
Microchip Technology - ATXMEGA64D4-MN Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8/16-Bit

Speed 32MHz

Connectivity I²C, IrDA, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 34

Program Memory Size 64KB (32K x 16)

Program Memory Type FLASH

EEPROM Size 2K x 8

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 1.6V ~ 3.6V

Data Converters A/D 12x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 44-VFQFN Exposed Pad

Supplier Device Package 44-VQFN (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atxmega64d4-mn

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atxmega64d4-mn-4439192
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

3.10 RAMP and Extended Indirect Registers

In order to access program memory or data memory above 64KB, the address pointer must be larger than 16 bits. This is
done by concatenating one register to one of the X-, Y-, or Z-registers. This register then holds the most-significant byte
(MSB) in a 24-bit address or address pointer.

These registers are available only on devices with external bus interface and/or more than 64KB of program or data
memory space. For these devices, only the number of bits required to address the whole program and data memory
space in the device is implemented in the registers.

3.10.1 RAMPX, RAMPY, and RAMPZ Registers

The RAMPX, RAMPY, and RAMPZ registers are concatenated with the X-, Y-, and Z-registers, respectively, to enable
indirect addressing of the whole data memory space above 64KB and up to 16MB.

Figure 3-6. The Combined RAMPX + X, RAMPY + Y, and RAMPZ + Z Registers

When reading (ELPM) and writing (SPM) program memory locations above the first 128KB of the program memory,
RAMPZ is concatenated with the Z-register to form the 24-bit address. LPM is not affected by the RAMPZ setting.

3.10.2 RAMPD Register

This register is concatenated with the operand to enable direct addressing of the whole data memory space above 64KB.
Together, RAMPD and the operand will form a 24-bit address.

Figure 3-7. The Combined RAMPD + K Register

3.10.3 EIND - Extended Indirect Register

EIND is concatenated with the Z-register to enable indirect jump and call to locations above the first 128KB (64K words)
of the program memory.

Figure 3-8. The combined EIND + Z Register

Bit (Individually) 7 0 7 0 7 0

RAMPX XH XL

Bit (X-pointer) 23 16 15 8 7 0

Bit (Individually) 7 0 7 0 7 0

RAMPY YH YL

Bit (Y-pointer) 23 16 15 8 7 0

Bit (Individually) 7 0 7 0 7 0

RAMPZ ZH ZL

Bit (Z-pointer) 23 16 15 8 7 0

Bit (Individually) 7 0 15 0

RAMPD K

Bit (D-pointer) 23 16 15 0

Bit (Individually) 7 0 7 0 7 0

EIND ZH ZL

Bit (D-pointer) 23 16 15 8 7 0
12XMEGA D [MANUAL]
Atmel-8210G–AVR XMEGA D–12/2014

3.11 Accessing 16-bit Registers

The AVR data bus is 8 bits wide, and so accessing 16-bit registers requires atomic operations. These registers must be
byte-accessed using two read or write operations. 16-bit registers are connected to the 8-bit bus and a temporary register
using a 16-bit bus.

For a write operation, the low byte of the 16-bit register must be written before the high byte. The low byte is then written
into the temporary register. When the high byte of the 16-bit register is written, the temporary register is copied into the
low byte of the 16-bit register in the same clock cycle.

For a read operation, the low byte of the 16-bit register must be read before the high byte. When the low byte register is
read by the CPU, the high byte of the 16-bit register is copied into the temporary register in the same clock cycle as the
low byte is read. When the high byte is read, it is then read from the temporary register.

This ensures that the low and high bytes of 16-bit registers are always accessed simultaneously when reading or writing
the register.

Interrupts can corrupt the timed sequence if an interrupt is triggered and accesses the same 16-bit register during an
atomic 16-bit read/write operation. To prevent this, interrupts can be disabled when writing or reading 16-bit registers.

The temporary registers can also be read and written directly from user software.

3.11.1 Accessing 24- and 32-bit Registers

For 24- and 32-bit registers, the read and write access is done in the same way as described for 16-bit registers, except
there are two temporary registers for 24-bit registers and three for 32-bit registers. The least-significant byte must be
written first when doing a write, and read first when doing a read.

3.12 Configuration Change Protection

System critical I/O register settings are protected from accidental modification. The SPM instruction is protected from
accidental execution, and the LPM instruction is protected when reading the fuses and signature row. This is handled
globally by the configuration change protection (CCP) register. Changes to the protected I/O registers or bits, or
execution of protected instructions, are only possible after the CPU writes a signature to the CCP register. The different
signatures are described in the register description.

There are two modes of operation: one for protected I/O registers, and one for the protected instructions, SPM/LPM.

3.12.1 Sequence for Write Operation to Protected I/O Registers

1. The application code writes the signature that enable change of protected I/O registers to the CCP register.

2. Within four instruction cycles, the application code must write the appropriate data to the protected register. Most
protected registers also contain a write enable/change enable bit. This bit must be written to one in the same oper-
ation as the data are written. The protected change is immediately disabled if the CPU performs write operations to
the I/O register or data memory or if the SPM, LPM, or SLEEP instruction is executed.

3.12.2 Sequence for Execution of Protected SPM/LPM

1. The application code writes the signature for the execution of protected SPM/LPM to the CCP register.

2. Within four instruction cycles, the application code must execute the appropriate instruction. The protected change
is immediately disabled if the CPU performs write operations to the data memory or if the SLEEP instruction is
executed.

Once the correct signature is written by the CPU, interrupts will be ignored for the duration of the configuration change
enable period. Any interrupt request (including non-maskable interrupts) during the CCP period will set the
corresponding interrupt flag as normal, and the request is kept pending. After the CCP period is completed, any pending
interrupts are executed according to their level and priority.
13XMEGA D [MANUAL]
Atmel-8210G–AVR XMEGA D–12/2014

4.12 Register Description – NVM Controller

4.12.1 ADDR0 – Address Register 0

The ADDR0, ADDR1, and ADDR2 registers represent the 24-bit value, ADDR. This is used for addressing all NVM
sections for read, write, and CRC operations.

 Bit 7:0 – ADDR[7:0]: Address Byte 0

This register gives the address low byte when accessing NVM locations.

4.12.2 ADDR1 – Address Register 1

 Bit 7:0 – ADDR[15:8]: Address Byte 1

This register gives the address high byte when accessing NVM locations.

4.12.3 ADDR2 – Address Register 2

 Bit 7:0 – ADDR[23:16]: Address Byte 2

This register gives the address extended byte when accessing NVM locations.

4.12.4 DATA0 – Data Register 0

The DATA0, DATA1, and DATA registers represent the 24-bit value, DATA. This holds data during NVM read, write, and
CRC access.

 Bit 7:0 – DATA[7:0]: Data Byte 0

This register gives the data value byte 0 when accessing NVM locations.

Bit 7 6 5 4 3 2 1 0

+0x00 ADDR[7:0]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1

Bit 7 6 5 4 3 2 1 0

+0x01 ADDR[15:8]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x02 ADDR[23:16]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x04 DATA[7:0]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
24XMEGA D [MANUAL]
Atmel-8210G–AVR XMEGA D–12/2014

4.13 Register Descriptions – Fuses and Lock Bits

4.13.1 FUSEBYTE1 – Fuse Byte 1

 Bit 7:4 – WDWPER[3:0]: Watchdog Window Timeout Period

These fuse bits are used to set initial value of the closed window for the Watchdog Timer in Window Mode. During reset
these fuse bits are automatically written to the WPER bits Watchdog Window Mode Control Register. Refer to “WINCTRL
– Window Mode Control Register” on page 92 in “WDT – Watchdog Timer” on page 89 for details.

 Bit 3:0 – WDPER[3:0]: Watchdog Timeout Period

These fuse bits are used to set the initial value of the watchdog timeout period. During reset these fuse bits are
automatically written to the PER bits in the watchdog control register. Refer to “CTRL – Control Register” on page 91 in
“WDT – Watchdog Timer” on page 89 for details.

4.13.2 FUSEBYTE2 – Fuse Byte 2

 Bit 7 – Reserved

This bit is unused and reserved for future use. For compatibility with future devices, always write this bit to one when this
register is written.

 Bit 6 – BOOTRST: Boot Loader Section Reset Vector

This fuse can be programmed so the reset vector is pointing to the first address in the boot loader flash section. The
device will then start executing from the boot loader flash section after reset.

Table 4-1. Boot Reset Fuse

 Bit 5 – TOSCSEL: 32.768kHz Timer Oscillator Pin Selection

This fuse is used to select the pin location for the 32.768kHz timer oscillator (TOSC). This fuse is available only on
devices where XTAL and TOSC pins by default are shared.

Table 4-2. TOSCSEL Fuse

Note: 1. See the device datasheet for alternate TOSC position.

Bit 7 6 5 4 3 2 1 0

+0x01 WDWPER[3:0] WDPER[3:0]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x02 – BOOTRST TOSCSEL – – – BODPD[1:0]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1

BOOSTRST Reset address

0 Reset vector = Boot loader reset

1 Reset vector = Application reset (address 0x0000)

TOSCSEL Group configuration Description

0 ALTERNATE(1) TOSC1/2 on separate pins

1 XTAL TOSC1/2 shared with XTAL
28XMEGA D [MANUAL]
Atmel-8210G–AVR XMEGA D–12/2014

5.9 Register Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

+0x00 CH0MUX CH0MUX[7:0] 51
+0x01 CH1MUX CH1MUX[7:0] 51
+0x02 CH2MUX CH2MUX[7:0] 51
+0x03 CH3MUX CH3MUX[7:0] 51
+0x04 Reserved – – – – – – – –
+0x05 Reserved – – – – – – – –
+0x06 Reserved – – – – – – – –
+0x07 Reserved – – – – – – – –
+0x08 CH0CTRL – QDIRM[1:0] QDIEN QDEN DIGFILT[2:0] 53
+0x09 CH1CTRL – – – – – DIGFILT[2:0] 53
+0x0A CH2CTRL – QDIRM[1:0] QDIEN QDEN DIGFILT[2:0] 53
+0x0B CH3CTRL – – – – – DIGFILT[2:0] 53
+0x0C Reserved – – – – – – – –
+0x0D Reserved – – – – – – – –
+0x0E Reserved – – – – – – – –
+0x0F Reserved – – – – – – – –
+0x10 STROBE STROBE[7:0] 54
+0x11 DATA DATA[7:0] 54
55XMEGA D [MANUAL]
Atmel-8210G–AVR XMEGA D–12/2014

6.9.3 LOCK – Lock Register

 Bit 7:1 – Reserved

These bits are unused and reserved for future use. For compatibility with future devices, always write these bits to zero
when this register is written.

 Bit 0 – LOCK: Clock System Lock

When this bit is written to one, the CTRL and PSCTRL registers cannot be changed, and the system clock selection and
prescaler settings are protected against all further updates until after the next reset. This bit is protected by the
configuration change protection mechanism. For details, refer to “Configuration Change Protection” on page 13.

The LOCK bit can be cleared only by a reset.

6.9.4 RTCCTRL – RTC Control Register

 Bit 7:4 – Reserved

These bits are unused and reserved for future use. For compatibility with future devices, always write these bits to zero
when this register is written.

 Bit 3:1 – RTCSRC[2:0]: RTC Clock Source

These bits select the clock source for the real-time counter according to Table 6-4.

Table 6-4. RTC Clock Source Selection

 Bit 0 – RTCEN: RTC Clock Source Enable

Setting the RTCEN bit enables the selected RTC clock source for the real-time counter.

Bit 7 6 5 4 3 2 1 0

+0x02 – – – – – – – LOCK

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x03 – – – – RTCSRC[2:0] RTCEN

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

RTCSRC[2:0] Group configuration Description

000 ULP 1kHz from 32kHz internal ULP oscillator

001 TOSC 1.024kHz from 32.768kHz crystal oscillator on TOSC

010 RCOSC 1.024kHz from 32.768kHz internal oscillator

011 — Reserved

100 — Reserved

101 TOSC32 32.768kHz from 32.768kHz crystal oscillator on TOSC

110 RCOSC32 32.768kHz from 32.768kHz internal oscillator

111 EXTCLK External clock from TOSC1
66XMEGA D [MANUAL]
Atmel-8210G–AVR XMEGA D–12/2014

Figure 8-1. Reset System Overview

8.3 Reset Sequence

A reset request from any reset source will immediately reset the device and keep it in reset as long as the request is
active. When all reset requests are released, the device will go through three stages before the device starts running
again:

 Reset counter delay

 Oscillator startup

 Oscillator calibration

If another reset requests occurs during this process, the reset sequence will start over again.

8.3.1 Reset Counter

The reset counter can delay reset release with a programmable period from when all reset requests are released. The
reset delay is timed from the 1kHz output of the ultra low power (ULP) internal oscillator, and in addition 24 System clock
(clkSYS) cycles are counted before reset is released. The reset delay is set by the STARTUPTIME fuse bits. The
selectable delays are shown in Table 8-1.

Table 8-1. Reset Delay

Whenever a reset occurs, the clock system is reset and the internal 2MHz internal oscillator is chosen as the source for
ClkSYS.

MCU Status
Register (MCUSR)

Brown-out
ResetBODLEVEL [2:0]

Delay Counters
TIMEOUT

W
D

R
F

B
O

R
F

E
X

T
R

F

P
O

R
F

ULP
Oscillator

SPIKE
FILTER

Pull-up Resistor

JT
R

F

Watchdog
Reset

SUT[1:0]

Power-on Reset

Software
Reset

External
Reset

PDI
Reset

SUT[1:0] Number of 1kHz ULP oscillator clock cycles Recommended usage

00 64K ClkULP+ 24 ClkSYS Stable frequency at startup

01 4K ClkULP + 24 ClkSYS Slowly rising power

10 Reserved -

11 24 ClkSYS Fast rising power or BOD enabled
82XMEGA D [MANUAL]
Atmel-8210G–AVR XMEGA D–12/2014

9.4 Window Mode Operation

In window mode operation, the WDT uses two different timeout periods, a "closed" window timeout period (TOWDTW) and
the normal timeout period (TOWDT). The closed window timeout period defines a duration of from 8ms to 8s where the
WDT cannot be reset. If the WDT is reset during this period, the WDT will issue a system reset. The normal WDT timeout
period, which is also 8ms to 8s, defines the duration of the "open" period during which the WDT can (and should) be
reset. The open period will always follow the closed period, and so the total duration of the timeout period is the sum of
the closed window and the open window timeout periods. The default closed window timeout period is controlled by fuses
(both open and closed periods are controlled by fuses). The window mode operation is illustrated in Figure 9-2.

Figure 9-2. Window Mode Operation

9.5 Watchdog Timer Clock

The WDT is clocked from the 1kHz output from the 32kHz ultra low power (ULP) internal oscillator. Due to the ultra low
power design, the oscillator is not very accurate, and so the exact timeout period may vary from device to device. When
designing software which uses the WDT, this device-to-device variation must be kept in mind to ensure that the timeout
periods used are valid for all devices. For more information on ULP oscillator accuracy, consult the device datasheet.

9.6 Configuration Protection and Lock

The WDT is designed with two security mechanisms to avoid unintentional changes to the WDT settings.

The first mechanism is the configuration change protection mechanism, employing a timed write procedure for changing
the WDT control registers. In addition, for the new configuration to be written to the control registers, the register’s
change enable bit must be written at the same time.

The second mechanism locks the configuration by setting the WDT lock fuse. When this fuse is set, the watchdog time
control register cannot be changed; hence, the WDT cannot be disabled from software. After system reset, the WDT will
resume at the configured operation. When the WDT lock fuse is programmed, the window mode timeout period cannot
be changed, but the window mode itself can still be enabled or disabled.
90XMEGA D [[MANUAL]]
Atmel-8210G–AVR XMEGA D–12/2014

10. Interrupts and Programmable Multilevel Interrupt Controller

10.1 Features
 Short and predictable interrupt response time

 Separate interrupt configuration and vector address for each interrupt

 Programmable multilevel interrupt controller
 Interrupt prioritizing according to level and vector address
 Three selectable interrupt levels for all interrupts: low, medium and high
 Selectable, round-robin priority scheme within low-level interrupts
 Non-maskable interrupts for critical functions

 Interrupt vectors optionally placed in the application section or the boot loader section

10.2 Overview

Interrupts signal a change of state in peripherals, and this can be used to alter program execution. Peripherals can have
one or more interrupts, and all are individually enabled and configured. When an interrupt is enabled and configured, it
will generate an interrupt request when the interrupt condition is present. The programmable multilevel interrupt
controller (PMIC) controls the handling and prioritizing of interrupt requests. When an interrupt request is acknowledged
by the PMIC, the program counter is set to point to the interrupt vector, and the interrupt handler can be executed.

All peripherals can select between three different priority levels for their interrupts: low, medium, and high. Interrupts are
prioritized according to their level and their interrupt vector address. Medium-level interrupts will interrupt low-level
interrupt handlers. High-level interrupts will interrupt both medium- and low-level interrupt handlers. Within each level, the
interrupt priority is decided from the interrupt vector address, where the lowest interrupt vector address has the highest
interrupt priority. Low-level interrupts have an optional round-robin scheduling scheme to ensure that all interrupts are
serviced within a certain amount of time.

Non-maskable interrupts (NMI) are also supported, and can be used for system critical functions.

10.3 Operation

Interrupts must be globally enabled for any interrupts to be generated. This is done by setting the global interrupt enable
(I) bit in the CPU status register. The I bit will not be cleared when an interrupt is acknowledged. Each interrupt level
must also be enabled before interrupts with the corresponding level can be generated.

When an interrupt is enabled and the interrupt condition is present, the PMIC will receive the interrupt request. Based on
the interrupt level and interrupt priority of any ongoing interrupts, the interrupt is either acknowledged or kept pending
until it has priority. When the interrupt request is acknowledged, the program counter is updated to point to the interrupt
vector. The interrupt vector is normally a jump to the interrupt handler; the software routine that handles the interrupt.
After returning from the interrupt handler, program execution continues from where it was before the interrupt occurred.
One instruction is always executed before any pending interrupt is served.

The PMIC status register contains state information that ensures that the PMIC returns to the correct interrupt level when
the RETI (interrupt return) instruction is executed at the end of an interrupt handler. Returning from an interrupt will return
the PMIC to the state it had before entering the interrupt. The status register (SREG) is not saved automatically upon an
interrupt request. The RET (subroutine return) instruction cannot be used when returning from the interrupt handler
routine, as this will not return the PMIC to its correct state.
94XMEGA D [MANUAL]
Atmel-8210G–AVR XMEGA D–12/2014

12.12 Register Summary

12.13 Interrupt Vector Summary

Note: 1. Available only on timer/counters with four compare or capture channels.

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

+0x00 CTRLA – – – – CLKSEL[3:0] 135
+0x01 CTRLB CCDEN CCCEN CCBEN CCAEN – WGMODE[2:0] 135
+0x02 CTRLC – – – – CMPD CMPC CMPB CMPA 136
+0x03 CTRLD EVACT[2:0] EVDLY EVSEL[3:0] 136
+0x04 CTRLE – – – – – – BYTEM 138
+0x05 Reserved – – – – – – – –
+0x06 INTCTRLA – – – – ERRINTLVL[1:0] OVINTLVL[1:0] 138
+0x07 INTCTRLB CCCINTLVL[1:0] CCCINTLVL[1:0] CCBINTLVL[1:0] CCAINTLVL[1:0] 138
+0x08 CTRLFCLR – – – – CMD[1:0] LUPD DIR 139
+0x09 CTRLFSET – – – – CMD[1:0] LUPD DIR 140
+0x0A CTRLGCLR – – – CCDBV CCCBV CCBBV CCABV PERBV 140
+0x0B CTRLGSET – – – CCDBV CCCBV CCBBV CCABV PERBV 140
+0x0C INTFLAGS CCDIF CCCIF CCBIF CCAIF – – ERRIF OVFIF 140
+0x0D Reserved – – – – – – – –
+0x0E Reserved – – – – – – – –
+0x0F TEMP TEMP[7:0] 141

+0x10 to +0x1F Reserved – – – – – – – –
+0x20 CNTL CNT[7:0] 141
+0x21 CNTH CNT[15:8] 141

+0x22 to +0x25 Reserved – – – – – – – –
+0x26 PERL PER[7:0] 141
+0x27 PERH PER[8:15] 142
+0x28 CCAL CCA[7:0] 142
+0x29 CCAH CCA[15:8] 142
+0x2A CCBL CCB[7:0] 142
+0x2B CCBH CCB[15:8] 142
+0x2C CCCL CCC[7:0] 142

+0x02D CCCH CCC[15:8] 142
+0x2E CCDL CCD[7:0] 142
+0x2F CCDH CCD[15:8] 142

+0x30 to +0x35 Reserved – – – – – – – –
+0x36 PERBUFL PERBUF[7:0] 142
+0x37 PERBUFH PERBUF[15:8] 143
+0x38 CCABUFL CCABUF[7:0] 143
+0x39 CCABUFH CCABUF[15:8] 143
+0x3A CCBBUFL CCBBUF[7:0] 143
+0x3B CCBBUFH CCBBUF[15:8] 143
+0x3C CCCBUFL CCCBUF[7:0] 143
+0x3D CCCBUFH CCCBUF[15:8] 143
+0x3E CCDBUFL CCDBUF[7:0] 143
+0x3F CCDBUFH CCDBUF[15:8] 143

Offset Source Interrupt description

0x00 OVF_vect Timer/counter overflow/underflow interrupt vector offset

0x02 ERR_vect Timer/counter error interrupt vector offset

0x04 CCA_vect Timer/counter compare or capture channel A interrupt vector offset

0x06 CCB_vect Timer/counter compare or capture channel B interrupt vector offset

0x08 CCC_vect(1) Timer/counter compare or capture channel C interrupt vector offset

0x0A CCD_vect(1) Timer/counter compare or capture channel D interrupt vector offset
144XMEGA D [MANUAL]
Atmel-8210G–AVR XMEGA D–12/2014

13.10 Register Summary

13.11 Interrupt Vector Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

+0x00 CTRLA – – – – CLKSEL[3:0] 150
+0x01 CTRLB HCMPDEN HCMPCEN HCMPBEN HCMPAEN LCMPDEN LCMPCEN LCMPBEN LCMPAEN 150
+0x02 CTRLC HCMPD HCMPC HCMPB HCMPA LCMPD LCMPC LCMPB LCMPA 151
+0x03 Reserved – – – – – – – –
+0x04 CTRLE – – – – – – BYTEM[1:0] 151
+0x05 Reserved – – – – – – – –
+0x06 INTCTRLA – – – – HUNFINTLVL[1:0] LUNFINTLVL[1:0] 151
+0x07 INTCTRLB LCMPDINTLVL[1:0] LCMPCINTLVL[1:0] LCMPBINTLVL[1:0] LCMPAINTLVL[1:0] 152
+0x08 Reserved – – – – – – – –
+0x09 CTRLF – – – – CMD[1:0] CMDEN[1:0] 152
+0x0A Reserved – – – – – – – –
+0x0B Reserved – – – – – – – –
+0x0C INTFLAGS LCMPDIF LCMPCIF LCMPBIF LCMPAIF – – HUNFIF LUNFIF 153
+0x0D Reserved – – – – – – – –
+0x0E Reserved – – – – – – – –
+0x0F Reserved – – – – – – – –

+0x10 to Reserved – – – – – – – –
+0x20 LCNT Low-byte Timer/Counter Count Register 153
+0x21 HCNT High-byte Timer/Counter Count Register 153

+0x22 to Reserved – – – – – – – –
+0x26 LPER Low-byte Timer/Counter Period Register 154
+0x27 HPER High-byte Timer/Counter Period Register 154
+0x28 LCMPA Low-byte Compare Register A 154
+0x29 HCMPA High-byte Compare Register A 154
+0x2A LCMPB Low-byte Compare Register B 154
+0x2B HCMPB High-byte Compare Register B 154
+0x2C LCMPC Low-byte Compare Register C 154
+0x02D HCMPC High-byte Compare Register C 154
+0x2E LCMPD Low-byte Compare Register D 154
+0x2F HCMPD High-byte Compare Register D 154

+0x30 to Reserved – – – – – – – –

Offset Source Interrupt Description

0x00 LUNF_vect Low-byte Timer/counter underflow interrupt vector offset

0x02 HUNF_vect High-byte Timer/counter underflow interrupt vector offset

0x4 LCMPA_vect Low-byte Timer/counter compare channel A interrupt vector offset

0x6 LCMPB_vect Low-byte Timer/counter compare channel B interrupt vector offset

0x8 LCMPC_vect Low-byte Timer/counter compare channel C interrupt vector offset

0x0A LCMPD_vect Low-byte Timer/counter compare channel D interrupt vector offset
155XMEGA D [MANUAL]
Atmel-8210G–AVR XMEGA D–12/2014

17.9.4 STATUS – Status Register

 Bit 7 – RIF: Read Interrupt Flag

This flag is set when a byte is successfully received in master read mode; i.e., no arbitration was lost or bus error
occurred during the operation. Writing a one to this bit location will clear RIF. When this flag is set, the master forces the
SCL line low, stretching the TWI clock period. Clearing the interrupt flags will release the SCL line.

This flag is also cleared automatically when:

 Writing to the ADDR register

 Writing to the DATA register

 Reading the DATA register

 Writing a valid command to the CMD bits in the CTRLC register

 Bit 6 – WIF: Write Interrupt Flag

This flag is set when a byte is transmitted in master write mode. The flag is set regardless of the occurrence of a bus
error or an arbitration lost condition. WIF is also set if arbitration is lost during sending of a NACK in master read mode,
and if issuing a START condition when the bus state is unknown. Writing a one to this bit location will clear WIF. When
this flag is set, the master forces the SCL line low, stretching the TWI clock period. Clearing the interrupt flags will release
the SCL line.

The flag is also cleared automatically for the same conditions as RIF.

 Bit 5 – CLKHOLD: Clock Hold

This flag is set when the master is holding the SCL line low. This is a status flag and a read-only flag that is set when RIF
or WIF is set. Clearing the interrupt flags and releasing the SCL line will indirectly clear this flag.

The flag is also cleared automatically for the same conditions as RIF.

 Bit 4 – RXACK: Received Acknowledge

This flag contains the most recently received acknowledge bit from the slave. This is a read-only flag. When read as zero,
the most recent acknowledge bit from the slave was ACK, and when read as one the most recent acknowledge bit was
NACK.

 Bit 3 – ARBLOST: Arbitration Lost

This flag is set if arbitration is lost while transmitting a high data bit or a NACK bit, or while issuing a START or repeated
START condition on the bus. Writing a one to this bit location will clear ARBLOST.

Writing the ADDR register will automatically clear ARBLOST.

 Bit 2 – BUSERR: Bus Error

This flag is set if an illegal bus condition has occurred. An illegal bus condition occurs if a repeated START or a STOP
condition is detected, and the number of received or transmitted bits from the previous START condition is not a multiple
of nine. Writing a one to this bit location will clear BUSERR.

Writing the ADDR register will automatically clear BUSERR.

 Bit 1:0 – BUSSTATE[1:0]: Bus State

These bits indicate the current TWI bus state as defined in Table 17-6 on page 189. The change of bus state is
dependent on bus activity. Refer to the “TWI Bus State Logic” on page 180.

Bit 7 6 5 4 3 2 1 0

+0x03 RIF WIF CLKHOLD RXACK ARBLOST BUSERR BUSSTATE[1:0]

Read/Write R/W R/W R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
188XMEGA D [MANUAL]
Atmel-8210G–AVR XMEGA D–12/2014

19.7.1 Receiving Frames

The receiver starts data reception when it detects a valid start bit. Each bit that follows the start bit will be sampled at the
baud rate or XCK clock and shifted into the receive shift register until the first stop bit of a frame is received. A second
stop bit will be ignored by the receiver. When the first stop bit is received and a complete serial frame is present in the
receive shift register, the contents of the shift register will be moved into the receive buffer. The receive complete
interrupt flag (RXCIF) is set, and the optional interrupt is generated.

The receiver buffer can be read by reading the data register (DATA) location. DATA should not be read unless the
receive complete interrupt flag is set. When using frames with fewer than eight bits, the unused most-significant bits are
read as zero. If 9-bit characters are used, the ninth bit must be read from the RXB8 bit before the low byte of the
character is read from DATA.

19.7.2 Receiver Error Flags

The USART receiver has three error flags. The frame error (FERR), buffer overflow (BUFOVF) and parity error (PERR)
flags are accessible from the status register. The error flags are located in the receive FIFO buffer together with their
corresponding frame. Due to the buffering of the error flags, the status register must be read before the receive buffer
(DATA), since reading the DATA location changes the FIFO buffer.

19.7.3 Parity Checker

When enabled, the parity checker calculates the parity of the data bits in incoming frames and compares the result with
the parity bit of the corresponding frame. If a parity error is detected, the parity error flag is set.

19.7.4 Disabling the Receiver

A disabling of the receiver will be immediate. The receiver buffer will be flushed, and data from ongoing receptions will be
lost.

19.7.5 Flushing the Receive Buffer

If the receive buffer has to be flushed during normal operation, read the DATA location until the receive complete
interrupt flag is cleared.

19.8 Asynchronous Data Reception

The USART includes a clock recovery and a data recovery unit for handling asynchronous data reception. The clock
recovery unit is used for synchronizing the incoming asynchronous serial frames at the RxD pin to the internally
generated baud rate clock. It samples and low-pass filters each incoming bit, thereby improving the noise immunity of the
receiver. The asynchronous reception operational range depends on the accuracy of the internal baud rate clock, the
rate of the incoming frames, and the frame size in number of bits.

19.8.1 Asynchronous Clock Recovery

The clock recovery unit synchronizes the internal clock to the incoming serial frames. Figure 19-6 on page 210 illustrates
the sampling process for the start bit of an incoming frame. The sample rate is 16 times the baud rate for normal mode,
and eight times the baud rate for double speed mode. The horizontal arrows illustrate the synchronization variation due
to the sampling process. Note the larger time variation when using the double speed mode of operation. Samples
denoted as zero are samples done when the RxD line is idle; i.e., when there is no communication activity.
209XMEGA D [MANUAL]
Atmel-8210G–AVR XMEGA D–12/2014

21.6.2 STATUS – Status Register

 Bit 7:2 – Reserved

These bits are unused and reserved for future use. For compatibility with future devices, always write these bits to zero
when this register is written.

 Bit 1 – ZERO: Checksum Zero

This flag is set if the CHECKSUM is zero when the CRC generation is complete. It is automatically cleared when a new
CRC source is selected.

When running CRC-32 and appending the checksum at the end of the packet (as little endian), the final checksum shold
be 0x2144df1c, and not zero. However, if the checksum is complemented before it is appended (as little endian) to the
data, the final result in the checksum register will be zero.

See the description of CHECKSUM to read out different versions of the CHECKSUM.

 Bit 0 – BUSY: Busy

This flag is read as one when a source configuration is selected and as long as the source is using the CRC module. If
the I/O interface is selected as the source, the flag can be cleared by writing a one this location. If flash memory is
selected as the source, the flag is cleared when the CRC generation is completed.

21.6.3 DATAIN – Data Input Register

 Bit 7:0 – DATAIN[7:0]: Data Input

This register is used to store the data for which the CRC checksum is computed. A new CHECKSUM is ready one clock
cycle after the DATAIN register is written.

21.6.4 CHECKSUM0 – Checksum Register 0

CHECKSUM0, CHECKSUM1, CHECKSUM2, and CHECKSUM3 represent the 16- or 32-bit CHECKSUM value and the
generated CRC. The registers are reset to zero by default, but it is possible to write RESET to reset all bits to one. It is
possible to write these registers only when the CRC module is disabled. If NVM is selected as the source, reading
CHECKSUM will return a zero value until the BUSY flag is cleared. If CRC-32 is selected and the BUSY flag is cleared
(i.e., CRC generation is completed or aborted), the bit reversed (bit 31 is swapped with bit 0, bit 30 with bit 1, etc.) and
complemented result will be read from CHECKSUM. If CRC-16 is selected or the BUSY flag is set (i.e., CRC generation
is ongoing), CHECKSUM will contain the actual content.

 Bit 7:0 – CHECKSUM[7:0]: Checksum byte 0

These bits hold byte 0 of the generated CRC.

Bit 7 6 5 4 3 2 1 0

+0x02 – – – – – – ZERO BUSY

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x03 DATAIN[7:0]

Read/Write W W W W W W W W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x04 CHECKSUM[7:0]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
229XMEGA D [MANUAL]
Atmel-8210G–AVR XMEGA D–12/2014

22. ADC – Analog-to-Digital Converter

22.1 Features
 12-bit resolution

 Up to 300 thousand samples per second
 Down to 2.3µs conversion time with 8-bit resolution
 Down to 3.35µs conversion time with 12-bit resolution

 Differential and single-ended input
 Up to 16 single-ended inputs
 Up to 16x4 differential inputs without gain
 8x4 differential input with gain

 Built-in differential gain stage
 1/2x, 1x, 2x, 4x, 8x, 16x, 32x, and 64x gain options

 Single, continuous and scan conversion options

 Three internal inputs
 Internal temperature sensor
 AVCC voltage divided by 10
 1.1V bandgap voltage

 Internal and external reference options

 Compare function for accurate monitoring of user defined thresholds

 Optional event triggered conversion for accurate timing

 Optional interrupt/event on compare result

22.2 Overview

The ADC converts analog signals to digital values. The ADC has 12-bit resolution and is capable of converting up to 300
thousand samples per second (ksps). The input selection is flexible, and both single-ended and differential
measurements can be done. For differential measurements, an optional gain stage is available to increase the dynamic
range. In addition, several internal signal inputs are available. The ADC can provide both signed and unsigned results.

The ADC measurements can either be started by application software or an incoming event from another peripheral in
the device. The ADC measurements can be started with predictable timing, and without software intervention.

Both internal and external reference voltages can be used. An integrated temperature sensor is available for use with the
ADC. The AVCC/10 and the bandgap voltage can also be measured by the ADC.

The ADC has a compare function for accurate monitoring of user defined thresholds with minimum software intervention
required.
231XMEGA D [MANUAL]
Atmel-8210G–AVR XMEGA D–12/2014

Table 22-11. ADC MUXPOS Configuration when INPUTMODE[1:0] = 01 (Single-ended), INPUTMODE[1:0] = 10 (Differen-
tial without Gain), or INPUTMODE[1:0]=11 (Differential with Gain) is used

Depending on the device pin count and feature configuration, the actual number of analog input pins may be less than
16. Refer to the device datasheet and pin-out description for details.

 Bit 2:0 – MUXNEG[2:0]: MUX Selection on Negative ADC Input

These bits define the MUX selection for the negative ADC input when differential measurements are done. For internal or
single-ended measurements, these bits are not used.

Table 22-12 and Table 22-13 on page 250 show the possible input sections.

Table 22-12. ADC MUXNEG Configuration, INPUTMODE[1:0] = 10, Differential without Gain

MUXPOS[3:0] Group configuration Description

0000 PIN0 ADC0 pin

0001 PIN1 ADC1 pin

0010 PIN2 ADC2 pin

0011 PIN3 ADC3 pin

0100 PIN4 ADC4 pin

0101 PIN5 ADC5 pin

0110 PIN6 ADC6 pin

0111 PIN7 ADC7 pin

1000 PIN8 ADC8 pin

1001 PIN9 ADC9 pin

1010 PIN10 ADC10 pin

1011 PIN11 ADC11 pin

1100 PIN12 ADC12 pin

1101 PIN13 ADC13 pin

1110 PIN14 ADC14 pin

1111 PIN15 ADC15 pin

MUXNEG[2:0] Group configuration Analog input

000 PIN0 ADC0 pin

001 PIN1 ADC1 pin

010 PIN2 ADC2 pin

011 PIN3 ADC3 pin

100 – Reserved

101 GND PAD ground

110 – Reserved

111 INTGND Internal ground
249XMEGA D [MANUAL]
Atmel-8210G–AVR XMEGA D–12/2014

Figure 24-1. The PDI and PDI Physical Layers and Closely Related Modules (grey)

24.3 PDI Physical

The PDI physical layer handles the low-level serial communication. It uses a bidirectional, half-duplex, synchronous
serial receiver and transmitter (just as a USART in USRT mode). The physical layer includes start-of-frame detection,
frame error detection, parity generation, parity error detection, and collision detection.

In addition to PDI_CLK and PDI_DATA, the PDI_DATA pin has an internal pull resistor, VCC and GND must be
connected between the External Programmer/debugger and the device. Figure 24-2 shows a typical connection.

Figure 24-2. PDI Connection

The remainder of this section is intended for use only by third parties developing programmers or programming support
for Atmel AVR XMEGA devices.

24.3.1 Enabling

The PDI physical layer must be enabled before use. This is done by first forcing the PDI_DATA line high for a period
longer than the equivalent external reset minimum pulse width (refer to device datasheet for external reset pulse width
data). This will disable the RESET functionality of the Reset pin, if not already disabled by the fuse settings.

Next, continue to keep the PDI_DATA line high for 16 PDI_CLK cycles. The first PDI_CLK cycle must start no later than
100µs after the RESET functionality of the Reset pin is disabled. If this does not occur in time, the enabling procedure
must start over again. The enable sequence is shown in Figure 24-3 on page 265.

PDI
Controller

JTAG Physical
(physical layer)

PDI Physical
(physical layer)

OCD

NVM
Controller

Program and Debug Interface (PDI)

PDI_CLK
PDI_DATA

TDO
TCK
TMI
TDI

NVM
Memories

Internal InterfacesPDIBUS

P
D

I C
on

ne
ct

or

GND

VCC

PDI_CLK

PDI_DATA
264XMEGA D [MANUAL]
Atmel-8210G–AVR XMEGA D–12/2014

Table 25-2. Flash Self-programming Commands

Notes: 1. The flash range CRC command used byte addressing of the flash.

2. Will depend on the flash section (application or boot loader) that is actually addressed.

3. This command is qualified with the lock bits, and requires that the boot lock bits are unprogrammed.

4. When using a command that changes the normal behavior of the LPM command; READ_USER_SIG_ROW and READ_CALIB_ROW; it is recommended to
disable interrupts to ensure correct execution of the LPM instruction.

5. For consistency the name Calibration Row has been renamed to Production Signature Row throughout the document.

25.11.2.1 Read Flash

The (E)LPM instruction is used to read one byte from the flash memory.

1. Load the Z-pointer with the byte address to read.

2. Load the NVM command register (NVM CMD) with the no operation command.

3. Execute the LPM instruction.

The destination register will be loaded during the execution of the LPM instruction.

CMD[6:0] Group configuration Description Trigger
CPU
halted

NVM
busy

Change
protected

Address
pointer

Data
register

0x00 NO_OPERATION No operation / read flash -/(E)LPM -/N N -/N -/ Z-pointer -/Rd

Flash Page Buffer

0x23 LOAD_FLASH_BUFFER Load flash page buffer SPM N N N Z-pointer R1:R0

0x26 ERASE_FLASH_BUFFER Erase flash page buffer CMDEX N Y Y Z-pointer -

Flash

0x2B ERASE_FLASH_PAGE Erase flash page SPM N/Y(2) Y Y Z-pointer -

0x02E WRITE_FLASH_PAGE Write flash page SPM N/Y(2) Y Y Z-pointer -

0x2F ERASE_WRITE_FLASH_PAGE Erase and write flash page SPM N/Y(2) Y Y Z-pointer -

0x3A FLASH_RANGE_CRC(3) Flash range CRC CMDEX Y Y Y DATA/ADDR(1) DATA

Application Section

0x20 ERASE_APP Erase application section SPM Y Y Y Z-pointer -

0x22 ERASE_APP_PAGE Erase application section page SPM N Y Y Z-pointer -

0x24 WRITE_APP_PAGE Write application section page SPM N Y Y Z-pointer -

0x25 ERASE_WRITE_APP_PAGE Erase and write application section page SPM N Y Y Z-pointer -

0x38 APP_CRC Application section CRC CMDEX Y Y Y - DATA

Boot Loader Section

0x2A ERASE_BOOT_PAGE Erase boot loader section page SPM Y Y Y Z-pointer -

0x2C WRITE_BOOT_PAGE Write boot loader section page SPM Y Y Y Z-pointer -

0x2D ERASE_WRITE_BOOT_PAGE Erase and write boot loader section page SPM Y Y Y Z-pointer -

0x39 BOOT_CRC Boot loader section CRC CMDEX Y Y Y - DATA

User Signature Row

0x01(4) READ_USER_SIG_ROW Read user signature row LPM N N N Z-pointer Rd

0x18 ERASE_USER_SIG_ROW Erase user signature row SPM Y Y Y - -

0x1A WRITE_USER_SIG_ROW Write user signature row SPM Y Y Y - -

Production Signature (Calibration) Row(5)

0x02(4) READ_CALIB_ROW Read calibration row LPM N N N Z-pointer Rd
280XMEGA D [MANUAL]
Atmel-8210G–AVR XMEGA D–12/2014

25.11.5.6 Erase EEPROM

The erase EEPROM command is used to erase all locations in all EEPROM pages that are loaded and tagged in the
EEPROM page buffer.

1. Set up the NVM CMD register to the erase EPPROM command.

2. Set the CMDEX bit in the NVM CTRLA register. This requires the timed CCP sequence during self-programming.

The BUSY flag in the NVM STATUS register will be set until the operation is finished.

25.11.5.7 Read EEPROM

The read EEPROM command is used to read one byte from the EEPROM.

1. Load the NVM CMD register with the read EEPROM command.

2. Load the NVM ADDR register with the address to read.

3. Set the CMDEX bit in the NVM CTRLA register. This requires the timed CCP sequence during self-programming.

The data byte read will be available in the NVM DATA0 register.

25.12 External Programming

External programming is the method for programming code and nonvolatile data into the device from an external
programmer or debugger. This can be done by both in-system or in mass production programming.

For external programming, the device is accessed through the PDI and PDI controller, and using either the JTAG or PDI
physical connection. For details on PDI and JTAG and how to enable and use the physical interface, refer to “Program
and Debug Interface” on page 263. The remainder of this section assumes that the correct physical connection to the
PDI is enabled. Doing this all data and program memory spaces are mapped into the linear PDI memory space. Figure
25-3 on page 288 shows the PDI memory space and the base address for each memory space in the device.
287XMEGA D [MANUAL]
Atmel-8210G–AVR XMEGA D–12/2014

22.11 Interrupts and Events . 240

22.12 Calibration. 240

22.13 Synchronous Sampling . 240

22.14 Register Description – ADC . 241

22.15 Register Description - ADC Channel . 247

22.16 Register Summary – ADC. 253

22.17 Register Summary – ADC Channel . 253

22.18 Interrupt Vector Summary. 253

23. AC – Analog Comparator . 254

23.1 Features . 254

23.2 Overview . 254

23.3 Input Sources . 255

23.4 Signal Compare . 255

23.5 Interrupts and Events . 255

23.6 Window Mode . 256

23.7 Input Hysteresis . 256

23.8 Register Description . 257

23.9 Register Summary . 262

23.10 Interrupt Vector Summary. 262

24. Program and Debug Interface . 263

24.1 Features . 263

24.2 Overview . 263

24.3 PDI Physical . 264

24.4 PDI Controller . 268

24.5 Register Description - PDI Instruction and Addressing Registers. 270

24.6 Register Description – PDI Control and Status Registers. 272

24.7 Register Summary . 273

25. Memory Programming . 274

25.1 Features . 274

25.2 Overview . 274

25.3 NVM Controller . 274

25.4 NVM Commands. 275

25.5 NVM Controller Busy Status . 275

25.6 Flash and EEPROM Page Buffers . 276

25.7 Flash and EEPROM Programming Sequences . 276

25.8 Protection of NVM. 277

25.9 Preventing NVM Corruption . 277

25.10 CRC Functionality . 278

25.11 Self-programming and Boot Loader Support . 278

25.12 External Programming . 287

25.13 Register Description . 292

25.14 Register Summary . 292

26. Peripheral Module Address Map . 293

27. Instruction Set Summary . 294

28. Revision History . 299

28.1 8210G – 12/2014 . 299

28.2 8210F – 07/2014. 299
306XMEGA D [MANUAL]
Atmel-8201G-AVR-XMEGA D Manual-Manual_12/2014

