

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Betans	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev128gm002-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Digital Signal Controllers	17
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	83
6.0	Resets	
7.0	Interrupt Controller	
8.0	Direct Memory Access (DMA)	109
9.0	Oscillator Configuration	123
10.0	Power-Saving Features	133
11.0	I/O Ports	143
12.0	Timer1	173
13.0	Timer2/3 and Timer4/5	175
14.0	Deadman Timer (DMT)	181
15.0	Input Capture	189
16.0	Output Compare	193
17.0	High-Speed PWM Module	199
18.0		221
19.0		
20.0	Single-Edge Nibble Transmission (SENT)	237
21.0	Universal Asynchronous Receiver Transmitter (UART)	
22.0	Controller Area Network (CAN) Module (dsPIC33EVXXXGM10X Devices Only)	253
23.0	Charge Time Measurement Unit (CTMU)	279
24.0	10-Bit/12-Bit Analog-to-Digital Converter (ADC)	
25.0	Op Amp/Comparator Module	301
26.0	Comparator Voltage Reference	313
	Special Features	
28.0	Instruction Set Summary	327
29.0		
	High-Temperature Electrical Characteristics	
	Characteristics for Industrial/Extended Temperature Devices (-40°C to +125°C)	
33.0	Characteristics for High-Temperature Devices (+150°C)	439
	Packaging Information	
	endix A: Revision History	
	Х	
	Microchip Web Site	
	omer Change Notification Service	
	omer Support	
Produ	luct Identification System	497

2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not exceeding 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3 or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site (www.microchip.com).

- "Using MPLAB[®] ICD 3" (poster) (DS51765)
- *"MPLAB[®] ICD 3 Design Advisory"* (DS51764)
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" (DS51616)
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) (DS51749)

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. For more information, see **Section 9.0 "Oscillator Configuration"**.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed as shown in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 5 MHz < FIN < 13.6 MHz to comply with device PLL start-up conditions. This intends that, if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD, to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source.

Note: Clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

			-0.0.				(0.0.1		0					.0 (001		·)		
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11SID	046C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	EXIDE	—	EID17	EID16	xxxx
C1RXF11EID	046E								E	EID<15:0>								xxxx
C1RXF12SID	0470	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF12EID	0472								E	EID<15:0>								xxxx
C1RXF13SID	0474	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF13EID	0476								E	EID<15:0>								xxxx
C1RXF14SID	0478	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF14EID	047A								E	ID<15:0>								xxxx
C1RXF15SID	047C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	EXIDE	_	EID17	EID16	xxxx
C1RXF15EID	047E		EID<15:0> xxxx															

TABLE 4-11: CAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 FOR dsPIC33EVXXXGM10X DEVICES (CONTINUED)

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: SENT1 RECEIVER REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SENT1CON1	0500	SNTEN	—	SNTSIDL	_	RCVEN	TXM	TXPOL	CRCEN	PPP	SPCEN	_	PS	-	NIBCNT2	NIBCNT1	NIBCNT0	0000
SENT1CON2	0504		TICKTIME<15:0> (Transmit modes) or SYNCMAX<15:0> (Receive mode) FFFF															
SENT1CON3	0508					FRAM	ETIME<15:	:0> (Trans	mit modes) or SYNC	MIN<15:0>	(Receive	mode)					FFFF
SENT1STAT	050C	_	_	_	_	_	_	_	_	PAUSE	NIB2	NIB1	NIB0	CRCERR	FRMERR	RXIDLE	SYNCTXEN	0000
SENT1SYNC	0510						Synchr	onization -	Time Perio	d Register	(Transmit	mode)						0000
SENT1DATL	0514		DATA4<3:0> DATA5<3:0> DATA6<3:0> CRC<3:0> 0000															
SENT1DATH	0516		STAT<3:0> DATA1<3:0> DATA2<3:0> DATA3<3:0> 0000										0000					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: SENT2 RECEIVER REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SENT2CON1	0520	SNTEN	—	SNTSIDL		RCVEN	TXM	TXPOL	CRCEN	PPP	SPCEN	-	PS	—	NIBCNT2	NIBCNT1	NIBCNT0	0000
SENT2CON2	0524			TICKTIME<15:0> (Transmit modes) or SYNCMAX<15:0> (Receive mode) FFFF														
SENT2CON3	0528					FRAM	1ETIME<15	:0> (Trans	mit modes) or SYNC	MIN<15:0>	(Receive)	mode)					FFFF
SENT2STAT	052C	-	_	_		—		—	_	PAUSE	NIB2	NIB1	NIB0	CRCERR	FRMERR	RXIDLE	SYNCTXEN	0000
SENT2SYNC	0530						Synchi	ronization	Time Peric	d Registe	r (Transmit	mode)						0000
SENT2DATL	0534		DATA4<3:0> DATA5<3:0> DATA6<3:0> CRC<3:0> 0000															
SENT2DATH	0536		STAT<3:0> DATA1<3:0> DATA2<3:0> DATA3<3:0> 0000															

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70005144E-page 49

Allocating different Page registers for read and write access allows the architecture to support data movement between different pages in the data memory. This is accomplished by setting the DSRPAG register value to the page from which you want to read, and configure the DSWPAG register to the page to which it needs to be written. Data can also be moved from different PSV to EDS pages by configuring the DSRPAG and DSWPAG registers to address PSV and EDS space, respectively. The data can be moved between pages by a single instruction.

When an EDS or PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the EDS or PSV pages can occur at the page boundaries when:

- The initial address, prior to modification, addresses an EDS or a PSV page.
- The EA calculation uses Pre- or Post-Modified Register Indirect Addressing. However, this does not include Register Offset Addressing.

In general, when an overflow is detected, the DSxPAG register is incremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. When an underflow is detected, the DSxPAG register is decremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. This creates a linear EDS and PSV address space, but only when using the Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0, EDS and PSV spaces. Table 4-43 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when an overflow or underflow occurs, the EA<15> bit is set and the DSxPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- · Register Indirect with Register Offset Addressing
- Modulo Addressing
- · Bit-Reversed Addressing

TABLE 4-43: OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS AND PSV SPACE BOUNDARIES^(2,3,4)

0/11			Before			After	
0/U, R/W	Operation	DSxPAG	DS EA<15>	Page Description	DSxPAG	DS EA<15>	Page Description
O, Read		DSRPAG = 0x1FF	1	EDS: Last Page	DSRPAG = 0x1FF	0	See Note 1
O, Read	[++Wn]	DSRPAG = 0x2FF	1	PSV: Last Isw Page	DSRPAG = 0x300	1	PSV: First MSB Page
O, Read	or [Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB Page	DSRPAG = 0x3FF	0	See Note 1
O, Write		DSWPAG = 0x1FF	1	EDS: Last Page	DSWPAG = 0x1FF	0	See Note 1
U, Read	r 1	DSRPAG = 0x001	1	PSV Page	DSRPAG = 0x001	0	See Note 1
U, Read	[Wn] Or [Wn]	DSRPAG = 0x200	1	PSV: First Isw Page	DSRPAG = 0x200	0	See Note 1
U, Read	[WII]	DSRPAG = 0x300	1	PSV: First MSB Page	DSRPAG = 0x2FF	1	PSV: Last lsw Page

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the Base Data Space (0x0000-0x8000).

2: An EDS access with DSxPAG = 0x000 will generate an address error trap.

3: Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate an address error trap.

4: Pseudolinear Addressing is not supported for large offsets.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred
	0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—		—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0
—	—	—	DMA0MD ⁽¹⁾	—	—	—	—
			DMA1MD ⁽¹⁾	-			
			DMA2MD ⁽¹⁾	-			
			DMA3MD ⁽¹⁾				
bit 7							bit 0
Legend:							
R = Readal		W = Writable		•	nented bit, read		
-n = Value a	at POR	'1' = Bit is se	et	'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15-5	Unimplement						
bit 4	DMA0MD: DN						
	1 = DMA0 mo 0 = DMA0 mo						
	DMA1MD: DN						
	1 = DMA1 mo						
	0 = DMA1 mo						
	DMA2MD: DN	A2 Module I	Disable bit ⁽¹⁾				
	1 = DMA2 mo						
	0 = DMA2 mo	dule is enable	ed				
	DMA3MD: DN	MA3 Module E	Disable bit ⁽¹⁾				
	1 = DMA3 mo 0 = DMA3 mo						
bit 3-0	Unimplement	ted: Read as	' 0 '				

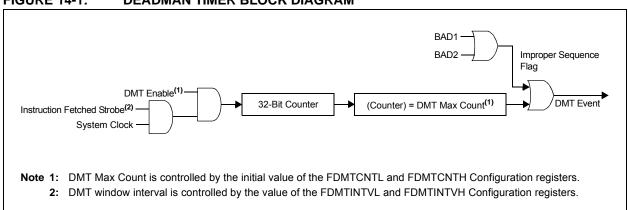
REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7

Note 1: This single bit enables and disables all four DMA channels.

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits		
External Interrupt 1	INT1	RPINR0	INT1R<7:0>		
External Interrupt 2	INT2	RPINR1	INT2R<7:0>		
Timer2 External Clock	T2CK	RPINR3	T2CKR<7:0>		
Input Capture 1	IC1	RPINR7	IC1R<7:0>		
Input Capture 2	IC2	RPINR7	IC2R<7:0>		
Input Capture 3	IC3	RPINR8	IC3R<7:0>		
Input Capture 4	IC4	RPINR8	IC4R<7:0>		
Output Compare Fault A	OCFA	RPINR11	OCFAR<7:0>		
PWM Fault 1	FLT1	RPINR12	FLT1R<7:0>		
PWM Fault 2	FLT2	RPINR12	FLT2R<7:0>		
UART1 Receive	U1RX	RPINR18	U1RXR<7:0>		
UART2 Receive	U2RX	RPINR19	U2RXR<7:0>		
SPI2 Data Input	SDI2	RPINR22	SDI2R<7:0>		
SPI2 Clock Input	SCK2	RPINR22	SCK2R<7:0>		
SPI2 Slave Select	SS2	RPINR23	SS2R<7:0>		
CAN1 Receive	C1RX	RPINR26	C1RXR<7:0>		
PWM Sync Input 1	SYNCI1	RPINR37	SYNCI1R<7:0>		
PWM Dead-Time Compensation 1	DTCMP1	RPINR38	DTCMP1R<7:0>		
PWM Dead-Time Compensation 2	DTCMP2	RPINR39	DTCMP2R<7:0>		
PWM Dead-Time Compensation 3	DTCMP3	RPINR39	DTCMP3R<7:0>		
SENT1 Input	SENT1R	RPINR44	SENT1R<7:0>		
SENT2 Input	SENT2R	RPINR45	SENT2R<7:0>		

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

14.0 DEADMAN TIMER (DMT)


- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Deadman Timer (DMT)" (DS70005155) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The primary function of the Deadman Timer (DMT) is to reset the processor in the event of a software malfunction. The DMT, which works on the system clock, is a free-running instruction fetch timer, which is clocked whenever an instruction fetch occurs, until a count match occurs. Instructions are not fetched when the processor is in Sleep mode.

DMT can be enabled in the Configuration fuse or by software in the DMTCON register by setting the ON bit. The DMT consists of a 32-bit counter with a time-out count match value, as specified by the two 16-bit Configuration Fuse registers: FDMTCNTL and FDMTCNTH.

A DMT is typically used in mission-critical, and safetycritical applications, where any single failure of the software functionality and sequencing must be detected.

Figure 14-1 shows a block diagram of the Deadman Timer module.

FIGURE 14-1: DEADMAN TIMER BLOCK DIAGRAM

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_	_	_		_	
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimplem	ented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own
bit 15-7	Unimplement	ted: Read as '()'				
bit 6	PCIE: Stop Co	ondition Interru	pt Enable bit (I	² C Slave mode	only).		
		nterrupt on detection interrupts		condition			
bit 5		•		² C Slave mode	only)		
bit 5			•	or Restart condi	• /		
		ction interrupts					
bit 4		· Overwrite Ena	•	• •			
				nd an ACK is g		received addre	ess/data byte,
				<pre>if the RBF bit = ed when I2CO\</pre>			
bit 3		x Hold Time Se					
				after the falling			
				after the falling	-		
bit 2				Enable bit (I ² C mpled low whei		• /	and state the
		• •		Detection mode			•
	sequences.	·			,	0	
		collision interr					
bit 1		ss Hold Enable	•				
			•	x for a matchir	ng received ad	dress byte; the	e SCLREL bit
	·	,		he SCLx will be	held low		
hit 0		holding is disab ⊣old Enable bit		do only)			
bit 0				or a received da	ata byte: slave l	hardware clears	s the SCLRFI
	bit (I2CxC	CON1<12>) and					
	0 = Data hold	ling is disabled					

REGISTER 19-2: I2CxCON2: I2Cx CONTROL REGISTER 2

R-0, HSC	R-0, HSC	R-0, HSC	U-0	U-0	R/C-0, HSC	R-0, HSC	R-0, HSC
ACKSTAT	TRSTAT	ACKTIM	—	_	BCL	GCSTAT	ADD10
bit 15							bit 8
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF
bit 7							bit 0
1		O Ola anali	I.a. Ia :4	LICO Llaratur		velete le it	
Legend: R = Readabl	a h:t	C = Clearab			are Settable/Clear		
		W = Writabl		0 = Unimpien	ented bit, read a	HS = Hardware	Cottoble bit
-n = Value at	PUR	'1' = Bit is s	51		areu		Settable bit
bit 15	ACKSTAT: A	Acknowledge	Status bit (up	dated in all Ma	ster and Slave m	odes)	
		edge was not				,	
	0 = Acknowl	edge was rec	eived from sla	ave			
bit 14				-	naster; applicable	e to master trans	mit operation)
		ransmit is in p ransmit is not		ts + ACK)			
bit 13	ACKTIM: Ad	cknowledge T	ime Status bit	t (valid in I ² C Sl	ave mode only)		
						g edge of SCLx o	lock
		-	-	eared on 9 ¹¹ risi	ng edge of SCL>	(clock	
bit 12-11	-	nted: Read a			1 1 20		
bit 10						nodule is disable	d, 12CEN = 0)
		ision has not l			or slave transm	it operation	
bit 9				ed after Stop de	etection)		
		call address v		·	,		
bit 8				red after Stop o	detection)		
bit o		dress was m					
		dress was no					
bit 7	IWCOL: Wri	te Collision D	etect bit				
			the I2CxTRN	I register failed	because the I ² C	module is busy;	must be cleared
	In softw	are n has not occi	irred				
bit 6		Receive Ove		ł			
bit o			-		s still holding the	previous byte; 12	2COV is a "don't
	care" in	Transmit mod	de, must be c	leared in softwa	-		
		w has not occ					
bit 5				g as I ² C slave)			
		s that the last s that the last			was an address	i	
bit 4	P: I2Cx Stop				-		
	1 = Indicates	s that a Stop b		letected last	d when the I ² C r	nodule is disable	ed, I2CEN = 0.

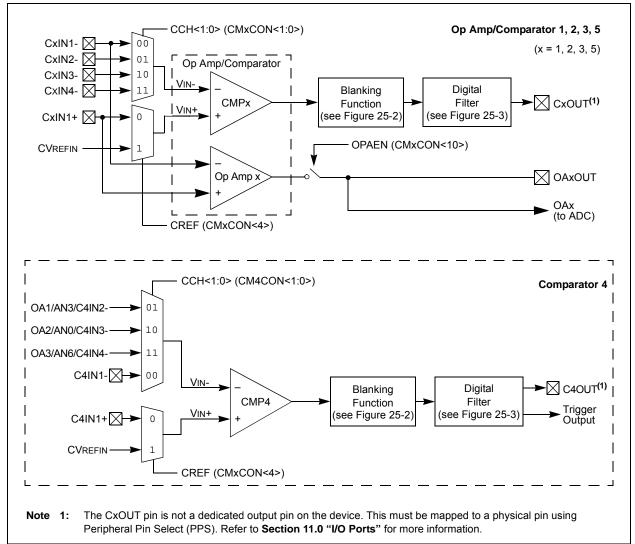
REGISTER 19-3: I2CxSTAT: I2Cx STATUS REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1		
UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT		
bit 15	it 15								
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0		
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA		
bit 7							bit 0		
		0 01 11							
Legend:	1.11	C = Clearable			are Clearable bit				
R = Readable		W = Writable	DIT	•	nented bit, read				
-n = Value at F	POR	'1' = Bit is set '0' = Bit is cleared x = Bit is unknow							
bit 15,13	 11 = Reserve 10 = Interrupt the trans 01 = Interrupt operatio 00 = Interrupt 	ed; do not use t when a chara smit buffer beco t when the las ns are complet	cter is transf omes empty it character ed cter is transf	is shifted out Ferred to the Tra	election bits ansmit Shift Reg of the Transmit ansmit Shift Reg	t Shift Registe	r; all transmit		
bit 14	$\frac{\text{If IREN = 0:}}{1 = \text{UxTX Idle}}$ $0 = \text{UxTX Idle}$ $\frac{\text{If IREN = 1:}}{1 = \text{IrDA}^{\textcircled{B}} \text{ en}}$ $0 = \text{IrDA ence}$	e state is '1' coded UxTX Id oded UxTX Idle	le state is '1' e state is '0'						
bit 12	Unimplemen	ted: Read as ')'						
bit 11	1 = Sends Sy bit; cleare 0 = Sync Bre	ed by hardware ak transmissio	ext transmis upon compl n is disabled		followed by twe	elve '0' bits, foll	lowed by Stop		
bit 10	UTXEN: UAR	Tx Transmit Er	nable bit ⁽¹⁾						
	0 = Transmit			ntrolled by UAR ransmission is	Tx aborted and the	e buffer is rese	t; UxTX pin is		
bit 9	UTXBF: UAR	Tx Transmit Bu	iffer Full Stat	us bit (read-onl	y)				
	1 = Transmit 0 = Transmit		ll, at least on	e more charact	er can be writte	n			
bit 8	1 = Transmit	Shift Register is	s empty and t		ly) s empty (the last is in progress o		as completed)		
bit 7-6	11 = Interrupt 10 = Interrupt 0x = Interrupt	t is set on UxRs t is set on UxRs	SR transfer, i SR transfer, r ny character	naking the rece is received and	on bits eive buffer full (i. ive buffer 3/4 fu d transferred fro	ll (i.e., has 3 da	ita characters)		

REGISTER 21-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Note 1: Refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/ PIC24 Family Reference Manual" for information on enabling the UART module for transmit operation.

25.0 OP AMP/COMPARATOR MODULE


- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "**Op Amp/Comparator**" (DS70000357) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X family devices contain up to five comparators that can be configured in various ways. CMP1, CMP2, CMP3 and CMP5 also have the option to be configured as op amps, with the output being brought to an external pin for gain/filtering connections. As shown in Figure 25-1, individual comparator options are specified by the comparator module's Special Function Register (SFR) control bits.

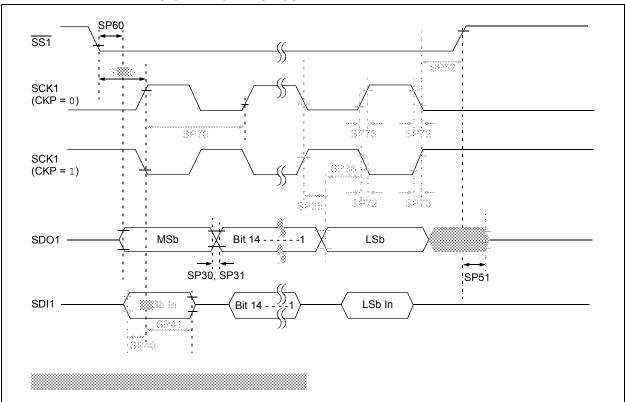
The following options allow users to:

- Select the Edge for Trigger and Interrupt Generation
- Configure the Comparator Voltage Reference
- Configure Output Blanking and Masking
- Configure as a Comparator or Op Amp (CMP1, CMP2, CMP3 and CMP5 only)

Note: Not all op amp/comparator input/output connections are available on all devices. See the "Pin Diagrams" section for available connections.

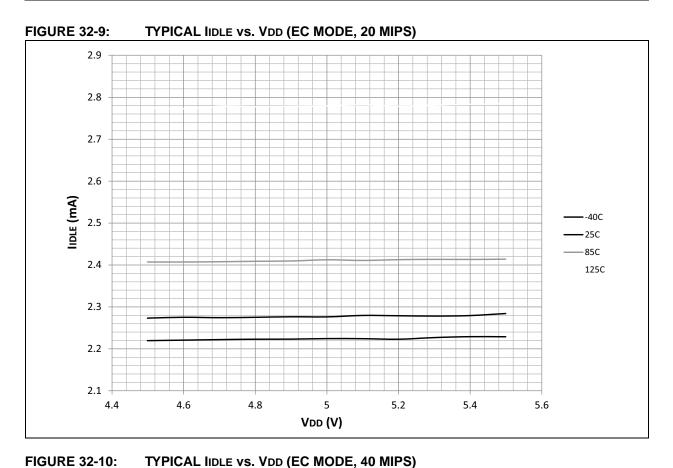
FIGURE 25-1: OP AMP/COMPARATOR x MODULE BLOCK DIAGRAM

File Name	Address	Device Memory Size (Kbytes)	23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
FSEC	005780	32		AIVTDIS			_	CSS2				GSS1 G	GSS0	GWRP		BSEN	BSS1	BSSO	BWRP	
	00AB80	64			_				CSS1	CSS0 (CWRP GSS1									
	015780	128	-			_							6330	GWRF	—					
	02AB80	256																		
FBSLIM	005790	32																		
	00AB90	64		_	_	_	BSLIM<12:0>													
	015790	128											DOLIN	1412.05						
	02AB90	256																		
Reserved	005794	32																		
	00AB94	64	-	Reserved ⁽¹⁾	_	_			_	_		_	_	_	_	_	_			
	015794	128		Reserveu																
	02AB94	256																		
FOSCSEL	005798	32	-	_	_	_	_	_	_	_	— IESO		_			— F		ľ		
	00AB98	64										IESO		_			FNOSC2	FNOSC1	FNOSC0	
	015798	128																		
	02AB98	256																		
FOSC	00579C	32				_	_	- -		— P	PLLKEN	FCKSM1	FCKSM0 IOL1W		DL1WAY —	_	OSCIOFNC	POSCMD1	POSCMD0	
	00AB9C	64		_	_				-					IOL1WAY						
	01579C	128	-																	
DAGE	02AB9C	256																		
FWDT	0057A0	32	-					_		WDTWIN1	WDTWIN0	WINDIS	FWDTEN1	FWDTEN0	WDTPRE	WDTPS3	WDTPS2	WDTPS1	WDTPS0	
	00ABA0 0157A0	64 128	—	_	—	-	_		-											
	0157A0	256	1																	
FPOR	02ABA0 0057A4	32																	BOREN	
FPUR	0057A4	52 64	-		-	-									-					
	00ABA4 0157A4	128	—	—			—	—	—	—	_	—		-		—	—	—		
	0157A4 02ABA4	256																		
FICD	02ABA4	32																		
	0057A8	64	1																	
	00ABA8	128		-	—	—	—	-	—	—	-	Reserved ⁽²⁾	—	-	—	—	-	ICS1	ICS0	
	0157A8		1																1	
	UZADAŎ	200																1	1	


TABLE 27-1: CONFIGURATION WORD REGISTER MAP

Legend: — = unimplemented, read as '1'.

Note 1:This bit is reserved and must be programmed as '0'.2:This bit is reserved and must be programmed as '1'.


Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	4	SFA
		CALL	Wn	Call indirect subroutine	1	4	SFA
		CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA, SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	$f = \overline{f}$	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow (Wb – Ws – C)	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
22	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
23	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
ŀ	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
24	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
					+	. /	

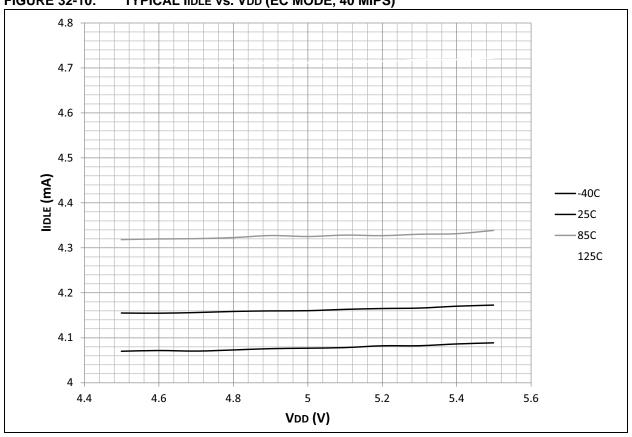
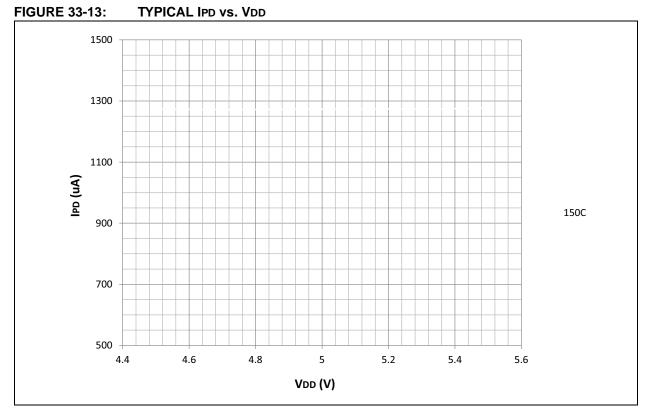
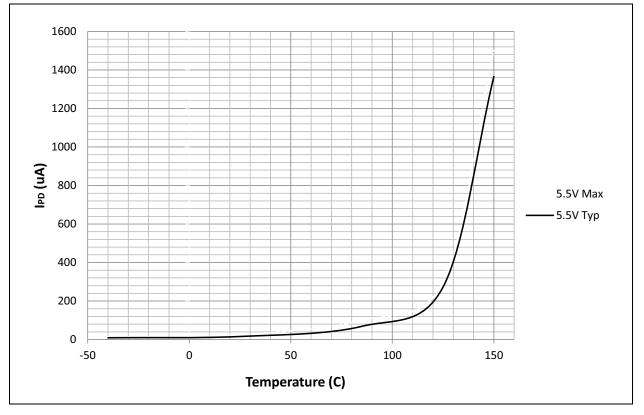

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

FIGURE 30-25: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

NOTES:

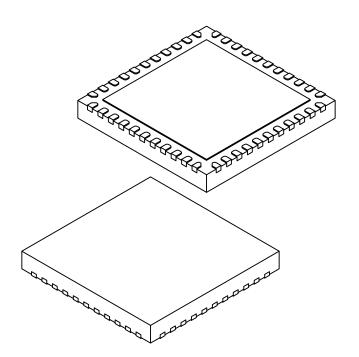


© 2013-2016 Microchip Technology Inc.


NOTES:

dsPIC33EVXXXGM00X/10X FAMILY

33.4 IPD



44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	Limits	MIN	NOM	MAX			
Number of Pins	N	44					
Pitch	е	0.65 BSC					
Overall Height	Α	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Terminal Thickness	A3	0.20 REF					
Overall Width	E	8.00 BSC					
Exposed Pad Width	E2	6.25	6.45	6.60			
Overall Length	D	8.00 BSC					
Exposed Pad Length	D2	6.25	6.45	6.60			
Terminal Width	b	0.20	0.30	0.35			
Terminal Length	L	0.30	0.40	0.50			
Terminal-to-Exposed-Pad	К	0.20	-	-			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2