

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev128gm002-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-3: CTXTSTAT: CPU W REGISTER CONTEXT STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
_	_				CCTXI2	CCTXI1	CCTXI0
bit 15					•	·	bit 8
U-0	U-0	U-0	U-0	U-0	R-0	R/W-0	R/W-0
—	—	—	—	—	MCTXI2	MCTXI1	MCTXI0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 10-8	CCTXI<2:0>: Current (W Register) Context Identifier bits 111 = Reserved 011 = Reserved 010 = Alternate Working Register Set 2 is currently in use 001 = Alternate Working Register Set 1 is currently in use 000 = Default register set is currently in use						
bit 2-0	Unimplemented: Read as '0' MCTXI<2:0>: Manual (W Register) Context Identifier bits 111 = Reserved 011 = Reserved 010 = Alternate Working Register Set 2 was most recently manually selected 001 = Alternate Working Register Set 1 was most recently manually selected 000 = Default register set was most recently manually selected						

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

FIGURE 7-1: dspic33evXXXGM00X/10X FAMILY ALTERNATE INTERRUPT VECTOR TAB	URE 7-1:	dsPIC33EVXXXGM00X/10X FAMILY ALTERNATE INTERRUPT VECTOR TABL
---	----------	--

	Peronyod	BSI M < 12.0 > (1) + 0.000000	
	Beggnved	BSLIN(<12.0<7 + 0.000000)	
	Casillatar Esil Tran Vestor	BSLIM<12.0×7+0000002	
		BSLIM<12:0×() + 0x000004	
	Address Error Trap Vector	BSLIM<12.0×7+00000000000000000000000000000000000	
	Generic Hard Trap Vector	BSLIM<12:0>(1)+0x000008	
	Stack Error Trap Vector	BSLIM<12.0>(1)+0.000000A	
	Math Error Trap Vector	BSLIM<12:0>(1)+0x00000C	
	DMAC Error Trap Vector	BSLIM<12:0>(1) + 0x00000E	
	Generic Soft Trap Vector	BSLIM<12:0>(1) + 0x000010	
	Reserved	BSLIM<12:0>(') + 0x000012	-
	Interrupt Vector 0	BSLIM<12:0>(') + 0x000014	
	Interrupt Vector 1	BSLIM<12:0>(1) + 0x000016	
	:	:	
	:	:	
	:	:	
5	Interrupt Vector 52	BSLIM<12:0> ⁽¹⁾ + 0x00007C	
	Interrupt Vector 53	BSLIM<12:0> ⁽¹⁾ + 0x00007E	\backslash
	Interrupt Vector 54	BSLIM<12:0> ⁽¹⁾ + 0x000080	See Table 7-1 for
	:] :	Interrupt Vector Details
	:	:	1
	:	:	
	Interrupt Vector 116	BSLIM<12:0> ⁽¹⁾ + 0x0000FC	
	Interrupt Vector 117	BSLIM<12:0> ⁽¹⁾ + 0x00007E	
	Interrupt Vector 118	BSLIM<12:0> ⁽¹⁾ + 0x000100	
	Interrupt Vector 119	BSLIM<12:0> ⁽¹⁾ + 0x000102	
	Interrupt Vector 120	BSLIM<12:0> ⁽¹⁾ + 0x000104	
	:] :	
	:] :	
	:	1 :	
	Interrupt Vector 244	BSLIM<12:0> ⁽¹⁾ + 0x0001FC	
V	Interrupt Vector 245	BSLIM<12:0> ⁽¹⁾ + 0x0001FE	
Note	1. The address depends on the si	ze of the Boot Segment defined by	v BSLIM<12:0>
NOLG	[(BSLIM<12:0> – 1) x 0x400] +	Offset.	J DOLIM (12.0 ⁻ .

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT	DL2	DL1	DL0
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0
Legend:		C = Clearable) bit				
P - Poodoblo k	oit	M = M/ritable bit		II = I inimplemented bit read as '0'			

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit 1 = Variable exception processing latency is enabled 0 = Fixed exception processing latency is enabled

bit 3 **IPL3:** CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 8-7: DMAXPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAI)<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W		W = Writable bit		U = Unimplemented bit, re		ıd as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown

bit 15-0 PAD<15:0>: DMA Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-8: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—		CNT<13:8> ⁽²⁾					
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CNT<7:0> ⁽²⁾							
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 CNT<13:0>: DMA Transfer Count Register bits⁽²⁾

- **Note 1:** If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.
 - **2:** The number of DMA transfers = CNT<13:0> + 1.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_	—		—	—	—
bit 15							bit 8
·							
U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0
—	—	—	DMA0MD ⁽¹⁾	—	—	—	—
			DMA1MD ⁽¹⁾				
			DMA2MD ⁽¹⁾				
			DMA3MD ⁽¹⁾				
bit 7							bit 0
[
Legend:							
R = Readal	ble bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cleared		x = Bit is unknown	
bit 15-5	Unimplement	ted: Read as	'O'				
bit 4	DMA0MD: DN	/A0 Module D	isable bit(")				
	1 = DMA0 mo	dule is disable	ed ad				
			hiaabla hit(1)				
	1 = DMA1 mo	viA i iviouule D dule is disable					
	0 = DMA1 mo	dule is enable	ed				
	DMA2MD: DMA2 Module Disable bit ⁽¹⁾						
1 = DMA2 module is disabled							
	0 = DMA2 mo	dule is enable	ed				
	DMA3MD: DN	MA3 Module D	isable bit ⁽¹⁾				
	1 = DMA3 mo	dule is disable	ed				
	0 = DMA3 mo	dule is enable	d				
bit 3-0	Unimplement	ted: Read as	'0'				

REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7

Note 1: This single bit enables and disables all four DMA channels.

REGISTER 16-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits
 - 111 = Center-Aligned PWM mode: Output sets high when OCxTMR = OCxR and sets low when OCxTMR = OCxRS⁽¹⁾
 - 110 = Edge-Aligned PWM mode: Output sets high when OCxTMR = 0 and sets low when OCxTMR = $OCxR^{(1)}$
 - 101 = Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare mode: Compare event with OCxR, continuously toggles OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

NOTES:

REGISTER 17-7: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

bit 7-6	DTC<1:0>: Dead-Time Control bits
	11 = Dead-Time Compensation mode
	10 = Dead-time function is disabled
	01 = Negative dead time is actively applied for Complementary Output mode
	00 = Positive dead time is actively applied for all Output modes
bit 5	DTCP: Dead-Time Compensation Polarity bit ⁽³⁾
	When Set to '1':
	If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened.
	If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened.
	When Set to '0':
	If DTCMPx = 0, PWMxH is shortened and PWMxL is lengthened.
	If DTCMPx = 1, PWMxL is shortened and PWMxH is lengthened.
bit 4-3	Unimplemented: Read as '0'
bit 2	CAM: Center-Aligned Mode Enable bit ^(2,4)
	1 = Center-Aligned mode is enabled
	0 = Edge-Aligned mode is enabled
bit 1	XPRES: External PWMx Reset Control bit ⁽⁵⁾
	1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base mode
L:1 0	$0 = 2 \times 10^{-1}$ mm s do not anect i wink time base
DITU	
	1 = Updates to the active MDC/PDCx/DTRX/ALIDTRX/PHASEX registers are immediate
	0 = Updates to the active MDC/PDCX/DTRX/ALTDTRX/PHASEX registers are synchronized to the PWMx period boundary
Note 1:	Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.
2:	These bits should not be changed after the PWMx is enabled (PTEN = 1).
3:	DTC<1:0> = 11 for DTCP to be effective; else, DTCP is ignored.

- 4: The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
- **5:** To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (DS70005185) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, ADC Converters, etc. The SPI module is compatible with the Motorola[®] SPI and SIOP interfaces.

The dsPIC33EVXXXGM00X/10X device family offers two SPI modules on a single device, SPI1 and SPI2, that are functionally identical. Each SPI module includes an eight-word FIFO buffer and allows DMA bus connections. When using the SPI module with DMA, FIFO operation can be disabled.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 and SPI2 modules.

The SPI1 module uses dedicated pins which allow for a higher speed when using SPI1. The SPI2 module takes advantage of the Peripheral Pin Select (PPS) feature to allow for greater flexibility in pin configuration of this module, but results in a lower maximum speed. See **Section 30.0 "Electrical Characteristics"** for more information.

The SPIx serial interface consists of the following four pins:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- · SCKx: Shift Clock Input or Output
- SSx/FSYNCx: Active-Low Slave Select or Frame Synchronization I/O Pulse

Note: All of the 4 pins of the SPIx serial interface must be configured as digital in the ANSELx registers.

The SPIx module can be configured to operate with two, three or four pins. In 3-pin mode, SSx is not used. In 2-pin mode, neither SDOx nor SSx is used.

Figure 18-1 illustrates the block diagram of the SPIx module in Standard and Enhanced modes.

REGISTER 24-6: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER (CONTINUED)

- **Note 1:** AN0 to AN7 are repurposed when comparator and op amp functionality are enabled. See Figure 24-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: If the op amp is selected (OPAEN bit (CMxCON<10>) = 1), the OAx input is used; otherwise, the ANx input is used.
 - 3: See the "Pin Diagrams" section for the available analog channels for each device.

Bit Field	Register	Description
OSCIOFNC	FOSC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is the clock output 0 = OSC2 is the general purpose digital I/O pin
IOL1WAY	FOSC	Peripheral Pin Select Configuration bit 1 = Allows only one reconfiguration 0 = Allows multiple reconfigurations
FCKSM<1:0>	FOSC	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
PLLKEN	FOSC	PLL Lock Wait Enable bit 1 = Clock switches to the PLL source; will wait until the PLL lock signal is valid 0 = Clock switch will not wait for PLL lock
WDTPS<3:0>	FWDT	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • • • • • • • • • • •
WDTPRE	FWDT	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32
FWDTEN<1:0>	FWDT	 Watchdog Timer Enable bits 11 = WDT is enabled in hardware 10 = WDT is controlled through the SWDTEN bit 01 = WDT is enabled only while device is active and disabled in Sleep; the SWDTEN bit is disabled 00 = WDT and the SWDTEN bit are disabled
WINDIS	FWDT	Watchdog Timer Window Enable bit 1 = Watchdog Timer is in Non-Window mode 0 = Watchdog Timer is in Window mode
WDTWIN<1:0>	FWDT	Watchdog Timer Window Select bits 11 = WDT window is 25% of WDT period 10 = WDT window is 37.5% of WDT period 01 = WDT window is 50% of WDT period 00 = WDT window is 75% of WDT period
BOREN	FPOR	Brown-out Reset (BOR) Detection Enable bit 1 = BOR is enabled 0 = BOR is disabled
ICS<1:0>	FICD	ICD Communication Channel Select bits 11 = Communicates on PGEC1 and PGED1 10 = Communicates on PGEC2 and PGED2 01 = Communicates on PGEC3 and PGED3 00 = Reserved, do not use
DMTIVT<15:0>	FDMTINTVL	Lower 16 Bits of 32-Bit Field that Configures the DMT Window Interval bits
DMTIVT<31:16>	FDMTINTVH	Upper 16 Bits of 32-Bit Field that Configures the DMT Window Interval bits
DMTCNT<15:0>	FDMTCNTL	Lower 16 Bits of 32-Bit Field that Configures the DMT Instruction Count Time-out Value bits

TABLE 27-2:	dsPIC33EVXXXGM00X/10X CONFIGURATION BITS DESCRIPTION (C	CONTINUED)
-------------	---	------------

29.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

29.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

29.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

29.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

29.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

TABLE 30-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
DO31	TIOR	Port Output Rise Time	_	5	10	ns	
DO32	TIOF	Port Output Fall Time	-	5	10	ns	
DI35	TINP	INTx Pin High or Low Time (input)	20	—		ns	
DI40	TRBP	CNx High or Low Time (input)	2	_	_	TCY	

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

FIGURE 30-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

AC CHARACTERISTICS		Standard Operating Conditions (see Note 1): 4.5V to 5.5V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$							
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
ADC Accuracy (10-Bit Mode)									
HAD20b	Nr	Resolution	10 data bits		bits				
HAD21b	INL	Integral Nonlinearity	-1.5	—	+1.5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 5.5V		
HAD22b	DNL	Differential Nonlinearity	≥ 1	—	< 1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 5.5V		
HAD23b	Gerr	Gain Error	1	3	6	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 5.5V		
HAD24b	EOFF	Offset Error	1	2	4	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 5.5V		

TABLE 31-19: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter HBO10 in Table 31-10 for the minimum and maximum BOR values.

FIGURE 32-26: TYPICAL IIL vs. TEMPERATURE (GENERAL PURPOSE I/Os)

© 2013-2016 Microchip Technology Inc.

33.19 ADC Gain Offset Error

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units	2	S		
Limits	MIN	NOM	MAX	
N		28		
е		1.27 BSC		
А	-	-	2.65	
A2	2.05	-	-	
A1	0.10	-	0.30	
E		10.30 BSC		
E1	7.50 BSC			
D	17.90 BSC			
h	0.25	-	0.75	
L	0.40	-	1.27	
L1		1.40 REF		
Θ	0°	-	-	
φ	0°	-	8°	
С	0.18	-	0.33	
b	0.31	-	0.51	
α	5°	-	15°	
β	5°	-	15°	
	Units Limits N e A A A 2 A 1 E D h L L 1 Ο 0 9 C C b b α α β	Units M Limits MIN N	Units MILLIMETER Limits MIN NOM N 28 e 1.27 BSC A - A2 2.05 A1 0.10 E 10.30 BSC E1 7.50 BSC D 17.90 BSC h 0.25 L 0.40 L1 1.40 REF Ø 0° φ 0° c 0.18 b 0.31 α 5° β 5°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2