

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·>>F

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev128gm002-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	NVMIF	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMPIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_	_	_	-	_	_	_	_	_	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_	_	_	PSEMIF	_	_	_	_	_	_	_	_	_	0000
IFS4	0808	_	_	CTMUIF	_	_	_	_	_	_	C1TXIF ⁽¹⁾	_	_	_	U2EIF	U1EIF	_	0000
IFS5	080A	PWM2IF	PWM1IF	_	_	—	—	—	_	_	_	_	_	_	_	_	_	0000
IFS6	080C	_	—	_	—	_	—	—	_	_	_	_	_	_	_	_	PWM3IF	0000
IFS8	0810	_	ICDIF	—	—	_	—	—	_	_	_	_	_	_	_	_	—	0000
IFS10	0814	_	—	I2C1BCIF	—		—	—	_	_	_	_	_	_	_	_	—	0000
IFS11	0816	_	_	_	_	—	ECCSBEIF	SENT2IF	SENT2EIF	SENT1IF	SENT1EIF	_	—	_	_	—	_	0000
IEC0	0820	NVMIE	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	_	_	INT1IE	CNIE	CMPIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	_	_	—	—	—	_	_	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	_	_	—	—	PSEMIE	_	_	_	_	_	_	_	—	_	0000
IEC4	0828	_	_	CTMUIE	_	—	—	—	_	_	C1TXIE ⁽¹⁾	_	—	_	U2EIE	U1EIE	_	0000
IEC5	082A	PWM2IE	PWM1IE	_	_	—	—	—	_	_	_	_	—	_	_	—	_	0000
IEC6	082C	_	_	_	_	—	—	—	_	_	_	_	—	_	_	_	PWM3IE	0000
IEC8	0830	_	ICDIE	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
IEC10	0834	_	_	I2C1BCIE	_	—	—	—	_	_	_	_	—	_	_	_	_	0000
IEC11	0836	_	_	_	_	—	ECCSBEIE	SENT2IE	SENT2EIE	SENT1IE	SENT1EIE	_	—	_	_	_	_	0000
IPC0	0840	_	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	0842	_	T2IP2	T2IP1	T2IP0	—	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0	_	DMA0IP2	DMA0IP1	DMA0IP0	4444
IPC2	0844	_	U1RXIP2	U1RXIP1	U1RXIP0	—	SPI1IP2	SPI1IP1	SPI1IP0	_	SPI1EIP2	SPI1EIP1	SPI1EIP0	_	T3IP2	T3IP1	T3IP0	4444
IPC3	0846	_	NVMIP2	NVMIP1	NVMIP0	_	DMA1IP2	DMA1IP1	DMA1IP0	_	AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0	4444
IPC4	0848	_	CNIP2	CNIP1	CNIP0	_	CMPIP2	CMPIP1	CMPIP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	084A	_	_	_	_	—	—	—	_	_	_	_	_	_		INT1IP<2:0>		0004
IPC6	084C	_	T4IP2	T4IP1	T4IP0	—	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0	_	DMA2IP2	DMA2IP1	DMA2IP0	4444
IPC7	084E	_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0		INT2IP2	INT2IP1	INT2IP0	—	T5IP2	T5IP1	T5IP0	4444
IPC8	0850	_	C1IP2	C1IP1	C1IP0	_	C1RXIP2(1)	C1RXIP1 ⁽¹⁾	C1RXIP0(1)		SPI2IP2	SPI2IP1	SPI2IP0	—	SPI2EIP2	SPI2EIP1	SPI2EIP0	4444
IPC9	0852	_	_	_	—	—	IC4IP2	IC4IP1	IC4IP0		IC3IP2	IC3IP1	IC3IP0	—	DMA3IP2	DMA3IP1	DMA3IP0	0444
IPC14	085C	_	—	_	—	_		—				PSEMIP<2:0	>	—	_	—	_	0040
IPC16	0860	_	—	_	—	_	U2EIP2	U2EIP1	U2EIP0		U1EIP2	U1EIP1	U1EIP0	—	_	_	_	0440
IPC17	0862	_	_	_	_	_		C1TXIP<2:0>(1	1)		_	_	—	_	_	_	_	0400

TABLE 4-23: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EVXXXGM00X/10X FAMILY DEVICES

Legend: — = unimplemented, read as '0' Reset values are shown in hexadecimal.

Note 1: This feature is available only on dsPIC33EVXXXGM10X devices.

TABLE 4-25: OP AMP/COMPARATOR REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0A80	PSIDL		_	C5EVT	C4EVT	C3EVT	C2EVT	C1EVT	_		_	C5OUT	C4OUT	C3OUT	C2OUT	C1OUT	0000
CVR1CON	0A82	CVREN	CVROE	_	_	CVRSS	VREFSEL	—	—	—	CVR6	CVR5	CVR4	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	0A84	CON	COE	CPOL	_	_	OPAEN	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM1MSKSRC	0A86	—	_	_	_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM1MSKCON	0A88	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM1FLTR	0A8A	—	_	_	_	_	_	_	_	_	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM2CON	0A8C	CON	COE	CPOL	_	_	OPAEN	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM2MSKSRC	0A8E	—	_	_	_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM2MSKCON	0A90	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM2FLTR	0A92		—			_	_	—			CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM3CON	0A94	CON	COE	CPOL	l	_	OPAEN	CEVT	COUT	EVPOL1	EVPOL0	—	CREF			CCH1	CCH0	0000
CM3MSKSRC	0A96		_		l	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM3MSKCON	0A98	HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM3FLTR	0A9A		_		l	_		—			CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM4CON	0A9C	CON	COE	CPOL	l	_		CEVT	COUT	EVPOL1	EVPOL0	—	CREF			CCH1	CCH0	0000
CM4MSKSRC	0A9E		_		l	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM4MSKCON	0AA0	HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM4FLTR	0AA2		_		l	_		—			CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM5CON	0AA4	CON	COE	CPOL	l	_	OPAEN	CEVT	COUT	EVPOL1	EVPOL0	—	CREF			CCH1	CCH0	0000
CM5MSKSRC	0AA6		—		_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM5MSKCON	0AA8	HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM5FLTR	0AAA	_	—	—	_	—	_	—	_	_	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CVR2CON	0AB4	CVREN	CVROE ⁽¹⁾	_	_	CVRSS	VREFSEL	—	_	_	CVR6	CVR5	CVR4	CVR3	CVR2	CVR1	CVR0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: CVROE (CVR2CON<14>) is not available on 28-pin devices.

REGISTER 5-2: NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	—	—	—	—
bit 15		· · · ·					bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMADF	RU<23:16>			
bit 7							bit 0
Legend:							
R = Readable h	hit	M = Mritable bit		II = I Inimplem	nented hit read	as 'O'	

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
			40 0

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADRU<23:16>:** NVM Memory Upper Write Address bits Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

REGISTER 5-3: NVMADR: NONVOLATILE MEMORY LOWER ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x					
NVMADR<15:8>												
bit 15 bit 8												
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x					
			NVMAE)R<7:0>								
bit 7							bit 0					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 NVMADR<15:0>: NVM Memory Lower Write Address bits

Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset
 - Illegal Address Mode Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this device data sheet for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR and BOR bits (RCON<1:0>) that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in the other sections of this device data sheet.

Note: The status bits in the RCON register should be cleared after they are read. Therefore, the next RCON register value after a device Reset is meaningful.

Note: In all types of Resets, to select the device clock source, the contents of OSCCON are initialized from the FNOSCx Configuration bits in the FOSCSEL Configuration register.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	SLEEP: Wake-up from Sleep Flag bit
	1 = Device has been in Sleep mode
	0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit
	1 = Device was in Idle mode
	0 = Device was not in Idle mode
bit 1	BOR: Brown-out Reset Flag bit
	1 = A Brown-out Reset has occurred
	0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit
	1 = A Power-on Reset has occurred
	0 = A Power-on Reset has not occurred

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE						
bit 15							bit 8						
R/W-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0						
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_						
bit 7							bit 0						
Legend:		HC = Hardwa	re Clearable bi	it									
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'							
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unk	nown						
bit 15	NSTDIS: Int	errupt Nesting	Disable bit										
	1 = Interrupt	nesting is disa	lesting is disabled										
b :# 4.4		nesting is ena											
DIL 14	1 = Tran way	s caused by ov	verflow of Accur	mulator A									
	0 = Trap wa	s not caused by	y overflow of A	ccumulator A									
bit 13	OVBERR: A	ccumulator B (Overflow Trap I	Flag bit									
	1 = Trap was	s caused by ov	verflow of Accu	mulator B									
bit 10	0 = Irap was	s not caused by	y overflow of A	Councilator B	laa hit								
DIL 12	1 = Tran way	Accumulator A	Catastrophic over	Overnow Trap F	lag bil lator A								
	0 = Trap was	s not caused by	y catastrophic over	overflow of Accu	imulator A								
bit 11	COVBERR:	Accumulator E	3 Catastrophic	Overflow Trap F	lag bit								
	1 = Trap was 0 = Trap was	s caused by ca s not caused b	tastrophic over y catastrophic o	flow of Accumu	lator B ımulator B								
bit 10	OVATE: Acc	cumulator A Overflow Trap Enable bit											
	1 = Trap ove 0 = Trap is c	erflow of Accun lisabled	nulator A										
bit 9	OVBTE: Acc	cumulator B Ov	/erflow Trap Er	able bit									
	1 = Trap ove 0 = Trap is c	erflow of Accun lisabled	nulator B										
bit 8	COVTE: Ca	tastrophic Over	rflow Trap Enal	ble bit									
	1 = Trap on 0 = Trap is c	catastrophic ov lisabled	verflow of Accu	mulator A or B i	s enabled								
bit 7	SFTACERR	: Shift Accumu	lator Error Stat	us bit									
	1 = Math err 0 = Math err	or trap was car or trap was car	used by an inva used by an inva	alid accumulator alid accumulator	shift shift								
bit 6	DIV0ERR: D	ivide-by-Zero	Error Status bit										
	1 = Math err 0 = Math err	or trap was car or trap was no	used by a divid t caused by a c	e-by-zero livide-by-zero									
bit 5	DMACERR:	DMAC Trap F	lag bit										
	1 = DMAC t	rap has occurre	ed										
hit 4		Math Error Sto	tus bit										
	1 = Math err	or tran has occ	curred										
	0 = Math err	or trap has not	occurred										

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

© 2013-2016 Microchip Technology Inc.

Figure 8-2 illustrates the DMA Controller block diagram.

8.1 DMAC Controller Registers

Each DMAC Channel x (where x = 0 to 3) contains the following registers:

- 16-Bit DMA Channel x Control Register (DMAxCON)
- 16-Bit DMA Channel x IRQ Select Register (DMAxREQ)
- 32-Bit DMA Channel x Start Address Register A High/Low (DMAxSTAH/L)
- 32-Bit DMA Channel x Start Address Register B High/Low (DMAxSTBH/L)
- 16-Bit DMA Channel x Peripheral Address Register (DMAxPAD)
- 14-Bit DMA Channel x Transfer Count Register (DMAxCNT)

Additional status registers (DMAPWC, DMARQC, DMAPPS, DMALCA and DSADRH/L) are common to all DMAC channels. These status registers provide information on write and request collisions, as well as on last address and channel access information.

The DMA Interrupt Flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding DMA Interrupt Enable bits (DMAxIE) are located in an IECx register in the interrupt controller and the corresponding DMA Interrupt Priority bits (DMAxIP) are located in an IPCx register in the interrupt controller.

R/S-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
FORCE ⁽¹⁾	—	—	—	—	—	—	—					
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0					
bit 7							bit 0					
Legend:		S = Settable b	bit									
R = Readable	bit	W = Writable	V = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
DIT 15	FORCE: Force DMA Transfer bit ⁽¹⁾ Forces a single DMA transfer (Manual mode) Automatic DMA transfer initiation by DMA request 											
bit 14-8	Unimplemen	ted: Read as ')′									
bit 14-8 Unimplemented: Read as '0' bit 7-0 IRQSEL<7:0>: DMA Peripheral IRQ Number Select bits 01000110 = TX data request (CAN1) ⁽²⁾ 00100110 = Input Capture 4 (IC4) 00100101 = Input Capture 3 (IC3) 00100010 = RX data ready (CAN1) 00100001 = SPI2 transfer done (SPI2) 0001111 = UART2 Transmitter (UART2TX) 0001110 = UART2 Receiver (UART2RX) 0001110 = Timer5 (TMR5) 0001101 = Timer4 (TMR4) 0001101 = Output Compare 4 (OC4) 0001101 = Output Compare 3 (OC3) 0001101 = UART1 Transmitter (UART1TX) 0000101 = UART1 Receiver (UART1RX) 0000101 = SPI1 transfer done (SPI1)												
	00000111 = 00000110 = 00000101 = 00000010 = 00000001 =	Timer2 (TMR2) Output Compai Input Capture 2 Output Compai Input Capture 7 External Intern	re 2 (OC2) 2 (IC2) re 1 (OC1) I (IC1) upt 0 (INT0)									

Note 1: The FORCE bit cannot be cleared by user software. The FORCE bit is cleared by hardware when the forced DMA transfer is complete or the channel is disabled (CHEN = 0).

2: This select bit is only available on dsPIC33EVXXXGM10X devices.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
FLT2R7	FLT2R6	FLT2R5	FLT2R4	FLT2R3	FLT2R2	FLT2R1	FLT2R0	
bit 15	-	·		·			bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
FLT1R7	FLT1R6	FLT1R5	FLT1R4	FLT1R3	FLT1R2	FLT1R1	FLT1R0	
bit 7	-	·		·			bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	i as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown	
bit 15-8	FLT2R<7:0>: (see Table 11	: Assign PWM -2 for input pin	Fault 2 (FLT2) selection nun	to the Corresp nbers)	oonding RPn Pir	n bits		
	10110101 =	Input tied to RI	PI181					
	•							
	•							
	00000001 = 00000000 =	Input tied to CI Input tied to Vs	MP1 SS					
bit 7-0	FLT1R<7:0>: (see Table 11	: Assign PWM -2 for input pin	Fault 1 (FLT1) selection nun	to the Corresp nbers)	onding RPn Pir	n bits		
	10110101 =	Input tied to RI	PI181					
	•							
	•							
	•	Input tied to CI	MP1					
	- 1000001 -		VII 1					

REGISTER 11-7: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

00000000 = Input tied to Vss

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0
bit 7							bit 0

REGISTER 11-22: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP43R<5:0>: Peripheral Output Function is Assigned to RP43 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP42R<5:0>: Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-23: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP49R5	RP49R4	RP49R3	RP49R2	RP49R1	RP49R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP48R5	RP48R4	RP48R3	RP48R2	RP48R1	RP48R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8**RP49R<5:0>:** Peripheral Output Function is Assigned to RP49 Output Pin bits
(see Table 11-3 for peripheral function numbers)bit 7-6**Unimplemented:** Read as '0'

bit 5-0 **RP48R<5:0>:** Peripheral Output Function is Assigned to RP48 Output Pin bits

(see Table 11-3 for peripheral function numbers)

Note 1: This register is present in dsPIC33EVXXXGM004/104/006/106 devices only.

REGISTER 17-3: PTPER: PWMx PRIMARY MASTER TIME BASE PERIOD REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PTPE	R<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			PTPE	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	nented bit, read	d as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 **PTPER<15:0>:** Primary Master Time Base (PMTMR) Period Value bits

REGISTER 17-4: SEVTCMP: PWMx PRIMARY SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTC	MP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTC	CMP<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-0 SEVTCMP<15:0>: Special Event Compare Count Value bits

dsPIC33EVXXXGM00X/10X FAMILY

REGISTER 17-18: AUXCONx: PWMx AUXILIARY CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN
bit 7							bit 0

Legend:				
R = Readab	le bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-12	Unimpleme	ented: Read as '0'		
bit 11-8	BLANKSEL	-<3:0>: PWMx State Blan	k Source Select bits	
	The selectenthe BCH an 1001 = Res	d state blank signal will bl d BCL bits in the LEBCO erved	ock the current-limit and/or Fa Nx register).	ult input signals (if enabled through
	•			
	•			
	0100 = Res 0011 = PW 0010 = PW 0001 = PW 0000 = Nos	erved M3H is selected as the st M2H is selected as the st M1H is selected as the st state blanking	ate blank source ate blank source ate blank source	
bit 7-6	Unimpleme	ented: Read as '0'		
bit 5-2	CHOPSEL<	3:0>: PWMx Chop Clock	Source Select bits	
	The selecte	d signal will enable and d erved	isable (Chop) the selected PW	/Mx outputs.
	•			
	•			
	0100 = Res	erved		
	0011 = PW 0010 = PW	M3H is selected as the cr M2H is selected as the cr	top clock source	
	0001 = PW	M1H is selected as the cl	nop clock source	
	0000 = Chc	p clock generator is sele	cted as the chop clock source	
bit 1	CHOPHEN:	PWMxH Output Choppin	ng Enable bit	
	1 = PWMxH 0 = PWMxH	I chopping function is ena I chopping function is disa	abled abled	
bit 0	CHOPLEN:	PWMxL Output Choppin	g Enable bit	
	1 = PWMxL 0 = PWMxL	chopping function is ena chopping function is disa	bled abled	

REGISTER 21-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	1 = Receive buffer has overflowed
	0 = Receive buffer has not overflowed; clearing a previously set OERR bit (1 \rightarrow 0 transition) resets the receive buffer and the UxRSR to the empty state
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty
Note 1:	Refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/

PIC24 Family Reference Manual" for information on enabling the UART module for transmit operation.

REGISTER 22-6: CxINTF: CANx INTERRUPT FLAG REGISTER (CONTINUED)

bit 1	RBIF: RX Buffer Interrupt Flag bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	TBIF: TX Buffer Interrupt Flag bit

- 1 = Interrupt request has occurred
- 0 = Interrupt request has not occurred

REGISTER 22-7: CxINTE: CANx INTERRUPT ENABLE REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	_	—	_	—	—			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
IVRIE	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE			
bit 7 bit 0										
Legend:										
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	ented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 15-8	Unimplement	ted: Read as ')'	.,						
bit 7	IVRIE: Invalid	Message Inter	rupt Enable b	oit						
	1 = Interrupt r 0 = Interrupt r	equest is enab equest is not e	ied nabled							
bit 6	WAKIE: Bus \	Wake-up Activi	ty Interrupt Er	nable bit						
	1 = Interrupt r 0 = Interrupt r	equest is enab equest is not e	led nabled							
bit 5	ERRIE: Error Interrupt Enable bit									
	1 = Interrupt r 0 = Interrupt r	equest is enab equest is not e	led nabled							
bit 4	Unimplemented: Read as '0'									
bit 3	FIFOIE: FIFO Almost Full Interrupt Enable bit									
	1 = Interrupt request is enabled									
bit 2	BBOVIE: RX Buffer Overflow Interrupt Enable bit									
	1 = Interrupt r	equest is enab	led							
	0 = Interrupt r	equest is not e	nabled							
bit 1	RBIE: RX Buf	ffer Interrupt Er	able bit							
	1 = Interrupt r	equest is enab	led							
	0 = Interrupt r	equest is not e	nabled							
bit 0	IBIE: IX Buff	ter Interrupt En	able bit							
	1 = interrupt r 0 = Interrupt r	equest is enab	ieu nabled							
		94000 10 1101 0								

TABLE 30-6:	DC CHARACTERISTICS: OPERATING CURRENT (IDD)	
-------------	---	--

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Typ. ⁽²⁾	Max.	Units	S Conditions				
Operating Current (IDD) ⁽¹⁾								
DC20d	4.5	5.5	mA	-40°C				
DC20a	4.65	5.6	mA	+25°C	5.01/			
DC20b	4.85	6.0	mA	+85°C	5.00			
DC20c	5.6	7.2	mA	+125°C				
DC22d	8.6	10.6	mA	-40°C				
DC22a	8.8	10.8	mA	+25°C	5.0V	20 MIPS		
DC22b	9.1	11.1	mA	+85°C				
DC22c	9.8	12.6	mA	+125°C				
DC23d	16.8	18.5	mA	-40°C		40 MIPS		
DC23a	17.2	19.0	mA	+25°C	5.0\/			
DC23b	17.55	19.2	mA	+85°C	5.0 V			
DC23c	18.3	21.0	mA	+125°C				
DC24d	25.15	28.0	mA	-40°C		60 MIPS		
DC24a	25.5	28.0	mA	+25°C	5.01/			
DC24b	25.5	28.0	mA	+85°C	5.0 v			
DC24c	25.55	28.5	mA	+125°C				
DC25d	29.0	31.0	mA	-40°C		70 MIPS		
DC25a	28.5	31.0	mA	+25°C	5.0V			
DC25b	28.3	31.0	mA	+85°C				

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

 Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- CPU executing
 - while(1)

```
{
NOP();
```

```
NOP ( )
```

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

FIGURE 30-23: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

NOTES:

DC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
	VIL	Input Low Voltage					
DI10		Any I/O Pins	Vss	—	0.2 Vdd	V	
	VIH	Input High Voltage					
DI20		I/O Pins	0.75 VDD	—	5.5	V	
DI30	ICNPU	Change Notification Pull-up Current	200	375	600	μA	VDD = 5.0V, VPIN = VSS
DI31	ICNPD	Change Notification Pull-Down Current ⁽⁷⁾	175	400	625	μA	VDD = 5.0V, VPIN = VDD
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Pins	-200	_	200	nA	$Vss \le VPIN \le VDD,$ pin at high-impedance
DI55		MCLR	-1.5	_	1.5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSC1	-300	_	300	nA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$
DI60a	licl	Input Low Injection Current	0	_	₋₅ (4,6)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP and RB7
DI60b	Іісн	Input High Injection Current	0	_	₊₅ (5,6)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB7 and all 5V tolerant pins ⁽⁵⁾
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁷⁾	_	+20 ⁽⁷⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT

TABLE 31-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.
- **3:** Negative current is defined as current sourced by the pin.
- 4: VIL source < (Vss 0.3). Characterized but not tested.
- 5: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 6: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.

7: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Leads	Ν	44				
Lead Pitch	е		0.80 BSC			
Overall Height	Α	1.20				
Standoff	A1	0.05	-	0.15		
Molded Package Thickness	A2	0.95	1.00	1.05		
Overall Width	E	12.00 BSC				
Molded Package Width E1 10.00 BSC						
Overall Length	D	12.00 BSC				
Molded Package Length	D1	10.00 BSC				
Lead Width	b	0.30	0.37	0.45		
Lead Thickness	С	0.09	-	0.20		
Lead Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	θ	0°	3.5°	7°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2