

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	25
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-UFQFN Exposed Pad
Supplier Device Package	36-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev128gm003-i-m5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.5 **Programmer's Model**

The programmer's model for the dsPIC33EVXXXGM00X/ 10X family is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register. In addition to the registers contained in the programmer's model, the dsPIC33EVXXXGM00X/10X family devices contain control registers for Modulo Addressing and Bit-Reversed Addressing, and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory-mapped, as shown in Table 4-1.

TABLE 3-1:	PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Register(s) Name	Description				
W0 through W15 ⁽¹⁾	Working Register Array				
W0 through W14 ⁽¹⁾	Alternate Working Register Array 1				
W0 through W14 ⁽¹⁾	Alternate Working Register Array 2				
ACCA, ACCB	40-Bit DSP Accumulators				
PC	23-Bit Program Counter				
SR	ALU and DSP Engine STATUS Register				
SPLIM	Stack Pointer Limit Value Register				
TBLPAG	Table Memory Page Address Register				
DSRPAG	Extended Data Space (EDS) Read Page Register				
RCOUNT	REPEAT Loop Counter Register				
DCOUNT	DO Loop Count Register				
DOSTARTH ⁽²⁾ , DOSTARTL ⁽²⁾	DO Loop Start Address Register (High and Low)				
DOENDH, DOENDL	DO Loop End Address Register (High and Low)				
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits				

Note 1: Memory-mapped W0 through W14 represents the value of the register in the currently active CPU context.

2: The DOSTARTH and DOSTARTL registers are read-only.

REGISTER 3-3: CTXTSTAT: CPU W REGISTER CONTEXT STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
_			—	_	CCTXI2	CCTXI1	CCTXI0
oit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R-0	R/W-0	R/W-0
_	<u> </u>		_	—	MCTXI2	MCTXI1	MCTXI0
bit 7							bit C
Legend:							
R = Readab		W = Writable	bit	•	mented bit, read		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7-3	001 = Alterna 000 = Default	ed te Working Re te Working Re register set is	gister Set 1 is currently in us	currently in us			
	-	ted: Read as '					
bit 2-0	111 = Reserv • • 011 = Reserv 010 = Alterna	ed te Working Re te Working Re	gister Set 2 w	as most recen as most recen	tly manually se tly manually se		

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-45: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.4.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

For the MOV instructions, the addressing
mode specified in the instruction can differ
for the source and destination EA. How-
ever, the 4-bit Wb (Register Offset) field is
shared by both source and destination
(but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.4.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The Two-Source Operand Prefetch registers must be members of the set, {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must, therefore, be valid addresses within X Data Space for W8 and W9, and Y Data Space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X Data Space) and W11 (in Y Data Space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.4.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (Branch) instructions use 16-bit signed literals to specify the Branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as a NOP, do not have any operands.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
T5MD	T4MD	T3MD	T2MD	T1MD	—	PWMMD	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
I2C1MD					0-0	C1MD ⁽¹⁾	
bit 7	U2MD	U1MD	SPI2MD	SPI1MD	—	CTMD	AD1MD bit
Legend:							
R = Readable		W = Writable		•	mented bit, re	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	T5MD: Timer	5 Module Disal	ole bit				
		odule is disable odule is enable					
bit 14	T4MD: Timer	4 Module Disal	ole bit				
	1 = Timer4 m	odule is disable	ed				
bit 13		3 Module Disal					
		odule is disable odule is enable					
bit 12	T2MD: Timer	2 Module Disal	ole bit				
	-	odule is disable odule is enable					
bit 11	T1MD: Timer	1 Module Disal	ole bit				
	-	odule is disable odule is enable					
bit 10	Unimplemen	ted: Read as '	0'				
bit 9	PWMMD: PW	/M Module Dis	able bit				
		dule is disabled dule is enabled					
bit 8	Unimplemen	ted: Read as '	0'				
bit 7	12C1MD: 12C	1 Module Disal	ole bit				
		lule is disabled lule is enabled					
bit 6	U2MD: UART	2 Module Disa	ble bit				
	1 = UART2 module is disabled 0 = UART2 module is enabled						
bit 5	U1MD: UART	1 Module Disa	ble bit				
		nodule is disabl nodule is enable					
bit 4	SPI2MD: SPI	2 Module Disa	ole bit				
		lule is disabled lule is enabled					
bit 3	SPI1MD: SPI	1 Module Disa	ole bit				
		dule is disabled dule is enabled					

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: This bit is available on dsPIC33EVXXXGM10X devices only.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT2R7	FLT2R6	FLT2R5	FLT2R4	FLT2R3	FLT2R2	FLT2R1	FLT2R0
bit 15	·						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT1R7	FLT1R6	FLT1R5	FLT1R4	FLT1R3	FLT1R2	FLT1R1	FLT1R0
oit 7	I						bit 0
_egend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8		Ų			onding RPn Pi	n bits	
	•	-2 for input pin		nbers)			
	•	Input tied to R	PI181				
	•						
	•						
		Input tied to C Input tied to V					
bit 7-0		Assign PWM -2 for input pin			onding RPn Pi	n bits	
	•	Input tied to R		,			
	•						
	•						
	•	Input tied to C					
		Input tied to C					

REGISTER 11-7: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

00000000 = Input tied to Vss

REGISTER 11-20: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0
bit 15		-					bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read a			as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP39R<5:0>: Peripheral Output Function is Assigned to RP39 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP38R<5:0>: Peripheral Output Function is Assigned to RP38 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-21: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0
bit 7							bit 0

Legend:				
R = Readable bit	Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP41R<5:0>:** Peripheral Output Function is Assigned to RP41 Output Pin bits (see Table 11-3 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP40R<5:0>:** Peripheral Output Function is Assigned to RP40 Output Pin bits (see Table 11-3 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP120R5 ⁽¹⁾	RP120R4 ⁽¹⁾	RP120R3 ⁽¹⁾	RP120R2 ⁽¹⁾	RP120R1 ⁽¹⁾	RP120R0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
-----------	----------------------------

bit 13-8	RP176R<5:0>: Peripheral Output Function is Assigned to RP176 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP120R<5:0>: Peripheral Output Function is Assigned to RP120 Output Pin bits ⁽¹⁾

(see Table 11-3 for peripheral function numbers)

REGISTER 11-29: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP178R<5:0>:** Peripheral Output Function is Assigned to RP178 Output Pin bits (see Table 11-3 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP177R<5:0>:** Peripheral Output Function is Assigned to RP177 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: RP120R<5:0> is present in dsPIC33EVXXXGM006/106 devices only.

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	PENH: PWM	xH Output Pin	Ownership bit				
		odule controls					
		dule controls th	•	ו			
bit 14		L Output Pin	•				
		odule controls dule controls th					
bit 13			•	I			
DIL 13	POLH: PWMxH Output Pin Polarity bit 1 = PWMxH pin is active-low						
		pin is active-hig					
bit 12		<l f<="" output="" pin="" td=""><td></td><td></td><td></td><td></td><td></td></l>					
		in is active-low					
	0 = PWMxL p	in is active-hig	h				
bit 11-10	PMOD<1:0>:	PWMx I/O Pin	Mode bits ⁽¹⁾				
	11 = Reserve						
		/O pin pair is ir /O pin pair is ir					
		O pin pair is in O pin pair is ir		•			
bit 9		verride Enable	•				
	1 = OVRDAT	1 controls the o	output on the I	PWMxH pin			
		enerator contro					
bit 8	OVRENL: Ov	erride Enable	for PWMxL Pi	n bit			
		0 controls the o	•				
	•	nerator contro		•			
bit 7-6					ide is Enabled b	its	
		•			d by OVRDAT1. by OVRDAT0.		
bit 5-4				•	TMOD is Enable	d hits	
		ve, PWMxH is					
		ve, PWMxL is					
bit 3-2				•	/IOD is Enabled	bits	
	If current limit	is active, PWI	MxH is driven	to the state sp	ecified by CLDA	T1.	
	If current limit	is active, PWI	MxL is driven t	o the state spe	ecified by CLDA	ГО.	
Note 1: The	ese bits should	not be change	d after the PW	/Mx module is	enabled (PTEN	= 1).	

REGISTER 17-13: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾

Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1). **2:** If the PWMI OCK Configuration bit (EDEVOPT<0>) is a '1' the IOCONy register can only be

2: If the PWMLOCK Configuration bit (FDEVOPT<0>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

REGISTER 17-17: LEBDLYx: PWMx LEADING-EDGE BLANKING DELAY REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—		LEE	<11:8>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LEE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-12 Unimplemented: Read as '0'

bit 11-0 LEB<11:0>: Leading-Edge Blanking Delay for Current-Limit and Fault Inputs bits

20.3 Receive Mode

The module can be configured for receive operation by setting the RCVEN (SENTxCON1<11>) bit. The time between each falling edge is compared to SYNCMIN<15:0> (SENTxCON3<15:0>) and SYNCMAX<15:0> (SENTxCON2<15:0>), and if the measured time lies between the minimum and maximum limits, the module begins to receive data. The validated Sync time is captured in the SENTxSYNC register and the tick time is calculated. Subsequent falling edges are verified to be within the valid data width and the data is stored in the SENTxDATH/L register. An interrupt event is generated at the completion of the message and the user software should read the SENTx Data register before the reception of the next nibble. The equation for SYNCMIN<15:0> and SYNCMAX<15:0> is shown in Equation 20-3.

EQUATION 20-3: SYNCMIN<15:0> AND SYNCMAX<15:0> CALCULATIONS

 $TTICK = TCLK \bullet (TICKTIME < 15:0 > + 1)$

FRAMETIME<15:0> = TTICK/TFRAME

SyncCount = 8 x FRCV x TTICK

SYNCMIN<15:0> = 0.8 x SyncCount

SYNCMAX<15:0> = 1.2 x SyncCount

 $FRAMETIME < 15:0 \ge 122 + 27N$

 $FRAMETIME < 15:0 \ge 848 + 12N$

Where:

 T_{FRAME} = Total time of the message from ms N = The number of data nibbles in message, 1-6 F_{RCV} = FCY x prescaler T_{CLK} = FCY/Prescaler

For TTICK = 3.0 μ s and FCLK = 4 MHz, SYNCMIN<15:0> = 76.

Note:	To ensure a Sync period can be identified,				
	the value written to SYNCMIN<15:0>				
	must be less than the value written to				
	SYNCMAX<15:0>.				

20.3.1 RECEIVE MODE CONFIGURATION

20.3.1.1 Initializing the SENTx Module:

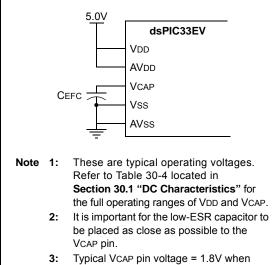
Perform the following steps to initialize the module:

- 1. Write RCVEN (SENTxCON1<11>) = 1 for Receive mode.
- 2. Write NIBCNT<2:0> (SENTxCON1<2:0>) for the desired data frame length.
- 3. Write CRCEN (SENTxCON1<8>) for hardware or software CRC validation.
- 4. Write PPP (SENTxCON1<7>) = 1 if pause pulse is present.
- 5. Write SENTxCON2 with the value of SYNCMAXx (Nominal Sync Period + 20%).
- Write SENTxCON3 with the value of SYNCMINx (Nominal Sync Period – 20%).
- 7. Enable interrupts and set interrupt priority.
- 8. Set the SNTEN (SENTxCON1<15>) bit to enable the module.

The data should be read from the SENTxDATH/L register after the completion of the CRC and before the next message frame's status nibble. The recommended method is to use the message frame completion interrupt trigger.

27.2 User OTP Memory

Locations, 800F80h-800FFEh, are a One-Time-Programmable (OTP) memory area. The user OTP words can be used for storing product information, such as serial numbers, system manufacturing dates, manufacturing lot numbers and other application-specific information.


27.3 On-Chip Voltage Regulator

All of the dsPIC33EVXXXGM00X/10X family devices power their core digital logic at a nominal 1.8V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 5.0V. To simplify system design, all devices in the dsPIC33EVXXXGM00X/10X family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohm) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (see Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 30-5, located in **Section 30.0 "Electrical Characteristics"**.

Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin.

FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

Typical VCAP pin voltage = 1.8V when VDD ≥ VDDMIN.

27.4 Brown-out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

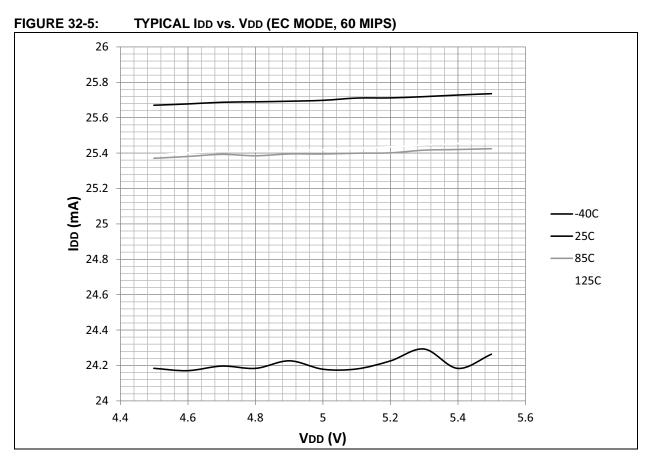
If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the Power-up Timer (PWRT) Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to Parameter SY35 in Table 30-22 of **Section 30.0 "Electrical Characteristics"** for specific TFSCM values.

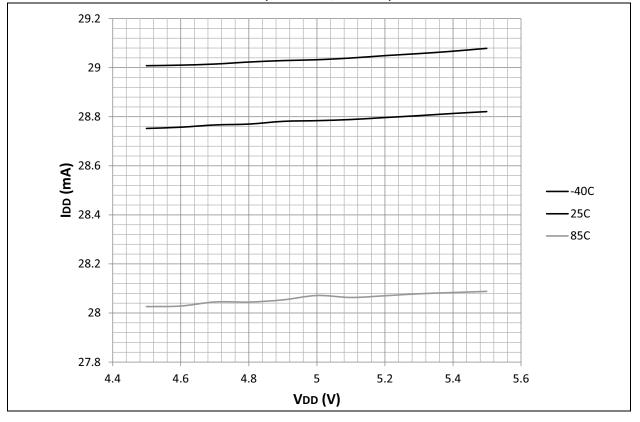
The BOR status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle mode and resets the device should VDD fall below the BOR threshold voltage.

DC CHARACTERISTICS			Standard Operating Co (unless otherwise state Operating temperature			ed)		
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions	
		Program Flash Memory						
D130	Eр	Cell Endurance	10,000	—	_	E/W	-40°C to +125°C	
D131	Vpr	VDD for Read	4.5	—	5.5	V		
D132b	VPEW	VDD for Self-Timed Write	4.5	—	5.5	V		
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated, -40°C to +125°C	
D135	IDDP	Supply Current During Programming	-	10	—	mA		
D136a	Trw	Row Write Cycle Time	0.657	—	0.691	ms	Trw = 4965 FRC cycles, Ta = +85°C (see Note 2)	
D136b	Trw	Row Write Cycle Time	0.651	_	0.698	ms	Trw = 4965 FRC cycles, Ta = +125°C (see Note 2)	
D137a	TPE	Page Erase Time	19.44	_	20.44	ms	TPE = 146893 FRC cycles, TA = +85°C (see Note 2)	
D137b	TPE	Page Erase Time	19.24	_	20.65	ms	TPE = 146893 FRC cycles, TA = +125°C (see Note 2)	
D138a	Tww	Word Write Cycle Time	45.78	_	48.15	μs	Tww = 346 FRC cycles, TA = +85°C (see Note 2)	
D138b	Tww	Word Write Cycle Time	45.33	_	48.64	μs	Tww = 346 FRC cycles, TA = +125°C (see Note 2)	

TABLE 30-13: DC CHARACTERISTICS: PROGRAM MEMORY

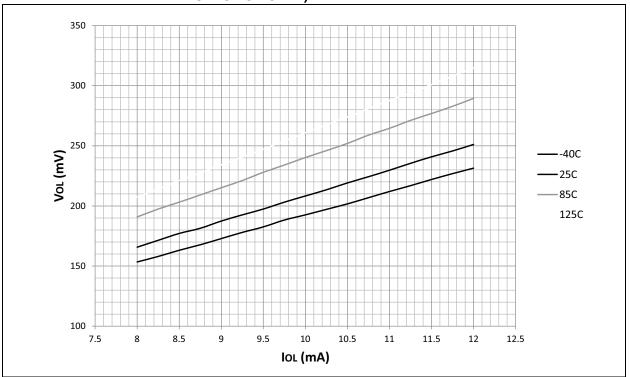

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

2: Other conditions: FRC = 7.3728 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 30-20) and the value of the FRC Oscillator Tuning register.


TABLE 30-14: ELECTRICAL CHARACTERISTICS: INTERNAL BAND GAP REFERENCE VOLTAGE

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
DVR10	Vbg	Internal Band Gap Reference Voltage	1.14	1.2	1.26	V			

dsPIC33EVXXXGM00X/10X FAMILY



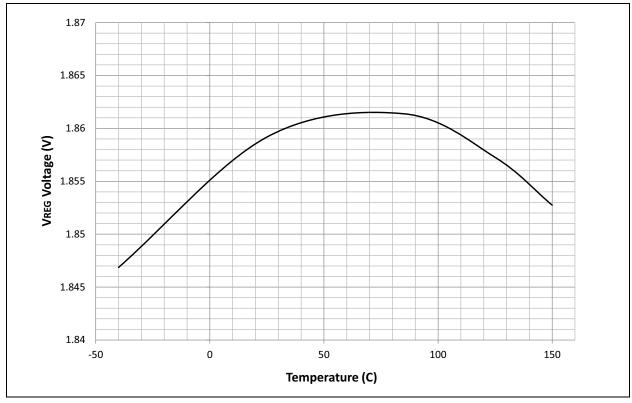
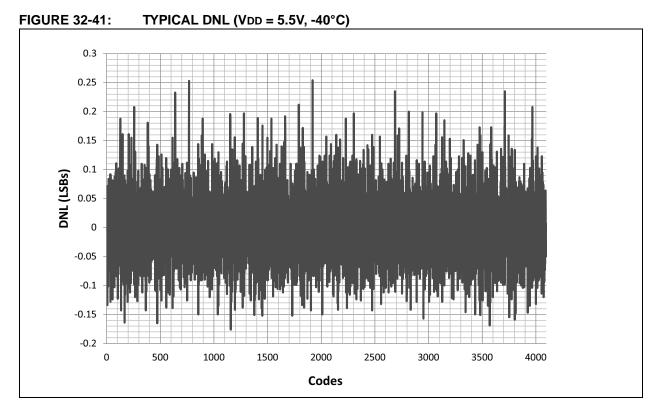
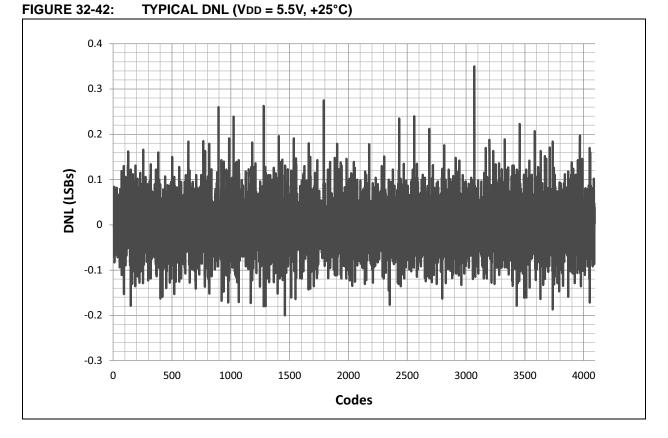
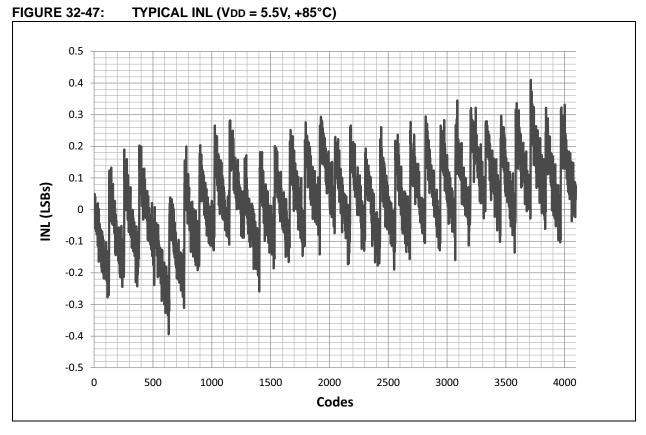

© 2013-2016 Microchip Technology Inc.

FIGURE 32-33: TYPICAL Vol 4x DRIVER PINS vs. Iol (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)


32.11 VREG


FIGURE 32-34: TYPICAL REGULATOR VOLTAGE vs. TEMPERATURE


© 2013-2016 Microchip Technology Inc.

dsPIC33EVXXXGM00X/10X FAMILY

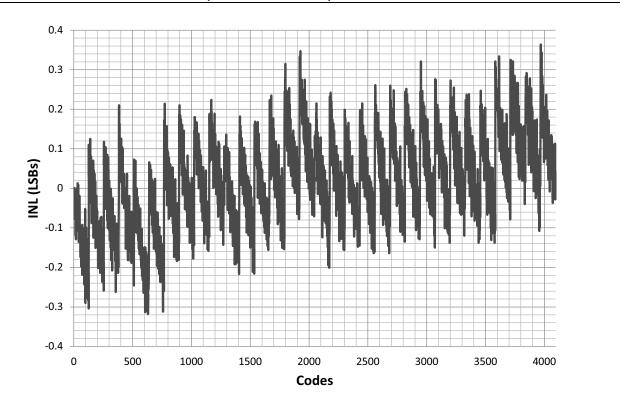
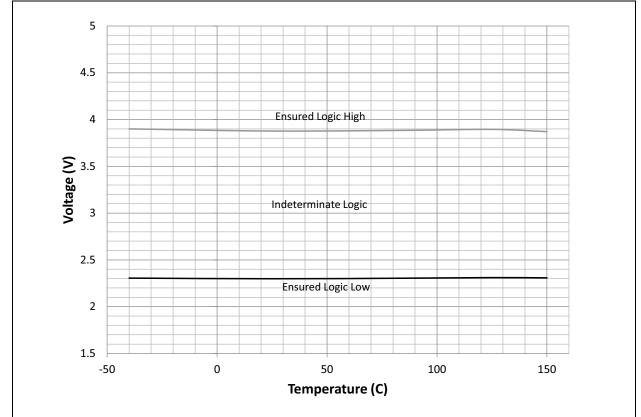
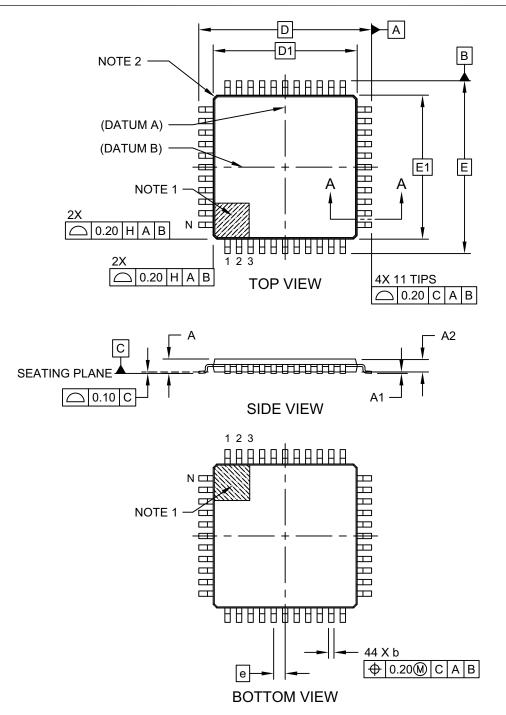



FIGURE 32-48: TYPICAL INL (VDD = 5.5V, +125°C)

NOTES:



44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-076C Sheet 1 of 2

APPENDIX A: REVISION HISTORY

Revision A (December 2013)

This is the initial version of this document.

Revision B (June 2014)

This revision incorporates the following updates:

- Sections:
 - Added Section 31.0 "High-Temperature Electrical Characteristics"
 - Updated the "Power Management" section, the "Input/Output" section, Section 3.3
 "Data Space Addressing", Section 4.2
 "Data Address Space", Section 4.3.2
 "Extended X Data Space", Section 4.6.1
 "Bit-Reversed Addressing Implementation", Section 7.4.1 "INTCON1 through INTCON4", Section 11.7 "I/O Helpful Tips"
 - Updated note in Section 17.0 "High-Speed PWM Module", Section 18.0 "Serial Peripheral Interface (SPI)", Section 27.8 "Code Protection and CodeGuard™ Security"
 - Updated title of Section 20.0 "Single-Edge Nibble Transmission (SENT)"
 - Updated Section 34.0 "Packaging Information". Deleted e3, Pb-free and Industrial (I) temperature range indication throughout the section, and updated the packaging diagrams
 - Updated the "Product Identification System" section
- Registers:
 - Updated Register 3-2, Register 7-2, Register 7-6, Register 9-2, Register 11-3, Register 14-1, Register 14-3, Register 14-11, Register 15-1, Register 22-4
- Figures:
 - Added Figure 4-6, Figure 4-8, Figure 4-14, Figure 4-15, Figure 14-1, Figure 16-1, Figure 17-2, Figure 23-1, Figure 24-1
- Tables:
 - Updated Table 1, Table 27-1, Table 27-2, Table 30-6, Table 30-7, Table 30-8, Table 30-9, Table 30-10, Table 30-11, Table 30-12, Table 30-38, Table 30-50, Table 30-53 and added Table 31-11,
- Changes to text and formatting were incorporated throughout the document

Revision C (November 2014)

This revision incorporates the following updates:

- · Sections:
 - Added note in Section 5.2 "RTSP Operation"
 - Updated "Section 5.4 "Error Correcting Code (ECC)"
 - Deleted 44-Terminal Very Thin Leadless Array Package (TL) - 6x6x0.9 mm Body With Exposed Pad (VTLA).
- Registers
 - Updated Register 7-6
- Figures:
 - Updated Figure 4-1, Figure 4-3, Figure 4-4
- · Tables:
 - Updated Table 27-2, Table 31-13, Table 31-14, Table 31-15
 - Added Table 31-16, Table 31-17

Revision D (April 2015)

This revision incorporates the following updates:

- Sections:
 - Updated the Clock Management, Timers/ Output Compare/Input Capture, Communication Interfaces and Input/Output sections at the beginning of the data sheet (Page 1 and Page 2).
 - Updated all pin diagrams at the beginning of the data sheet (Page 4 through Page 9).
 - Added Section 11.6 "High-Voltage Detect (HVD)"
 - Updated Section 13.0 "Timer2/3 and Timer4/5"
 - Corrects all Buffer heading numbers in Section 22.4 "CAN Message Buffers"
- Registers
 - Updated Register 3-2, Register 25-2, Register 26-2
- Figures
 - Updated Figure 26-1, Figure 30-5, Figure 30-32
- Tables
 - Updated Table 1, Table 4-25, Table 30-10, Table 30-22, Table 30-53 and Table 31-8
- Changes to text and formatting were incorporated throughout the document