	LOWPMBYTE		;
	MOVF	EEDATH, W		;W = MS Byte of Program EEDAT
	MOVWF	HIGHPMBYTE		;
	BANKSEL	0x00	;Ba	nk 0

12.1.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a corresponding framing error Status bit. A framing error indicates that a Stop bit was not seen at the expected time. The framing error status is accessed via the FERR bit of the RCSTA register. The FERR bit represents the status of the top unread character in the receive FIFO. Therefore, the FERR bit must be read before reading the RCREG.

The FERR bit is read-only and only applies to the top unread character in the receive FIFO. A framing error (FERR = 1) does not preclude reception of additional characters. It is not necessary to clear the FERR bit. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

The FERR bit can be forced clear by clearing the SPEN bit of the RCSTA register which resets the EUSART. Clearing the CREN bit of the RCSTA register does not affect the FERR bit. A framing error by itself does not generate an interrupt.

Note:	If all receive characters in the receive
	FIFO have framing errors, repeated reads
	of the RCREG will not clear the FERR bit.

12.1.2.5 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated If a third character, in its entirety, is received before the FIFO is accessed. When this happens the OERR bit of the RCSTA register is set. The characters already in the FIFO buffer can be read but no additional characters will be received until the error is cleared. The error must be cleared by either clearing the CREN bit of the RCSTA register or by resetting the EUSART by clearing the SPEN bit of the RCSTA register.

12.1.2.6 Receiving 9-bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth and Most Significant data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREG.

12.1.2.7 Address Detection

A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems. Address detection is enabled by setting the ADDEN bit of the RCSTA register.

Address detection requires 9-bit character reception. When address detection is enabled, only characters with the ninth data bit set will be transferred to the receive FIFO buffer, thereby setting the RCIF interrupt bit. All other characters will be ignored.

Upon receiving an address character, user software determines if the address matches its own. Upon address match, user software must disable address detection by clearing the ADDEN bit before the next Stop bit occurs. When user software detects the end of the message, determined by the message protocol used, software places the receiver back into the Address Detection mode by setting the ADDEN bit.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x						
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D						
bit 7							bit 0						
<u> </u>													
Legend:	• •												
R = Readabl		W = Writable		-	mented bit, read								
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	IOWN						
bit 7	SPEN: Seria	SPEN: Serial Port Enable bit											
		ort enabled (cor ort disabled (hel	•	T and TX/CK p	ins as serial po	rt pins)							
bit 6	RX9: 9-bit R	eceive Enable b	oit										
		9-bit reception 8-bit reception											
bit 5	SREN: Sing	le Receive Enab	ole bit										
	SREN: Single Receive Enable bit Asynchronous mode:												
	Don't care	-											
	•	Synchronous mode – Master:											
		1 = Enables single receive											
		 0 = Disables single receive This bit is cleared after reception is complete. 											
	Synchronous mode – Slave												
	Don't care												
bit 4	CREN: Cont	CREN: Continuous Receive Enable bit											
	Asynchronous mode:												
	1 = Enables	1 = Enables receiver											
		0 = Disables receiver											
	-	Synchronous mode:											
	 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive 												
bit 3	ADDEN: Add	ADDEN: Address Detect Enable bit											
	Asynchronou	us mode 9-bit (F	<u> X9 = 1)</u> :										
		1 = Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set											
		s address detec		are received a	nd ninth bit car	be used as pa	rity bit						
		us mode 8-bit (R	(X9 = 0):										
h # 0	Don't care	in a Funan hit											
bit 2	FERR: Fram	ing Error bit gerror (can be u	ndatad by ray		rogistor and rac		huto)						
	1 = Framing 0 = No fram		poaled by rea		register and rec	eive next valid	byle)						
bit 1	OERR: Overrun Error bit												
	1 = Overrun 0 = No over	n error (can be c run error	leared by clea	aring bit CREN)								
bit 0	RX9D: Ninth	bit of Received	Data										
	This can be address/data bit or a parity bit and must be calculated by user firmware.												
			-		-								

REGISTER 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER⁽¹⁾

FIGURE 12-12	: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RX/DT pin TX/CK pin (SCKP = 0)	bit 0 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
TX/CK pin (SCKP = 1) Write to bit SREN	
SREN bit	ʻ0'
RCIF bit (Interrupt) ——— Read	
RXREG	g diagram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.

TABLE 12-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
BAUDCTL	ABDOVF	RCIDL		SCKP	BRG16		WUE	ABDEN	01-0 0-00	01-0 0-00
INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF	x000 000x	0000 000x
PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
RCREG	EUSART F	Receive Da	ta Register						0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
SPBRGH	BRG15	BRG14	BRG13	BRG12	BRG11	BRG10	BRG9	BRG8	0000 0000	0000 0000
TRISB	TRISB7	TRISB6	TRISB5	TRISB4					1111	1111
TXREG	EUSART 1	EUSART Transmit Data Register								0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Master Reception.

12.4.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for Synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART. If the RX/DT or TX/CK pins are shared with an analog peripheral the analog I/O functions must be disabled by clearing the corresponding ANSEL bits.

12.4.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see **Section 12.4.1.3 "Synchronous Master Transmission")**, except in the case of the Sleep mode. If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in TXREG register.
- 3. The TXIF bit will not be set.
- 4. After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- 5. If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 12.4.2.2 Synchronous Slave Transmission Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the CREN and SREN bits.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit transmission is desired, set the TX9 bit.
- 5. Enable transmission by setting the TXEN bit.
- 6. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 7. Start transmission by writing the Least Significant eight bits to the TXREG register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
BAUDCTL	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	01-0 0-00	01-0 0-00
INTCON	GIE	PEIE	TOIE	INTE	RABIE	T0IF	INTF	RABIF	x000 000x	0000 000x
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
RCREG	EUSART F	Receive Da	ta Register						0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 000x	0000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
SPBRGH	BRG15	BRG14	BRG13	BRG12	BRG11	BRG10	BRG9	BRG8	0000 0000	0000 0000
TRISB	TRISB7	TRISB6	TRISB5	TRISB4					1111	1111
TXREG	EUSART Transmit Data Register								0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010

TABLE 12-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission.

13.2 Operation

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

The SSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the eight bits of data have been received, that byte is moved to the SSPBUF register. Then, the Buffer Full Status bit BF of the SSPSTAT register, and the interrupt flag bit SSPIF, are set. This double-buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored and the Write Collision Detect bit, WCOL of the SSPCON register, will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. Buffer Full bit BF of the SSPSTAT register indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the SSP interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 13-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register. Additionally, the SSP Status register (SSPSTAT) indicates the various status conditions.

EXAMPLE 13-1:	LOADING THE SSPBUF	(SSPSR)	REGISTER

	BSF	STATUS, RPO	;Bank 1
	BCF	STATUS, RP1	;
LOOP	BTFSS	SSPSTAT, BF	;Has data been received(transmit complete)?
	GOTO	LOOP	;No
	BCF	STATUS, RPO	;Bank 0
	MOVF	SSPBUF, W	;WREG reg = contents of SSPBUF
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
	MOVF	TXDATA, W	;W reg = contents of TXDATA
	MOVWF	SSPBUF	;New data to xmit

13.12.3 SSP MASK REGISTER

An SSP Mask (SSPMSK) register is available in I^2C Slave mode as a mask for the value held in the SSPSR register during an address comparison operation. A zero ('0') bit in the SSPMSK register has the effect of making the corresponding bit in the SSPSR register a 'don't care'.

This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.

This register must be initiated prior to setting SSPM<3:0> bits to select the I^2C Slave mode (7-bit or 10-bit address).

This register can only be accessed when the appropriate mode is selected by bits (SSPM<3:0> of SSPCON).

The SSP Mask register is active during:

- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address.

REGISTER 13-3: SSPMSK: SSP MASK REGISTER⁽¹⁾

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|---------------------|
| MSK7 | MSK6 | MSK5 | MSK4 | MSK3 | MSK2 | MSK1 | MSK0 ⁽²⁾ |
| bit 7 | | | | | • | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-1 MSK<7:1>: Mask bits

- 1 = The received address bit n is compared to SSPADD<n> to detect I^2C address match
- 0 = The received address bit n is not used to detect I²C address match

bit 0 MSK<0>: Mask bit for I²C Slave mode, 10-bit Address⁽²⁾

- I²C Slave mode, 10-bit Address (SSPM<3:0> = 0111):
- 1 = The received address bit 0 is compared to SSPADD<0> to detect I^2C address match
- 0 = The received address bit 0 is not used to detect I^2C address match
- **Note 1:** When SSPCON bits SSPM<3:0> = 1001, any reads or writes to the SSPADD SFR address are accessed through the SSPMSK register. The SSPEN bit of the SSPCON register should be zero when accessing the SSPMSK register.
 - 2: In all other SSP modes, this bit has no effect.

13.13 Master Mode

Master mode of operation is supported in firmware using interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the SSP module is disabled. The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I²C bus may be taken when the P bit is set or the bus is idle and both the S and P bits are clear.

In Master mode, the SCL and SDA lines are manipulated by clearing the corresponding TRISB<6,4> bit(s). The output level is always low, irrespective of the value(s) in PORTB<6,4>. So when transmitting data, a '1' data bit must have the TRISB<4> bit set (input) and a '0' data bit must have the TRISB<4> bit cleared (output). The same scenario is true for the SCL line with the TRISB<6> bit. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I²C module.

The following events will cause the SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt will occur if enabled):

- Start condition
- Stop condition
- Data transfer byte transmitted/received

Master mode of operation can be done with either the Slave mode idle (SSPM<3:0> = 1011), or with the Slave active. When both Master and Slave modes are enabled, the software needs to differentiate the source(s) of the interrupt.

13.14 Multi-Master Mode

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions, allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the SSP module is disabled. The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I^2C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle and both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the Stop condition occurs.

In Multi-Master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISB<6,4>). There are two stages where this arbitration can be lost, these are:

- Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed, an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

13.14.1 CLOCK SYNCHRONIZATION AND THE CKP BIT

When the CKP bit is cleared, the SCL output is forced to '0'; however, setting the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2C bus have deasserted SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 13-12).

WDT CONTROL

enable it and clearing the bit will disable it.

register. When set, the WDT runs continuously.

The WDTE bit is located in the Configuration Word

When the WDTE bit in the Configuration Word register

is set, the SWDTEN bit of the WDTCON register has no

effect. If WDTE is clear, then the SWDTEN bit can be

used to enable and disable the WDT. Setting the bit will

The PSA and PS<2:0> bits of the OPTION register

have the same function as in previous versions of the PIC16F631/677/685/687/689/690 Family of microcon-

trollers. See Section 5.0 "Timer0 Module" for more

14.5.2

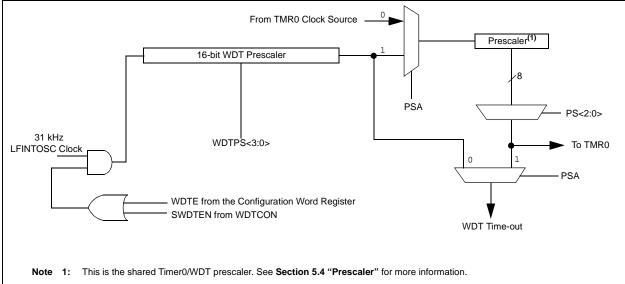
information.

14.5 Watchdog Timer (WDT)

The WDT has the following features:

- Operates from the LFINTOSC (31 kHz)
- Contains a 16-bit prescaler
- Shares an 8-bit prescaler with Timer0
- Time-out period is from 1 ms to 268 seconds
- · Configuration bit and software controlled

WDT is cleared under certain conditions described in Table 14-7.


14.5.1 WDT OSCILLATOR

The WDT derives its time base from the 31 kHz LFINTOSC. The LTS bit of the OSCCON register does not reflect that the LFINTOSC is enabled.

The value of WDTCON is '---0 1000' on all Resets. This gives a nominal time base of 17 ms.

Note:	When the Oscillator Start-up Timer (OST)	
	is invoked, the WDT is held in Reset,	
	because the WDT Ripple Counter is used	
	by the OST to perform the oscillator delay	
	count. When the OST count has expired,	
	the WDT will begin counting (if enabled).	

FIGURE 14-9: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 14-7: WDT STATUS

Conditions	WDT
WDTE = 0	Cleared
CLRWDT Command	
Oscillator Fail Detected	
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK	
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST

14.6 Power-Down Mode (Sleep)

The Power-Down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If the Watchdog Timer is enabled:

- WDT will be cleared but keeps running.
- PD bit in the STATUS register is cleared.
- TO bit is set.
- Oscillator driver is turned off.
- I/O ports maintain the status they had before SLEEP was executed (driving high, low or highimpedance).

For lowest current consumption in this mode, all I/O pins should be either at VDD or Vss, with no external circuitry drawing current from the I/O pin and the comparators and CVREF should be disabled. I/O pins that are highimpedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pullups on PORTA should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level.

Note: It should be noted that a Reset generated by a WDT time-out does not drive MCLR pin low.

14.6.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from RA2/INT pin, PORTA change or a peripheral interrupt.

The first event will cause a device Reset. The two latter events are considered a continuation of program execution. The TO and PD bits in the STATUS register can be used to determine the cause of device Reset. The PD bit, which is set on power-up, is cleared when Sleep is invoked. TO bit is cleared if WDT Wake-up occurred.

The following peripheral interrupts can wake the device from Sleep:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. ECCP Capture mode interrupt.
- 3. A/D conversion (when A/D clock source is FRC).
- 4. EEPROM write operation completion.
- 5. Comparator output changes state.
- 6. Interrupt-on-change.
- 7. External Interrupt from INT pin.
- 8. EUSART Break detect, I²C slave.

Other peripherals cannot generate interrupts since during Sleep, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up occurs regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction, then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

Note:	If the global interrupts are disabled (GIE is
	cleared), but any interrupt source has both
	its interrupt enable bit and the
	corresponding interrupt flag bits set, the
	device will immediately wake-up from
	Sleep. The SLEEP instruction is completely
	executed.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

14.6.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will not be cleared, the TO bit will not be set and the PD bit will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from Sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

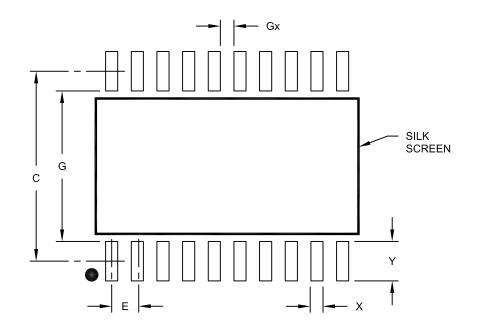
CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruction.

COMF	Complement f
Syntax:	[<i>label</i>] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\bar{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.


© 2005-2015 Microchip Technology Inc.

Param	Device		-		Units	Condition		
No.	Characteristics	Min.	Тур.	Max.		Vdd	Note	
D001	Vdd	2.1		5.5	V	_	Fosc ≤ 8 MHz: HFINTOSC, EC	
		2.1	_	5.5	V	_	Fosc ≤ 4 MHz	
D010	Supply Current (IDD)	_		47		2.1	E 00.111	
		—	_	69	μΑ	3.0	Fosc = 32 kHz LP Oscillator	
				108		5.0		
D011		—	_	357		2.1		
		—	—	533	μA	3.0	Fosc = 1 MHz XT Oscillator	
		—	_	729		5.0		
D012		—	_	535	μA	2.1		
		—	—	875	μΛ	3.0	Fosc = 4 MHz XT Oscillator	
		—		1.32	mA	5.0		
D013		—	_	336		2.1		
		—	—	477	μA	3.0	Fosc = 1 MHz EC Oscillator	
		—	_	777		5.0		
D014		—	_	505	μA	2.1		
		—	—	724		3.0	Fosc = 4 MHz EC Oscillator	
		—	_	1.30	mA	5.0		
D015		_		51	μA	2.1		
		—	—	92	μι	3.0	Fosc = 31 kHz LFINTOSC	
		—		117	mA	5.0		
D016		—	_	665	μA	2.1		
		—	_	970	μΛ	3.0	Fosc = 4 MHz HFINTOSC	
		—	_	1.56	mA	5.0		
D017		—	_	936	μΑ	2.1		
		—	—	1.34	ma	3.0	Fosc = 8 MHz HFINTOSC	
		—	_	2.27		5.0		
D018		—	_	605	μΑ	2.1		
			_	903		3.0	Fosc = 4 MHz EXTRC	
				1.43	mA	5.0		
D019		—	—	6.61	mA	4.5	Fosc = 20 MHz	
				7.81		5.0	HS Oscillator	

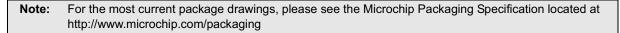
TABLE 17-19: DC CHARACTERISTICS FOR IDD SPECIFICATIONS FOR PIC16F685/687/689/690-H (High Temp.)

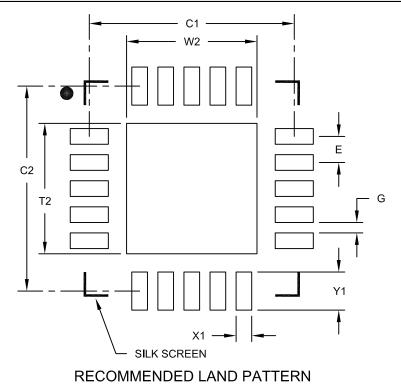
20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX	
Contact Pitch	E	1.27 BSC			
Contact Pad Spacing	С		9.40		
Contact Pad Width (X20)	X			0.60	
Contact Pad Length (X20)	Y			1.95	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.45			


Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A

20-Lead Plastic Quad Flat, No Lead Package (ML) - 4x4 mm Body [QFN] With 0.40 mm Contact Length

			IILLIMETER	
	Units			S
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			2.50
Optional Center Pad Length	T2			2.50
Contact Pad Spacing	C1		3.93	
Contact Pad Spacing	C2		3.93	
Contact Pad Width	X1			0.30
Contact Pad Length	Y1			0.73
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2126A