

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev128gm004-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33EVXXXGM00X/10X family of 16-bit microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors")
 VCAP
- (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Note: The AVDD and AVSS pins must be connected, regardless of the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A value of 0.1 μ F (100 nF), 10V-20V is recommended. This capacitor should be a Low Equivalent Series Resistance (low-ESR), and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the Printed Circuit Board (PCB): The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of $0.01 \ \mu\text{F}$ to $0.001 \ \mu\text{F}$. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, $0.1 \ \mu\text{F}$ in parallel with $0.001 \ \mu\text{F}$.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing the PCB track inductance.

TABLE	: 4-2	3: IN	ITERRU	JPT CO	NTROL	LER RE	GISTER	MAP FO	R dsPIC	33EVXX	XGM00)	K/10X F/	AMILY D	EVICES	6 (CONTI	NUED)		
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC19	0866	—	_	_				_	_	_		CTMUIP<2:0>	>	_	_	_	_	0040
IPC23	086E		PWM2IP2	PWM2IP1	PWM2IP0	—	PWM1IP2	PWM1IP1	PWM1IP0	—	_	—	—	—		_		4400
IPC24	0870		—	—	_	—	—	—	—	—	_	—	—	—		PWM3IP<2:0>		0004
IPC35	0886		—	—	_	—		ICDIP<2:0>		—	_	—	—	—		_		0400
IPC43	0896	_	_	_	_	_	_	_	_	_		2C1BCIP<2:0	>	_	_	_	_	0040
IPC45	089A		SENT1IP2	SENT1IP1	SENT1IP0	—	SENT1EIP2	SENT1EIP1	SENT1EIP0	—	_	—	—	—		_		4400
IPC46	089C	_	_	_	_	_	ECCSBEIP2	ECCSBEIP1	ECCSBEIP0	_	SENT2IP2	SENT2IP1	SENT2IP0	_	SENT2EIP2	SENT2EIP1	SENT2EIP0	0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	_	_	AIVTEN	_	_	_	_	_	INT2EP	INT1EP	INT0EP	0000
INTCON3	08C4	DMT	_	_	_	_	_	_	_	_	_	DAE	DOOVR	_	_	_	_	0000
INTCON4	08C6	_	_	_	_	_	_	_	_	_	_	_	_	_	_	ECCDBE	SGHT	0000
INTTREG	08C8	_	_		_	_	ILR3	ILR2	ILR1	VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

dsPIC33EVXXXGM00X/10X FAMILY

Legend: — = unimplemented, read as '0' Reset values are shown in hexadecimal. Note 1: This feature is available only on dsPIC33EVXXXGM10X devices.

FIGURE 4-17: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0		
VAR	—	US1	US0	EDT	DL2	DL1	DL0		
bit 15							bit 8		
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0		
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF		
bit 7							bit 0		
Legend:		C = Clearable) bit						
R = Readable bit $W = Writable$			LI = I I n implemented bit read as '0'						

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit 1 = Variable exception processing latency is enabled 0 = Fixed exception processing latency is enabled

bit 3 **IPL3:** CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	RQCOL3	RQCOL2	RQCOL1	RQCOL0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-4	Unimplemen	ted: Read as '	0'				
bit 3	RQCOL3: Ch	annel 3 Transf	er Request Co	ollision Flag bit			
	1 = User force	e and interrupt	-based reques	st collision is d	etected		
	0 = User forc	e and interrupt	-based reques	st collision is n	ot detected		
bit 2	RQCOL2: Ch	annel 2 Transf	er Request Co	ollision Flag bit			
	1 = User forc	e and interrupt	-based reques	st collision is d	etected		
		e and interrupt	-based reques		ot detected		
bit 1	RQCOL1: Ch	annel 1 Transf	er Request Co	Dilision Flag bit			
	1 = User force	e and interrupt	-based reques	st collision is d	etected		
h # 0							
	\perp = User force	e and interrupt	-based reques	st collision is a st collision is a	elected		
	1 = User forc 0 = User forc	e and interrupt and interrupt	-based reque: -based reque:	st collision is d st collision is n	etected ot detected		

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

13.1 Timer2/3 and Timer4/5 Control Registers

REGISTER 13-1: TxCON (T2CON AND T4CON) CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON	_	TSIDL	_	_	—		_			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0			
—	TGATE TCKPS1 TCKPS0 T32 — TC						—			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'				
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own			
bit 15	When T32 = 1 1 = Starts 32-1 0 = Stops 32-1 When T32 = 0 1 = Starts 16-1 0 = Stops 16-1	On bit <u>.:</u> bit Timerx/y bit Timerx/y) <u>:</u> bit Timerx bit Timerx								
bit 14	Unimplement	Jnimplemented: Read as '0'								
bit 13	TSIDL: Timer	x Stop in Idle M	lode bit							
	1 = Discontinu 0 = Continues	ues module opera	eration when t tion in Idle mo	the device ente	ers Idle mode					
bit 12-7	Unimplement	ted: Read as ')'							
bit 6	TGATE: Time	rx Gated Time	Accumulation	Enable bit						
	When TCS = This bit is igno When TCS = 1 = Gated tim 0 = Gated tim	<u>1:</u> ored. <u>0:</u> e accumulatior e accumulatior	n is enabled n is disabled							
bit 5-4	TCKPS<1:0>	: Timerx Input (Clock Prescal	e Select bits						
	11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1									
bit 3	T32: 32-Bit Ti	mer Mode Sele	ect bit							
	 1 = Timerx and Timery form a single 32-bit timer 0 = Timerx and Timery act as two 16-bit timers 									
bit 2	Unimplemented: Read as '0'									
bit 1	TCS: Timerx (Clock Source S	Select bit ⁽¹⁾							
	1 = External c 0 = Internal cl	1 = External clock is from pin, TxCK (on the rising edge)0 = Internal clock (FP)								
bit 0	Unimplement	ted: Read as ')'							

Note 1: The TxCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
SNTEN	—	SNTSIDL	—	RCVEN	TXM ⁽¹⁾	TXPOL ⁽¹⁾	CRCEN	
bit 15				•	•		bit 8	
R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
PPP	SPCEN ⁽²⁾	—	PS	—	NIBCNT2	NIBCNT1	NIBCNT0	
bit 7								
1								
Legena:	hit		h:t	II – Unimala	monted bit read	aa 'o'		
R = Reauable		'1' = Bit is set	DIL	$0^{\circ} = 0$	menieu bil, reau	ras ∪ v = Bitis unku		
	FOR	I - DILIS SEL			careu		IOWIT	
bit 15	SNTEN: SEN	ITx Enable bit						
bit i o	1 = SENTx is	enabled						
	0 = SENTx is	disabled						
bit 14	Unimplemen	ted: Read as '	0'					
bit 13	SNTSIDL: SE	ENTx Stop in Ic	lle Mode bit					
	1 = Discontin	ues module op	eration when	the device ent	ers Idle mode			
hit 10		s module opera		ode				
DIL 12 bit 11			U Dabla bit					
DICTI		nerates as a re	iable bil ceiver					
	0 = SENTx option	perates as a tra	ansmitter (ser	nsor)				
bit 10	TXM: SENTx	Transmit Mod	e bit ⁽¹⁾					
	1 = SENTx tr 0 = SENTx tr	ansmits data fr ansmits data fr	ame only whe ames continu	en triggered us ously while SN	ing the SYNCTX ITEN = 1	EN status bit		
bit 9	TXPOL: SEN	ITx Transmit Po	olarity bit ⁽¹⁾					
	1 = SENTx da 0 = SENTx da	ata output pin i ata output pin i	s low in the Id s high in the I	lle state dle state				
bit 8	CRCEN: CRO	C Enable bit	-					
	Module in Re 1 = SENTx p	eceive Mode (R erforms CRC v	<u>CVEN = 1):</u> erification on	received data	using the preferr	ed J2716 meth	nod	
	0 = SENTx details de	oes not perform	n CRC verifica	ation on receiv	ed data			
	$\frac{\text{Module in Ira}}{1 = \text{SENTx a}}$	utomatically ca	<u>RCVEN = 1):</u> Iculates CRC	using the pref	erred J2716 met	hod		
	0 = SENTx determined	oes not calcula	te CRC	doing the prof				
bit 7	PPP: Pause I	Pulse Present	bit					
	1 = SENTx is 0 = SENTx is	configured to configured to	transmit/recei transmit/recei	ve SENT mess ve SENT mess	sages with pause sages without pa	e pulse iuse pulse		
bit 6	SPCEN: Sho	rt PWM Code I	Enable bit ⁽²⁾					
	1 = SPC cont 0 = SPC cont	trol from extern trol from extern	al source is e al source is d	nabled isabled				
bit 5	Unimplemen	ted: Read as '	0'					
bit 4	PS: SENTX N	/lodule Clock P	rescaler (divid	der) bits				
	1 = Divide-by 0 = Divide-by	∕-4 ∕-1						
Note 1: Thi	is bit has no fun	ction in Receiv	e mode (RCV	′EN = 1).				

REGISTER 20-1: SENTxCON1: SENTx CONTROL REGISTER 1

2: This bit has no function in Transmit mode (RCVEN = 0).

REGISTER 22-11: CxFEN1: CANx ACCEPTANCE FILTER ENABLE REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			FLTE	N<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			FLTE	N<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit	t	W = Writable bit	:	U = Unimplei	mented bit, read	i as '0'	

'0' = Bit is cleared

bit 15-0

-n = Value at POR

FLTEN<15:0>: Enable Filter n to Accept Messages bits

'1' = Bit is set

1 = Enables Filter n

0 = Disables Filter n

REGISTER 22-12: CxBUFPNT1: CANx FILTERS 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F3BP3	F3BP2	F3BP1	F3BP0	F2BP3	F2BP2	F2BP1	F2BP0	
bit 15	·				•		bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F1BP3	F1BP2	F1BP1	F1BP0	F0BP3	F0BP2	F0BP1	F0BP0	
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unk	nown	
bit 15-12	F3BP<3:0>:	RX Buffer Mas	k for Filter 3 b	oits				
	1111 = Filter	hits received in	n RX FIFO bu	Iffer				
	1110 = Filter	hits received in	n RX Buffer 1	4				
	•							
	•							
	0001 = Filter	hits received in	n RX Buffer 1					
	0000 = Filter	hits received in	n RX Buffer 0					
bit 11-8	F2BP<3:0>:	RX Buffer Mas	k for Filter 2 b	oits (same value	es as bits 15-12	2)		
bit 7-4	F1BP<3:0>:	RX Buffer Mas	k for Filter 1 b	oits (same value	es as bits 15-12	2)		
bit 3-0	F0BP<3:0>:	RX Buffer Mas	k for Filter 0 b	oits (same value	es as bits 15-12	2)		

x = Bit is unknown

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F7MSK1	F7MSK0	F6MSK1	F6MSK0	F5MSK1	F5MSK0	F4MSK1	F4MSK0	
bit 15		·					bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F3MSK1	F3MSK0	F2MSK1	F2MSK0	F1MSK1	F1MSK0	F0MSK1	F0MSK0	
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	'0' = Bit is cleared		nown	
bit 15-14	F7MSK<1:0>	. Mask Source	for Filter 7 bit	:				
	11 = Reserve	ed						
	10 = Accepta	ince Mask 2 reg	gisters contain	the mask				
	01 = Accepta 00 = Accepta	ince Mask 1 re	gisters contain	the mask				
bit 13-12	F6MSK<1:0>	. Mask Source	for Filter 6 bit	(same values	as bits 15-14)			
bit 11-10	F5MSK<1:0>	. Mask Source	for Filter 5 bit	(same values	as bits 15-14)			
bit 9-8	F4MSK<1:0>	. Mask Source	for Filter 4 bit	(same values	as bits 15-14)			
bit 7-6	F3MSK<1:0>	. Mask Source	for Filter 3 bit	(same values	as bits 15-14)			
bit 5-4	F2MSK<1:0>	. Mask Source	for Filter 2 bit	(same values	as bits 15-14)			
bit 3-2	F1MSK<1:0>	. Mask Source	for Filter 1 bit	(same values	as bits 15-14)			
bit 1-0	F0MSK<1:0>	. Mask Source	for Filter 0 bit	(same values	as bits 15-14)			

REGISTER 22-18: CxFMSKSEL1: CANx FILTERS 7-0 MASK SELECTION REGISTER 1

23.1 CTMU Control Registers

REGISTER 23-1: CTMUCON1: CTMU CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CTMUE	N —	CTMUSIDL	TGEN ⁽²⁾	EDGEN	EDGSEQEN	IDISSEN ⁽¹⁾	CTTRIG		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
			_	_					
bit 7							bit 0		
Legend:									
R = Reada	able bit	W = Writable t	bit	U = Unimpler	nented bit, read	as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own		
hit 15		CTMUL Enchla bit							
DIL 15									
	0 = Module	e is disabled							
bit 14	Unimpleme	ented: Read as '0	,						
bit 13	CTMUSIDL	CTMUSIDL: CTMU Stop in Idle Mode bit							
	1 = Discon	tinues module op	eration when t	he device ente	rs Idle mode				
		ues module opera	tion in Idle mo	de					
bit 12	TGEN: Time	e Generation Ena	ble bit ⁽²⁾						
	1 = Edge d 0 = Edge d	elay generation is	s enabled s disabled						
bit 11	EDGEN: Ed	dge Enable bit							
	1 = Hardwa	are modules are u	ised to trigger	edges (TMRx,	CTEDx, etc.)				
	0 = Softwa	re is used to trigg	er edges (mar	ual set of EDO	SxSTAT)				
bit 10	EDGSEQE	N: Edge Sequenc	e Enable bit						
	1 = Edge 1	event must occu	r before Edge	2 event can oc	cur				
hit 9		nalog Current So	urce Control h	_{.it} (1)					
bit b	1 = Analog	current source of	utput is around	led					
	0 = Analog	current source of	utput is not gro	ounded					
bit 8	CTTRIG: A	DC Trigger Contro	ol bit						
	1 = CTMU	1 = CTMU triggers the ADC start of conversion							
1:170	0 = CIMU	0 = CTMU does not trigger the ADC start of conversion							
Dit 7-0	Unimpleme	ented: Read as '0	i"						
Note 1:	The ADC modu	le Sample-and-H	old (S&H) cap	acitor is not au	tomatically disc	harged betwee	n sample/		
	conversion cycl	es. Any software before conducting	using the ADC i the measurer	as part of a ca nent. The IDIS	pacitance meas	surement must set to '1', perfo	discharge the rms this func-		

capacitor array.
If the TGEN bit is set to '1', then the CMP1 module should be selected as the Edge 2 source in the EDG2SELx bits field; otherwise, the module will not function.

tion. The ADC must be sampling while the IDISSEN bit is active to connect the discharge sink to the

REGISTER 25-3: CM4CON: COMPARATOR 4 CONTROL REGISTER (CONTINUED)

bit 7-6	EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits ⁽²⁾
	 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output.
	01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): High-to-low transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): Low-to-high transition of the comparator output.
	00 = Trigger/event/interrupt generation is disabled
bit 5	Unimplemented: Read as '0'
bit 4	CREF: Comparator 4 Reference Select bit (VIN+ input) ⁽¹⁾
	 1 = VIN+ input connects to the internal CVREFIN voltage 0 = VIN+ input connects to the C4IN1+ pin
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CCH<1:0>: Comparator 4 Channel Select bits ⁽¹⁾
	 11 = VIN- input of comparator connects to the C4IN4- pin 10 = VIN- input of comparator connects to the C4IN3- pin 01 = VIN- input of comparator connects to the C4IN2- pin 00 = VIN- input of comparator connects to the C4IN1- pin
Note 1:	Inputs that are selected and not available will be tied to Vss. See the " Pin Diagrams " section for available inputs for each package.

2: After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the comparator Event bit, CEVT (CMxCON<9>), and the Comparator Combined Interrupt Flag, CMPIF (IFS1<2>), must be cleared before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

File Name	Address	Device Memory Size (Kbytes)	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FDMTINTVL	0057AC	32																	
	00ABAC	64																	
	0157AC	128	_									DIVITIVIS	\$15:0>						
	02ABAC	256																	
FDMTINTVH	0057B0	32																	
	00ABB0	64											04.40						
	0157B0	128	_									DIVITIVIS	31:16>						
	02ABB0	256																	
FDMTCNTL	0057B4	32																	
	00ABB4	64										DMTONIT	-45-05						
	0157B4	128	_									DIVITCINT	<15:0>						
	02ABB4	256																	
FDMTCNTH	0057B8	32																	
	00AB8	64										DMTONIT	-04-40-						
	0157B8	128	_									DIVITCINT<	31:16>						
	02ABB8	256																	
FDMT	0057BC	32																	
	00ABBC	64																	DIATEN
	0157BC	128	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	DMITEN
	02ABBC	256																	
FDEVOPT	0057C0	32																	
	00ABC0	64															D (2)		
	0157C0	128		_	_	_	_	_	_	_	_	_	_	_	_	ALTI2C1	Reserved-	—	PWWLOCK
	02ABC0	256																	
FALTREG	0057C4	32													•				
	00ABC4	64																	
	0157C4	128	—	—	_	_	-	—	_	_	—	_		CTXT2<2:0>		_	(UIXI1<2:0>	
	02ABC4	256																	

CONFIGURATION WORD DECISTED MAD (CONTINUED) ~ ~ 4

Legend: — = unimplemented, read as '1'.

Note 1: This bit is reserved and must be programmed as '0'.
2: This bit is reserved and must be programmed as '1'.

30.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EVXXXGM00X/10X family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EVXXXGM00X/10X family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +6.0V
Voltage on VCAP with respect to VSS	1.62V to 1.98V
Maximum current out of Vss pin	350 mA
Maximum current into Vod pin ⁽²⁾	350 mA
Maximum current sunk by any I/O pin	20 mA
Maximum current sourced by I/O pin	
Maximum current sourced/sunk by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).

DC CHARACT	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Parameter No.	Тур. ⁽²⁾	Max.	Units		Conditions			
Idle Current (II	dle) ⁽¹⁾							
DC40d	1.25	2	mA	-40°C				
DC40a	1.25	2	mA	+25°C	5.0V			
DC40b	1.5	2.6	mA	+85°C				
DC40c	1.5	2.6	mA	+125°C				
DC42d	2.3	3	mA	-40°C				
DC42a	2.3	3	mA	+25°C	5.0\/	20 MIPS		
DC42b	2.6	3.45	mA	+85°C	5.00	20 1011 3		
DC42c	2.6	3.85	mA	+125°C				
DC44d	6.9	8	mA	-40°C				
DC44a	6.9	8	mA	+25°C	5.0V	70 MIPS		
DC44b	7.25	8.6	mA	+85°C				

TABLE 30-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Base Idle current (IIDLE) is measured as follows:

• CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- 2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

DC CHARACTER	Standard C (unless oth Operating to	Dperating nerwise st emperatur	Condition tated) re -40°C -40°C	n s: 4.5V to ≤ Ta ≤ +88 ≤ Ta ≤ +12	o 5.5V 5°C for Industrial 25°C for Extended			
Parameter No.	Тур. ⁽²⁾	Max.	Doze Ratio	Units		Conc	litions	
Doze Current (IDC)ZE) ⁽¹⁾							
DC73a	16.0	18.25	1:2	mA	40°C	5.0\/	70 MIPS	
DC73g	7.1	8.0	1:128	mA	-40 C	5.00	70 1011 0	
DC70a	16.25	18.5	1:2	mA	±25°C	5 0\/		
DC70g	7.3	8.2	1:128	mA	+25 C	5.00	10 MIP3	
DC71a	17.0	19.0	1:2	mA	+95°C	5 0)/		
DC71g	7.5	8.9	1:128	mA	+00 C	5.00	70 MIPS	
DC72a	17.75	19.95	1:2	mA	±125°C	5.01/	60 MIDS	
DC72g	8.25	9.32	1:128	mA	125 0	5.00	00 MIE 3	

TABLE 30-9: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

• Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

• CLKO is configured as an I/O input pin in the Configuration Word

• All I/O pins are configured as outputs and driving low

• MCLR = VDD, WDT and FSCM are disabled

• CPU, SRAM, program memory and data memory are operational

• No peripheral modules are operating or being clocked (defined PMDx bits are all ones)

CPU executing

```
while(1)
{
NOP();
}
```

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

TABLE 30-35:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extende} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions		
SP70	FscP	Maximum SCK2 Input Frequency		_	11	MHz	See Note 3		
SP72	TscF	SCK2 Input Fall Time	—	—		ns	See Parameter DO32 and Note 4		
SP73	TscR	SCK2 Input Rise Time				ns	See Parameter DO31 and Note 4		
SP30	TdoF	SDO2 Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4		
SP31	TdoR	SDO2 Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns			
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	_	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	-	_	ns			
SP50	TssL2scH, TssL2scL	$\overline{SS2}$ ↓ to SCK2 ↑ or SCK2 ↓ Input	120		—	ns			
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	See Note 4		
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 Tcy + 40	—	_	ns	See Note 4		
SP60	TssL2doV	SDO2 Data Output Valid after SS2 Edge	—	—	50	ns			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

TABLE 30-50: OP AMP/COMPARATOR x SPECIFICATIONS

DC CHARACTERISTICS			Standard Op (unless othe Operating ter	erating rwise st	Conditions (s ated) $e -40^{\circ}C \le TA$	5 (see Note 3): 4.5V to 5.5V TA ≤ +85°C for Industrial			
					$-40^{\circ}C \le TA$	≤ +125°	C for Extended		
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions		
		Con	parator AC C	haracte	ristics				
CM10	TRESP	Response Time	—	19	80	ns	V+ input step of 100 mV, V- input held at VDD/2		
CM11	Тмс2оv	Comparator Mode Change to Output Valid	—	—	10	μs			
		Con	nparator DC C	haracte	ristics				
CM30	VOFFSET	Comparator Offset Voltage	-80	±60	80	mV			
CM31	VHYST	Input Hysteresis Voltage	—	30	—	mV			
CM32	Trise/ Tfall	Comparator Output Rise/Fall Time	—	20	—	ns	1 pF load capacitance on input		
CM33	Vgain	Open-Loop Voltage Gain	—	90	—	db			
CM34	VICM	Input Common-Mode Voltage	AVss	_	AVDD	V			
		Οι	o Amp AC Cha	aracteris	stics				
CM20	SR	Slew Rate	—	9	—	V/µs	10 pF load		
CM21	Рм	Phase Margin	—	35	_	°C	G = 100V/V, 10 pF load		
CM22	Gм	Gain Margin	—	20	_	db	G = 100V/V, 10 pF load		
CM23	GBW	Gain Bandwidth	—	10	_	MHz	10 pF load		
		Ol	o Amp DC Cha	aracteris	stics				
CM40	VCMR	Common-Mode Input Voltage Range	AVss	_	AVDD	V			
CM41	Cmrr	Common-Mode Rejection Ratio	—	45	_	db	Vcm = AVdd/2		
CM42	VOFFSET	Op Amp Offset Voltage	-50	±6	50	mV			
CM43	Vgain	Open-Loop Voltage Gain	—	90		db			
CM44	los	Input Offset Current	—	—	—	_	See pad leakage currents in Table 30-10		
CM45	Ів	Input Bias Current	—		_		See pad leakage currents in Table 30-10		
CM46	Ιουτ	Output Current	_	—	420	μA	With minimum value of RFEEDBACK (CM48)		
CM48	RFEEDBACK	Feedback Resistance Value	8	—	_	kΩ	Note 2		
CM49a	Vout	Output Voltage	AVss + 0.075	_	AVDD - 0.075	V	Ιουτ = 420 μΑ		

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

2: Resistances can vary by ±10% between op amps.

3: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

31.1 High-Temperature DC Characteristics

TABLE 31-1: OPERATING MIPS vs. VOLTAGE

Charactoristic	VDD Range	Temperature Range	Max MIPS
Characteristic	(in Volts)	(in °C)	dsPIC33EVXXXGM00X/10X Family
HDC5	4.5V to 5.5V ^(1,2)	-40°C to +150°C	40

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules, such as the ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Device functionality is tested but is not characterized. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

2: When BOR is enabled, the device will work from 4.7V to 5.5V.

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
High-Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+155	°C
Operating Ambient Temperature Range	TA	-40	—	+150	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD		PINT + PI/C)	W
Maximum Allowed Power Dissipation	PDMAX	(ΓJ — TA)/θJ	IA	W

TABLE 31-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHA	ARACTER	ISTICS	Standard Operating Conditions (see Note 3): 4.5V to 5.5V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
Operati	ng Voltag	9						
HDC10	Vdd	Supply Voltage ⁽³⁾	VBOR	_	5.5	V		
HDC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	—	—	V		
HDC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	_	Vss	V		
HDC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	1.0	_	_	V/ms	0V-5.0V in 5 ms	
HDC18	VCORE	VDD Core Internal Regulator Voltage	1.62	1.8	1.98	V	Voltage is dependent on load, temperature and VDD	

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

3: VDD voltage must remain at Vss for a minimum of 200 μ s to ensure POR.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 33-7: TYPICAL lidLe vs. Vdd (EC MODE, 20 MIPS)

Е

Electrical Characteristics	
AC	351, 408
Equations	
BRG Formula	229
Device Operating Frequency	124
Fosc Calculation	
Frame Time Calculations	
FSCL Frequency	229
Fvco Calculation	
SYNCMIN and SYNCMAX Calculations	
Tick Period Calculation	239
Errata	11

F

Flash Program Memory	83
Control Registers	85
Error Correcting Code (ECC)	
Operations	
Resources	85
RTSP Operation	
Table Instructions	
Flexible Configuration	
5	

G

Catting Started with 16 Dit DCCa	17
Getting Started with то-ыт DSCS	
Connection Requirements	17
CPU Logic Filter Capacitor Connection (VCAP)	18
Decoupling Capacitors	17
External Oscillator Pins	19
ICSP Pins	19
Master Clear (MCLR) Pin	18
Oscillator Value Conditions on Device Start-up	19
Unused I/Os	19

Н

High Temperature	
Thermal Operating Conditions	404
High-Speed PWM	199
Control Registers	204
Faults	199
Resources	203
High-Temperature Electrical Characteristics	403
Absolute Maximum Ratings	403

I

I/O Ports	143
Configuring Analog/Digital Port Pins	144
Helpful Tips	151
High-Voltage Detect (HVD)	151
Open-Drain Configuration	144
Parallel I/O (PIO)	143
Peripheral Pin Select (PPS)	145
Slew Rate Selection	145
Write/Read Timing	144
In-Circuit Debugger	326
MPLAB ICD 3	339
PICkit 3 Programmer	339
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	. 317, 326
Input Capture	189
Control Registers	190
Input Change Notification (ICN)	144

Instruction Addressing Modes	74
File Register Instructions	74
Fundamental Modes Supported	75
MAC Instructions	75
MCU Instructions	74
Move and Accumulator Instructions	75
Other Instructions	75
Instruction Set	
Overview	330
Summary	327
Symbols Used in Opcode	328
Interfacing Program and Data Memory Spaces	79
Inter-Integrated Circuit (I ² C)	229
Baud Rate Generator	229
Control Registers	231
Inter-Integrated Circuit. See I ² C.	
Internal LPRC Oscillator	
Use with WDT	325
Internet Address	493
Interrupt Controller	
Control and Status Registers	100
IECx	100
IFSx	100
INTCON1	100
INTCON2	100
INTCON3	100
INTCON4	100
INTTREG	100
IPCx	100
Reset Sequence	100
Interrupt Vector Table (IVT)	
Details	

Μ

Memory Maps	
EDS	72
Memory Organization	31
Microchip Internet Web Site	493
Modulo Addressing	
Applicability	77
Operation Example	76
Start and End Address	
W Address Register Selection	
MPLAB PM3 Device Programmer	339
MPLAB REAL ICE In-Circuit Emulator System	339
MPLAB X Integrated Development	
Environment Software	337
MPLINK Object Linker/MPLIB Object Librarian	338
0	
Op Amp/Comparator	301
Control Registers	303
Oscillator Configuration	123

e end en regietere ministration	
Oscillator Configuration	. 123
Bit Values for Clock Selection	. 125
CPU Clocking System	. 124
Output Compare	. 193
Control Registers	. 194
Р	

Packaging	
Details	463
Marking	461, 462
Peripheral Module Disable (PMD)	135