

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev128gm002t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Reference Manual"*, which are available from the Microchip web site (www.microchip.com). The following documents should be considered as the general reference for the operation of a particular module or device feature:

- "Introduction" (DS70573)
- "CPU" (DS70359)
- "Data Memory" (DS70595)
- "dsPIC33E/PIC24E Program Memory" (DS70000613)
- "Flash Programming" (DS70609)
- "Interrupts" (DS70000600)
- "Oscillator" (DS70580)
- "Reset" (DS70602)
- "Watchdog Timer and Power-Saving Modes" (DS70615)
- "I/O Ports" (DS70000598)
- "Timers" (DS70362)
- "CodeGuard™ Intermediate Security" (DS70005182)
- "Deadman Timer (DMT)" (DS70005155)
- "Input Capture" (DS70000352)
- "Output Compare" (DS70005157)
- "High-Speed PWM"(DS70645)
- "Analog-to-Digital Converter (ADC)" (DS70621)
- "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582)
- "Serial Peripheral Interface (SPI)" (DS70005185)
- "Inter-Integrated Circuit™ (I²C™)" (DS70000195)
- "Enhanced Controller Area Network (ECAN™)"(DS70353)
- "Direct Memory Access (DMA)" (DS70348)
- "Programming and Diagnostics" (DS70608)
- "Op Amp/Comparator" (DS70000357)
- "Device Configuration" (DS70000618)
- "Charge Time Measurement Unit (CTMU)" (DS70661)
- "Single-Edge Nibble Transmission (SENT) Module" (DS70005145)

TABLE 4-25: OP AMP/COMPARATOR REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0A80	PSIDL	_		C5EVT	C4EVT	C3EVT	C2EVT	C1EVT			_	C5OUT	C4OUT	C3OUT	C2OUT	C1OUT	0000
CVR1CON	0A82	CVREN	CVROE		_	CVRSS	VREFSEL	_	_	-	CVR6	CVR5	CVR4	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	0A84	CON	COE	CPOL	_	_	OPAEN	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM1MSKSRC	0A86	_	_	_	_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM1MSKCON	0A88	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM1FLTR	0A8A	_	_	_	_	_	_	_	_	_	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM2CON	0A8C	CON	COE	CPOL	_	_	OPAEN	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM2MSKSRC	0A8E	_	_	_	_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM2MSKCON	0A90	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM2FLTR	0A92	_	_	_	_	_	_	_	_	_	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM3CON	0A94	CON	COE	CPOL	_	_	OPAEN	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM3MSKSRC	0A96	_	_	_	_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM3MSKCON	0A98	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM3FLTR	0A9A	_	_	_	_	_	_	_	_	_	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM4CON	0A9C	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM4MSKSRC	0A9E	_	_	_	_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM4MSKCON	0AA0	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM4FLTR	0AA2	_	_	_	_	_	_	_	_	_	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM5CON	0AA4	CON	COE	CPOL	_	_	OPAEN	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM5MSKSRC	0AA6	_	_	_	_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM5MSKCON	0AA8	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM5FLTR	0AAA	—	_	_	_	_	_	_	_		CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CVR2CON	0AB4	CVREN	CVROE ⁽¹⁾	_	_	CVRSS	VREFSEL	_	_		CVR6	CVR5	CVR4	CVR3	CVR2	CVR1	CVR0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: CVROE (CVR2CON<14>) is not available on 28-pin devices.

TABLE 4-26: DMAC REGISTER MAP (CONTINUED)

			Bit 0	Resets				
LSTCH<3:0>								
				0000				
	_	LST	LSTCH<3:0>	LSTCH<3:0>				

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: PWM REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0C00	PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
PTCON2	0C02	_	_		_	-	—	_	_	_	_	_	_	_	F	PCLKDIV<2:0	>	0000
PTPER	0C04		PTPER<15:0>										FFF8					
SEVTCMP	0C06									SEVTCM	P<15:0>							0000
MDC	0C0A									MDC<1	15:0>							0000
CHOP	0C1A	CHPCLKEN	_		_	-	—	CHOPCLK9	CHOPCLK8	CHOPCLK7	CHOPCLK6	CHOPCLK5	CHOPCLK4	CHOPCLK3	CHOPCLK2	CHOPCLK1	CHOPCLK0	0000
PWMKEY	0C1E		PWMKEY<15:0> 000										0000					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: PWM GENERATOR 1 REGISTER MAP

20 FLTSTAT 22 PENH 24 — 26	CLSTAT PENL CLSRC4	TRGSTAT POLH CLSRC3	FLTIEN POLL	CLIEN PMOD1	TRGIEN	ITB	MDCC									
24 —				PMOD1										XPRES	IUE	0000
	CLSRC4	CLSRC3			PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
26			CLSRC2 CLSRC1 CLSRC0 CLPOL CLMOD FLTSRC4 FLTSRC3 FLTSRC2 FLTSRC1 FLTSRC0 FLTPOL FLTMOD1 FLTMOD0 (FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
		PDC1<15:0>										0000				
28	PHASE1<15:0>											0000				
2A —	_		DTR1<13:0>										0000			
2C —	_							ALTDT	R1<13:0>							0000
32							TRGC	MP<15:0>								0000
34 TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	_	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
38							PWMC	AP1<15:0>								0000
3A PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
3C —	—	-	_						LEB<	11:0>						0000
3E —	—	-	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	—	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000
2A 2C 32 34 38 3A 3C 3E	3	3 2 4 TRGDIV3 TRGDIV2 3 4 PHR PHF 2 4 PHR PHF 5 6	3 2 4 TRGDIV3 TRGDIV2 TRGDIV1 3 4 PHR PHF PLR 2 4 PHR PHF PLR 5 6	3 2 2 4 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 3 4 PHR PHF PLR PLF 5	3 2 4 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 3 4 PHR PHF PLR PLF FLTLEBEN 2 3 BLANKSEL3	3 2 4 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 3 4 PHR PHF PLR PLF FLTLEBEN CLLEBEN 2 3 BLANKSEL3 BLANKSEL2	3 2 2 4 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 3 4 PHR PHF PLR PLF FLTLEBEN CLLEBEN 2	3 PHASI 4 2 TRGCIV 4 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 3 PWMC/ 4 PHR PHF PLR PLF FLTLEBEN CLLEBEN 2	Bit Markowski k PHASE 1<15:0> A — — DTR1 C — — ALTDTF 2 — — ALTDTF 2 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 — — — — 3 Markowski A PHR PHF PLF FLTLEBEN CLLEBEN — — — C — — — — — — — — C — — — — — — — —	Bit Markowski filo PHASE1<15:0> A — — DTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — — ALTDTR1<13:0> C — — — ALTDTR1<13:0> C — — — — — TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 — — — — — A PHR PHF PLR PLF FLTLEBEN CLLEBEN — — —	Bit Markowski fille PHASE1<15:0> Markowski fille DTR1<13:0> Markowski fille ALTDTR1<13:0> Markowski fille ALTDTR1<13:0> Markowski fille ALTDTR1<13:0> Markowski fille TRGDIV3 TRGDIV3 TRGDIV1 TRGDIV4 TRGDIV0 — — Markowski TRGDIV1 TRGDIV3 TRGDIV1 TRGDIV4 TRGDIV0 — — Markowski — Markowski PHR PHR PHF PLF FLTLEBEN CLLEBEN — Markowski — Markowski — Markowski — Markowski — Markowski — <t< td=""><td>Bit Network PHASE1<15:0> A — — DTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — — ALTDTR1<13:0> C — — — — ALTDTR1<13:0> C — — — — — ITRGCMP<15:0> I TRGDIV3 TRGDIV1 TRGDIV0 — — — — — — MCAP1 TRGSTRT4 PHR PHF PLR PLF FLTLEBEN CLLEBEN — — — BCH BCL C — — — — — _ LEB<11:0> </td><td>Bit Notes PHASE 1<15:0> DTR1<13:0> DTR1<13:0> DTR1<13:0> ALTDTR1<13:0> DTR1 ALTDTR1<13:0> ALTDTR1<13:0> DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1</td><td>Bit Notes Second Se</td><td>B PHASE1<15:0> A — — DTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — — ALTDTR1<13:0> C — — — — ALTDTR1 TRGSTRT5 TRGSTRT3 TRGSTRT3 TRGSTRT2 TRGSTRT1 V V PHR PHF PLR PLF FLTLEBEN CLLEBEN — — — M BCL BPHH BPHL BPLH V — — — — — — LEB<11:0> U</td><td>B PHASE1<15:0> A DTR1<13:0> C ALTDTR1<13:0> 2 COMP<15:0> 4 TRGCMP<15:0> 5 TRGDIV2 TRGDIV1 TRGDIV0 </td></t<>	Bit Network PHASE1<15:0> A — — DTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — — ALTDTR1<13:0> C — — — — ALTDTR1<13:0> C — — — — — ITRGCMP<15:0> I TRGDIV3 TRGDIV1 TRGDIV0 — — — — — — MCAP1 TRGSTRT4 PHR PHF PLR PLF FLTLEBEN CLLEBEN — — — BCH BCL C — — — — — _ LEB<11:0>	Bit Notes PHASE 1<15:0> DTR1<13:0> DTR1<13:0> DTR1<13:0> ALTDTR1<13:0> DTR1 ALTDTR1<13:0> ALTDTR1<13:0> DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1 DTR1	Bit Notes Second Se	B PHASE1<15:0> A — — DTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — ALTDTR1<13:0> C — — — ALTDTR1<13:0> C — — — — ALTDTR1 TRGSTRT5 TRGSTRT3 TRGSTRT3 TRGSTRT2 TRGSTRT1 V V PHR PHF PLR PLF FLTLEBEN CLLEBEN — — — M BCL BPHH BPHL BPLH V — — — — — — LEB<11:0> U	B PHASE1<15:0> A DTR1<13:0> C ALTDTR1<13:0> 2 COMP<15:0> 4 TRGCMP<15:0> 5 TRGDIV2 TRGDIV1 TRGDIV0

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER (CONTINUED)

- bit 3-0 NVMOP<3:0>: NVM Operation Select bits^(1,3,4)
 - 1111 = Reserved
 - 1110 = User memory and executive memory bulk erase operation
 - 1101 = Reserved
 - 1100 = Reserved
 - 1011 = Reserved
 - 1010 = Reserved
 - 1001 = Reserved
 - 1000 = Reserved
 - 0111 = Reserved
 - 0101 = Reserved
 - 0100 = Reserved
 - 0011 = Memory page erase operation
 - 0010 = Memory row program operation
 - 0001 = Memory double-word⁽⁵⁾
 - 0000 = Reserved
- Note 1: These bits can only be reset on a POR.
 - 2: If this bit is set, there will be minimal power savings (IIDLE), and upon exiting Idle mode, there is a delay (TVREG) before Flash memory becomes operational.
 - 3: All other combinations of NVMOP<3:0> are unimplemented.
 - 4: Execution of the PWRSAV instruction is ignored while any of the NVM operations are in progress.
 - 5: Two adjacent words on a 4-word boundary are programmed during execution of this operation.

11.4 Slew Rate Selection

The slew rate selection feature allows the device to have control over the slew rate selection on the required I/O pin which supports this feature. For this purpose, for each I/O port, there are two registers: SR1x and SR0x, which configure the selection of the slew rate. The register outputs are directly connected to the associated I/O pins, which support the slew rate selection function. The SR1x register specifies the MSb and the SR0x register provides the LSb of the 2-bit field that selects the desired slew rate. For example, slew rate selections for PORTA are as follows:

EXAMPLE 11-2: SLEW RATE SELECTIONS FOR PORTA

SR1Ax, SR0Ax = 00 = Fastest Slew rate SR1Ax, SR0Ax = 01 = 4x slower Slew rate SR1Ax, SR0Ax = 10 = 8x slower Slew rate SR1Ax, SR0Ax = 11 = 16x slower Slew rate

11.5 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

The Peripheral Pin Select (PPS) configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The PPS configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping after it has been established.

11.5.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the PPS feature include the designation, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

11.5.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and Interrupt-on-Change (IOC) inputs.

In comparison, some digital only peripheral modules are never included in the PPS feature, because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C and the PWM. A similar requirement excludes all modules with analog inputs, such as the ADC Converter.

A key difference between the remappable and nonremappable peripherals is that the remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, the non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all the other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.5.3 CONTROLLING PERIPHERAL PIN SELECT

The PPS features are controlled through two sets of SFRs: one to map the peripheral inputs and the other to map the outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

11.5.4 INPUT MAPPING

The inputs of the PPS options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Table 11-1 and Register 11-1 through Register 11-17). Each register contains sets of 8-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 8-bit value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selects supported by the device.

11.6 High-Voltage Detect (HVD)

dsPIC33EVXXXGM00X/10X devices contain High-Voltage Detection (HVD) which monitors the VCAP voltage. The HVD is used to monitor the VCAP supply voltage to ensure that an external connection does not raise the value above a safe level (~2.4V). If high core voltage is detected, all I/Os are disabled and put in a tristate condition. The device remains in this I/O tri-state condition as long as the high-voltage condition is present.

11.7 I/O Helpful Tips

- 1. In some cases, certain pins, as defined in Table 30-10 under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes that the resulting current being injected into the device, that is clamped internally by the VDD and VSS power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins by default after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Pin Configuration registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.

- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name, from left-to-right. The left most function name takes precedence over any function to its right in the naming convention; for example, AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD – 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specifications. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH, and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of this data sheet. For example:

VOH = 4.4V at IOH = -8 mA and VDD = 5V

The maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current, <12 mA, is technically permitted. For more information, refer to the VOH/ IOH specifications in **Section 30.0 "Electrical Characteristics"**.

REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			T2CK	R<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	= Readable bit W = Writable bit		d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **T2CKR<7:0>:** Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 •

• 00000001 = Input tied to CMP1 00000000 = Input tied to Vss

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SENT	1R<7:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—		—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8	(see Table 1	0>: Assign SEN 1-2 for input pin Input tied to RF	selection nui		esponding RP	n Pin bits	
		Input tied to Cl Input tied to Vs					

REGISTER 11-16: RPINR44: PERIPHERAL PIN SELECT INPUT REGISTER 44

REGISTER 11-17: RPINR45: PERIPHERAL PIN SELECT INPUT REGISTER 45

U-0								
0-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	_	—	—	
bit 15							bit 8	
DANO	DAMO	DAMO					D/M/ O	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			SENT2	2R<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15-8	Unimplemer	tod. Dood on "	<u>,</u>					
	e inipierier	neau as	J					
bit 7-0	SENT2R<7:0 (see Table 11 10110101 = 00000001 =	 Input tied to CN Input tied to CN Input tied to CN 	T Module Inp selection num PI181 /IP1		esponding RPn	Pin bits		

13.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

These modules are 32-bit timers, which can also be configured as four independent, 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3 and Timer4/5 operate in the following three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules
- ADC1 Event Trigger (Timer2/3 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1. The T3CON and T5CON registers are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw). Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, the T3CON and T5CON control bits are ignored. Only the T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

Block diagrams for the Type B and Type C timers are shown in Figure 13-1 and Figure 13-2, respectively.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-3.

Note: Only Timer2, Timer3, Timer4 and Timer5 can trigger a DMA data transfer.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
—	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL ⁽²⁾	CLMOD						
bit 15							bit 8						
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0						
FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL ⁽²⁾	FLTMOD1	FLTMOD0						
bit 7							bit (
Legend:													
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'							
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	iown						
bit 15	-	ted: Read as '0											
bit 14-10			Control Signa	I Source Selec	t for PWM Gene	erator x bits							
	11111 = Faul												
	11110 = Res	erved											
	•												
	•												
	01100 = Op Amp/Comparator 5												
	01011 = Comparator 4												
	01010 = Op Amp/Comparator 3												
		Amp/Comparate											
		Amp/Comparate	or 1										
	00111 = Fault 8												
	00110 = Fault 7												
	00101 = Fault 6 00100 = Fault 5												
	00011 = Faul												
	00010 = Faul	t 3											
	00001 = Faul	t 2											
	00000 = Faul	t 1 (default)											
bit 9	CLPOL: Curr	ent-Limit Polari	ty for PWM G	enerator x bit ⁽²)								
		ted current-limi											
	0 = The selec	ted current-limi	t source is act	ive-high									
bit 8	CLMOD: Curi	rent-Limit Mode	Enable for P	WM Generator	x bit								
		imit mode is en imit mode is dis											
	ne PWMLOCK (unlock sequen			:0>) is a '1', the	e FCLCONx reg	ister can only b	e written after						

REGISTER 17-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER⁽¹⁾

2: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

19.2 I²C Control Registers

REGISTER 19-1: I2CxCON1: I2Cx CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/S-1	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN		I2CSIDL	SCLREL ⁽¹⁾	STRICT	A10M	DISSLW	SMEN
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0, HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7	•		•		•		bit 0

Legend:	S = Settable bit	HC = Hardware Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	k = Bit is unknown

bit 15	I2CEN: I2Cx Enable bit (writable from SW only)
	 1 = Enables the I²C module and configures the SDAx and SCLx pins as serial port pins 0 = Disables the I²C module and all I²C pins are controlled by port functions
bit 14	Unimplemented: Read as '0'
bit 13	I2CSIDL: I2Cx Stop in Idle Mode bit
	 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	SCLREL: SCLx Release Control bit (I ² C Slave mode only) ⁽¹⁾
	Module resets and (I2CEN = 0) sets SCLREL = 1.
	$\frac{\text{If STREN = }0}{2}$
	1 = Releases clock
	0 = Forces clock low (clock stretch)
	If STREN = 1: 1 = Releases clock
	0 = Holds clock low (clock stretch); user may program this bit to '0', clock stretch at the next SCLx low
bit 11	STRICT: Strict I ² C Reserved Address Rule Enable bit
	1 = Strict reserved addressing is enforced
	In Slave mode, the device does not respond to reserved address space and addresses falling in that category are NACKed.
	0 = Reserved addressing would be Acknowledged
	In Slave mode, the device will respond to an address falling in the reserved address space. When there is a match with any of the reserved addresses, the device will generate an ACK.
bit 10	A10M: 10-Bit Slave Address Flag bit
	1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address
bit 9	DISSLW: Slew Rate Control Disable bit
	 1 = Slew rate control is disabled for Standard Speed mode (100 kHz, also disabled for 1 MHz mode) 0 = Slew rate control is enabled for High-Speed mode (400 kHz)
bit 8	SMEN: SMBus Input Levels Enable bit
	 1 = Enables the input logic so thresholds are compliant with the SMBus specification 0 = Disables the SMBus-specific inputs
Note 1:	Automatically cleared to '0' at the beginning of slave transmission; automatically cleared to '0' at the end of slave reception.

2: Automatically cleared to '0' at the beginning of slave transmission.

REGISTER 20-1: SENTxCON1: SENTx CONTROL REGISTER 1 (CONTINUED)

- bit 3 Unimplemented: Read as '0'
- bit 2-0 NIBCNT<2:0>: Nibble Count Control bits
 - 111 = Reserved; do not use
 - 110 = Module transmits/receives 6 data nibbles in a SENT data pocket
 - 101 = Module transmits/receives 5 data nibbles in a SENT data pocket
 - 100 = Module transmits/receives 4 data nibbles in a SENT data pocket
 - 011 = Module transmits/receives 3 data nibbles in a SENT data pocket
 - 010 = Module transmits/receives 2 data nibbles in a SENT data pocket
 - $\tt 001$ = Module transmits/receives 1 data nibbles in a SENT data pocket
 - 000 = Reserved; do not use
- **Note 1:** This bit has no function in Receive mode (RCVEN = 1).
 - 2: This bit has no function in Transmit mode (RCVEN = 0).

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x			
—	WAKFIL	_	—	_	SEG2PH2	SEG2PH1	SEG2PH0			
bit 15							bit 8			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
bit 15	Unimplemer	nted: Read as '	כ'							
bit 14	WAKFIL: Se	lect CAN Bus L	ine Filter for V	Vake-up bit						
		N bus line filter								
		line filter is not		e-up						
bit 13-11	-	nted: Read as '								
bit 10-8	SEG2PH<2:0>: Phase Segment 2 bits 111 = Length is 8 x TQ									
	•	TISOXIQ								
	•									
	•									
	000 = Length									
bit 7		Phase Segmer	nt 2 Time Sele	ect bit						
	1 = Freely pr 0 = Maximun	ogrammable n of SEG1PH<2	::0> bits or Inf	ormation Proce	essing Time (IP	T), whichever is	s greater			
bit 6	SAM: Sample	e of the CAN B	us Line bit							
		is sampled three is sampled once								
bit 5-3	SEG1PH<2:0>: Phase Segment 1 bits									
	111 = Length	n is 8 x Tq								
	•									
	•									
	000 = Length	n is 1 x Tq								
bit 2-0	PRSEG<2:0	>: Propagation	Time Segmen	t bits						
	111 = Length	n is 8 x Tq								
	•									
	•									
	000 = Length	n is 1 x Tq								
	0									

REGISTER 22-10: CxCFG2: CANx BAUD RATE CONFIGURATION REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7MSK1	F7MSK0	F6MSK1	F6MSK0	F5MSK1	F5MSK0	F4MSK1	F4MSK0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3MSK1	F3MSK0	F2MSK1	F2MSK0	F1MSK1	F1MSK0	F0MSK1	F0MSK0
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at POR		'1' = Bit is set	t	'0' = Bit is cleared		x = Bit is unknown	
bit 15-14	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta	nce Mask 2 ree nce Mask 1 ree nce Mask 0 ree	gisters contain gisters contain gisters contain	the mask the mask the mask			
bit 13-12	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0>	nce Mask 2 re nce Mask 1 re nce Mask 0 re nce Mask 0 re	gisters contain gisters contain gisters contain gisters contain for Filter 6 bit	the mask the mask the mask the mask (same values			
bit 13-12 bit 11-10	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0>	nce Mask 2 re nce Mask 1 re nce Mask 0 re : Mask Source : Mask Source	gisters contain gisters contain gisters contain e for Filter 6 bit e for Filter 5 bit	the mask the mask the mask the mask (same values (same values	as bits 15-14)		
bit 13-12	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0>	nce Mask 2 re nce Mask 1 re nce Mask 0 re : Mask Source : Mask Source	gisters contain gisters contain gisters contain e for Filter 6 bit e for Filter 5 bit	the mask the mask the mask the mask (same values	as bits 15-14)		
bit 13-12 bit 11-10	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0> F5MSK<1:0> F4MSK<1:0>	ed nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg : Mask Source : Mask Source : Mask Source	gisters contain gisters contain gisters contain e for Filter 6 bit e for Filter 5 bit e for Filter 4 bit	the mask the mask the mask the mask (same values (same values	as bits 15-14) as bits 15-14)		
bit 13-12 bit 11-10 bit 9-8	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0> F5MSK<1:0> F4MSK<1:0> F3MSK<1:0>	ed nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg Mask Source Mask Source Mask Source Mask Source	gisters contain gisters contain gisters contain e for Filter 6 bit e for Filter 5 bit e for Filter 4 bit e for Filter 3 bit	the mask the mask the mask (same values (same values (same values	as bits 15-14) as bits 15-14) as bits 15-14)		
bit 13-12 bit 11-10 bit 9-8 bit 7-6	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0> F5MSK<1:0> F4MSK<1:0> F3MSK<1:0> F3MSK<1:0>	ed nce Mask 2 ree nce Mask 1 ree nce Mask 0 ree : Mask Source : Mask Source : Mask Source : Mask Source : Mask Source	gisters contain gisters contain gisters contain for Filter 6 bit for Filter 5 bit for Filter 4 bit for Filter 3 bit for Filter 2 bit	the mask the mask the mask (same values (same values (same values (same values	as bits 15-14) as bits 15-14) as bits 15-14) as bits 15-14)		

REGISTER 22-18: CxFMSKSEL1: CANx FILTERS 7-0 MASK SELECTION REGISTER 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			CH123SB2	CH123SB1	CH123NB1	CH123NB0	CH123SB0				
bit 15							bit 8				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—	— — CH123SA2 CH123SA1 CH123NA1 CH123NA0 (CH123SA0				
bit 7							bit 0				
Legend:											
R = Readab	le bit	W = Writable	e bit	U = Unimpler	nented bit, read	as '0'					
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	iown				
bit 15-13	-	nted: Read as			_						
oit 12-11			1, 2, 3 Positive	•	•		0				
		oositive input is is AN6 (Op Am	s AN0 (Op Amp 3)	2), CH2 posit	ive input is AN2	25 (Op Amp 5),	, CH3 positive				
				I), CH2 positive	e input is AN0 (0	Op Amp 2), CH3	B positive input				
	is AN	011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 5)									
	010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3)										
		is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5									
			AN0, CH2 pos								
bit 10-9	CH123NB<1	:0>: Channels	1, 2, 3 Negativ	e Input Select	for Sample B bi	ts					
			AN9, CH2 nega								
			AN6, CH2 nega tive inputs are \		N7, CH3 negati	ve input is AN8					
bit 8		-	3 Positive Inpu		mple B bit						
		11> for bit sele									
bit 7-5		nted: Read as									
oit 4-3	-			Input Select for	or Sample A bits	6					
	CH123SA<2:1>: Channels 1, 2, 3 Positive Input Select for Sample A bits 1xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive										
	input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input										
			ip 3)								
	011 = CH1 p	positive input is	ip 3) AN3 (Op Amp 1				-				
	011 = CH1 p is AN:	oositive input is 25 (Op Amp 5)	ip 3) AN3 (Op Amp 1), CH2 positive	e input is AN0 (0	Op Amp 2), CH3	8 positive input				
	011 = CH1 p is AN2 010 = CH1 p is AN6	oositive input is 25 (Op Amp 5) oositive input is 6 (Op Amp 3)	ap 3) AN3 (Op Amp 1 AN3 (Op Amp 1	I), CH2 positive	e input is AN0 (C	Dp Amp 2), CH3 Dp Amp 2), CH3	8 positive input				
	011 = CH1 p is AN2 010 = CH1 p is AN0 001 = CH1 p	oositive input is 25 (Op Amp 5) oositive input is 6 (Op Amp 3) oositive input is	p 3) AN3 (Op Amp AN3 (Op Amp AN3, CH2 pos	I), CH2 positive I), CH2 positive itive input is Al	e input is AN0 (C e input is AN0 (C N4, CH3 positiv	Dp Amp 2), CH3 Dp Amp 2), CH3 e input is AN5	8 positive input				
oit 2-1	011 = CH1 p is AN: 010 = CH1 p is AN: 001 = CH1 p 000 = CH1 p	oositive input is 25 (Op Amp 5) oositive input is 6 (Op Amp 3) oositive input is oositive input is	ap 3) AN3 (Op Amp AN3 (Op Amp AN3, CH2 pos AN0, CH2 pos	I), CH2 positive I), CH2 positive itive input is AI itive input is AI	e input is AN0 (C e input is AN0 (C N4, CH3 positiv N1, CH3 positiv	Dp Amp 2), CH3 Dp Amp 2), CH3 e input is AN5 e input is AN2	8 positive input				
bit 2-1	011 = CH1 p is AN2 010 = CH1 p is AN4 001 = CH1 p 000 = CH1 p CH123NA<1	cositive input is 25 (Op Amp 5) cositive input is 6 (Op Amp 3) cositive input is cositive input is cositive input is	p 3) AN3 (Op Amp 1 AN3 (Op Amp 1 AN3, CH2 pos AN0, CH2 pos 1, 2, 3 Negative	I), CH2 positive I), CH2 positive itive input is AI itive input is AI e Input Select	e input is AN0 (C e input is AN0 (C N4, CH3 positiv N1, CH3 positiv for Sample A bi	Dp Amp 2), CH3 Dp Amp 2), CH3 e input is AN5 e input is AN2 ts	3 positive input 3 positive input				
pit 2-1	011 = CH1 p is AN2 010 = CH1 p is AN0 001 = CH1 p 000 = CH1 p CH123NA<1 11 = CH1 ne 10 = CH1 ne	oositive input is 25 (Op Amp 5) oositive input is 6 (Op Amp 3) oositive input is oositive input is cositive input is egative input is egative input is	ap 3) AN3 (Op Amp AN3 (Op Amp AN3, CH2 pos AN0, CH2 pos	I), CH2 positive itive input is Al itive input is Al itive input select ative input select ative input is Al	e input is AN0 (C e input is AN0 (C N4, CH3 positiv N1, CH3 positiv for Sample A bi N10, CH3 nega	Dp Amp 2), CH3 Dp Amp 2), CH3 e input is AN5 e input is AN2 ts tive input is AN	3 positive input 3 positive input 11				
bit 2-1 bit 0	011 = CH1 p is AN: 010 = CH1 p is AN: 001 = CH1 p 000 = CH1 p CH123NA<1 11 = CH1 ne 10 = CH1 ne 0x = CH1, C	oositive input is 25 (Op Amp 5) oositive input is 6 (Op Amp 3) oositive input is oositive input is cositive input is gative input is H2, CH3 nega	p 3) AN3 (Op Amp AN3 (Op Amp AN3, CH2 pos AN0, CH2 pos 1, 2, 3 Negative AN9, CH2 nega AN6, CH2 nega	I), CH2 positive itive input is Al itive input is Al itive input is Al e Input Select ative input is Al drive input is Al (REFL	e input is AN0 (C e input is AN0 (C N4, CH3 positiv N1, CH3 positiv for Sample A bi N10, CH3 negati N7, CH3 negati	Dp Amp 2), CH3 Dp Amp 2), CH3 e input is AN5 e input is AN2 ts tive input is AN	3 positive inpu 3 positive inpu 11				

REGISTER 24-5: ADxCHS123: ADCx INPUT CHANNELS 1, 2, 3 SELECT REGISTER

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
78	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
79	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	5	None
80	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	5	None
81	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
82	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
83	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
84	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
85	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

DC CHA				stated) ture -4	0°C ≤ Ta	.5V to 5.5V ≤ +85°C for Industrial ≤ +125°C for Extended		
Param.	Symbol	Characteristic	Min. ⁽¹⁾ Typ. Max. Units Conditions					
DO16	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾		_	0.4	V	Iol = 8.8 mA, VDD = 5.0V	
DO10	Vol	Output Low Voltage 8x Sink Driver Pins ⁽³⁾	_	_	0.4	V	Iol = 10.8 mA, Vdd = 5.0V	
DO26	Vон	Output High Voltage 4x Sink Driver Pins ⁽²⁾	Vdd - 0.6	_	_	V	Іон = -8.3 mA, Vdd = 5.0V	
DO20	Voн	Output High Voltage 8x Sink Driver Pins	Vdd - 0.6	_	_	V	Іон = -12.3 mA, Vdd = 5.0V	

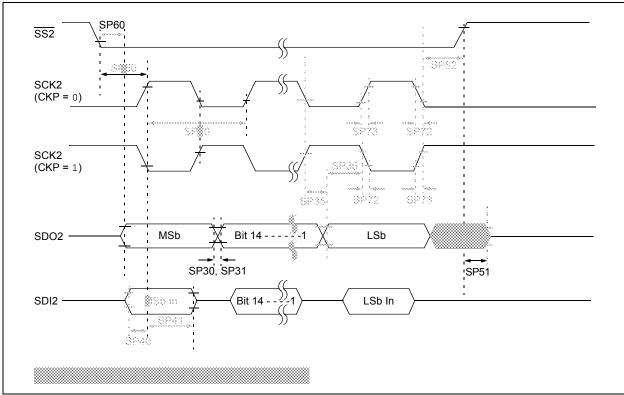
TABLE 30-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

2: Includes all I/O pins that are not 8x sink driver pins (see below).

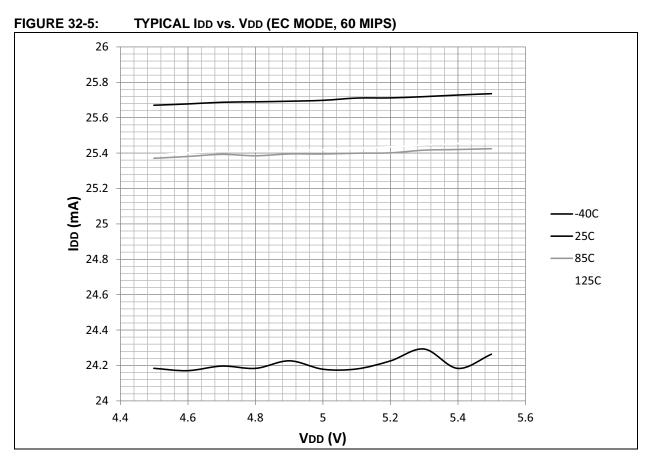
3: Includes pins, such as RA3, RA4 and RB<15:10> for 28-pin devices, RA3, RA4, RA9 and RB<15:10> for 44-pin devices and RA4, RA7, RA9, RB<15:10> and RC15 for 64-pin devices.

TABLE 30-12: ELECTRICAL CHARACTERISTICS: BOR


DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min. ⁽¹⁾	Тур.	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low	4.15	4.285	4.4	V	VDD (see Note 2, Note 3 and Note 4)

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: The VBOR specification is relative to the VDD.


3: The device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, op amp/comparator and comparator voltage reference will have degraded performance. Device functionality is tested but not characterized.

4: The start-up VDD must rise above 4.6V.

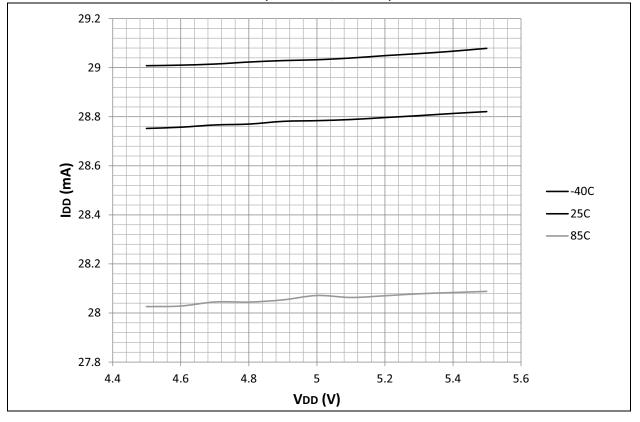
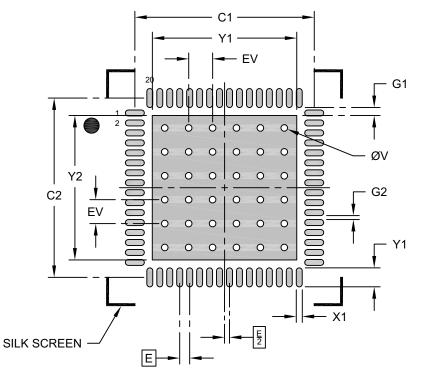


FIGURE 30-16: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

dsPIC33EVXXXGM00X/10X FAMILY



© 2013-2016 Microchip Technology Inc.

64-Lead Very Thin Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [VQFN] With 7.15 x 7.15 Exposed Pad [Also called QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units					
Dimension	Dimension Limits					
Contact Pitch	E		0.50 BSC			
Optional Center Pad Width	X2			7.25		
Optional Center Pad Length	Y2			7.25		
Contact Pad Spacing	C1		9.00			
Contact Pad Spacing	C2		9.00			
Contact Pad Width (X64)	X1			0.30		
Contact Pad Length (X64)	Y1			0.95		
Contact Pad to Center Pad (X64)	G1	0.40				
Spacing Between Contact Pads (X60)	G2	0.20				
Thermal Via Diameter	V		0.33			
Thermal Via Pitch	EV		1.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2149C [MR]