

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev128gm004-h-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Timers/Output Compare/Input Capture

- Nine General Purpose Timers:
 - Five 16-bit and up to two 32-bit timers/counters; Timer3 can provide ADC trigger
- Four Output Compare modules Configurable as Timers/Counters
- Four Input Capture modules

Communication Interfaces

- Two Enhanced Addressable Universal Asynchronous Receiver/Transmitter (UART) modules (6.25 Mbps):
 - With support for LIN/J2602 bus and IrDA®
 - High and low speed (SCI)
- Two SPI modules (15 Mbps):
 - 25 Mbps data rate without using PPS
- One I²C module (up to 1 Mbaud) with SMBus Support
- Two SENT J2716 (Single-Edge Nibble Transmission-Transmit/Receive) module for Automotive Applications
- One CAN module:
 - 32 buffers, 16 filters and three masks

Direct Memory Access (DMA)

- 4-Channel DMA with User-Selectable Priority Arbitration
- UART, Serial Peripheral Interface (SPI), ADC, Input Capture, Output Compare and Controller Area Network (CAN)

Input/Output

- GPIO Registers to Support Selectable Slew Rate I/Os
- Peripheral Pin Select (PPS) to allow Function Remap
- Sink/Source: 8 mA or 12 mA, Pin-Specific for Standard VOH/VOL
- · Selectable Open-Drain, Pull-ups and Pull-Downs
- Change Notice Interrupts on All I/O Pins

Qualification and Class B Support

- AEC-Q100 REVG (Grade 1: -40°C to +125°C) Compliant
- AEC-Q100 REVG (Grade 0: -40°C to +150°C) Compliant
- Class B Safety Library, IEC 60730

Class B Fault Handling Support

- Backup FRC
- · Windowed WDT uses LPRC
- Windowed Deadman Timer (DMT) uses System Clock (System Windowed Watchdog Timer)
- H/W Clock Monitor Circuit
- Oscillator Frequency Monitoring through CTMU (OSCI, SYSCLK, FRC, BFRC, LPRC)
- Dedicated PWM Fault Pin
- Lockable Clock Configuration

Debugger Development Support

- In-Circuit and In-Application Programming
- Three Complex and Five Simple Breakpoints
- Trace and Run-Time Watch

TABLE 4-17: PERIPHERAL INPUT REMAP REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0				INT1F	R<7:0>						—	-	_	_		—	0000
RPINR1	06A2	_	_	_	_	_	_	_	_				INT2R	<7:0>				0000
RPINR3	06A6	_	_	_	_	_	_	_	_				T2CKF	R<7:0>				0000
RPINR7	06AE	IC2R7	IC2R6	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0	IC1R7	IC1R6	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	0000
RPINR8	06B0	IC4R7	IC4R6	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0	IC3R7	IC3R6	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0	0000
RPINR11	06B6	_	_	_	_	_	_	_	_				OCFA	R<7:0>				0000
RPINR12	06B8	FLT2R7	FLT2R6	FLT2R5	FLT2R4	FLT2R3	FLT2R2	FLT2R1	FLT2R0	FLT1R7	FLT1R6	FLT1R5	FLT1R4	FLT1R3	FLT1R2	FLT1R1	FLT1R0	0000
RPINR18	06C4	_	_	_	_	_	_	_	_				U1RXF	R<7:0>				0000
RPINR19	06C6	_	_	_	—	_	_	_	_				U2RXF	R<7:0>				0000
RPINR22	06CC	SCK2R7	SCK2R6	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0	SDI2R7	SDI2R6	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	0000
RPINR23	06CE	_	_	_	_	_	_	_	_				SS2R	<7:0>				0000
RPINR26	06D4	_	_	_	_	_	_	_	_				C1RXR	<7:0>(1)				0000
RPINR37	06EA				SYNCI	IR<7:0>				_	—	—	_	_	_	_	_	0000
RPINR38	06EC				DTCMP	1R<7:0>					-	_	_	_	_		_	0000
RPINR39	06EE	DTCMP3R7	DTCMP3R6	DTCMP3R5	DTCMP3R4	DTCMP3R3	DTCMP3R2	DTCMP3R1	DTCMP3R0	DTCMP2R7	DTCMP2R6	DTCMP2R5	DTCMP2R4	DTCMP2R3	DTCMP2R2	DTCMP2R1	DTCMP2R0	0000
RPINR44	06F8				SENT1	R<7:0>					-	—	—	—	_		—	0000
RPINR45	06FA	_	_	_	—	—	_	_	—			•	SENT2	R<7:0>			•	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This feature is available only on dsPIC33EVXXXGM10X devices.

TABLE 4-18: DMT REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMTCON	0700	ON		_			-	—		_	_	—	_	—		_	—	0000
DMTPRECLR	0704				STEP1	<7:0>				_	_	_	_	_	_	_	—	0000
DMTCLR	0708	_	_	_	_	_	_	_	_				STEP2	<7:0>				0000
DMTSTAT	070C	_	_	_	_	_	_	_	_	BAD1	BAD2	DMTEVENT		_	_	_	WINOPN	0000
DMTCNTL	0710								COUNTER	<15:0>								0000
DMTCNTH	0712							(COUNTER	<31:16>								0000
DMTHOLDREG	0714								UPRCNT	<15:0>								0000
DMTPSCNTL	0718								PSCNT<	15:0>								0000
DMTPSCNTH	071A								PSCNT<	31:16>								0000
DMTPSINTVL	071C		PSINTV<15:0> 00									0000						
DMTPSINTVH	071E	PSINTV<31:16> 00									0000							

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

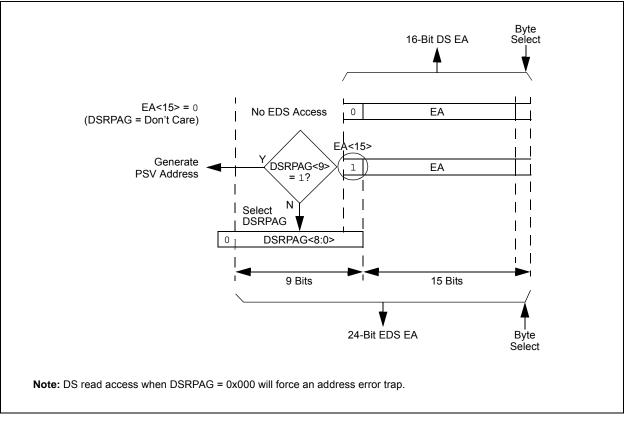
TABLE 4-39: PORTD REGISTER MAP FOR dsPIC33EVXXXGMX06 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	0E3C	—	—	_			—		TRISD8	_	TRISE	0<6:5>			_			0160
PORTD	0E3E	_	_	_			—		RD8	_	RD<	:6:5>			_	_		xxxx
LATD	0E40	_	_	_			—		LATD8	_	LATD	<6:5>			_	_		xxxx
ODCD	0E42		_	_			—		ODCD8	—	ODCE)<6:5>			_			0000
CNEND	0E44		_	_			—		CNIED8	—	CNIED	0<6:5>			_			0000
CNPUD	0E46		_	_			—		CNPUD8	—	CNPU	D<6:5>			_			0000
CNPDD	0E48	—	_	_			-		CNPDD8	_	CNPDI	D<6:5>						0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-40: PORTE REGISTER MAP FOR dsPIC33EVXXXGMX06 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	0E50		TRISE	<15:12>		—	—		—	—	—	_	-	-	-	—		F000
PORTE	0E52		RE<1	5:12>		_	_	_	_	_	_		_	_	_	_	_	xxxx
LATE	0E54		LATE<	:15:12>		_	_	_	_	_	_		_	_	_	_	_	xxxx
ODCE	0E56		ODCE.	<15:12>		_	_	_	_	_	_		_	_	_	_	_	0000
CNENE	0E58		CNIEE	<15:12>		—	—		—	—	_	_				_	_	0000
CNPUE	0E5A		CNPUE	<15:12>		_	_	_	_	_	_		_	_	_	_	_	0000
CNPDE	0E5C		CNPDE	<15:12>		—	—		—	—	_	_	_	_		_	_	0000
ANSELE	0E5E		ANSE<	<15:12>		_	—		_	—	_	_	-	-		_	_	F000


Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.3.1 PAGED MEMORY SCHEME

The dsPIC33EVXXXGM00X/10X family architecture extends the available DS through a paging scheme, which allows the available DS to be accessed using MOV instructions in a linear fashion for pre- and post-modified Effective Addresses (EAs). The upper half of the Base Data Space address is used in conjunction with the Data Space Page registers, the 10-bit Data Space Read Page register (DSRPAG) or the 9-bit Data Space Write Page register (DSWPAG), to form an EDS address, or Program Space Visibility (PSV) address.

The Data Space Page registers are located in the SFR space. Construction of the EDS address is shown in Figure 4-9 and Figure 4-10. When DSRPAG<9> = 0 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS read address. Similarly, when the base address bit, EA<15> = 1, the DSWPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS read address. Similarly, when the base address bit, EA<15> = 1, the DSWPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS write address.

FIGURE 4-9: EXTENDED DATA SPACE (EDS) READ ADDRESS GENERATION

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-45: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.4.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

For the MOV instructions, the addressing
mode specified in the instruction can differ
for the source and destination EA. How-
ever, the 4-bit Wb (Register Offset) field is
shared by both source and destination
(but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.4.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The Two-Source Operand Prefetch registers must be members of the set, {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must, therefore, be valid addresses within X Data Space for W8 and W9, and Y Data Space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X Data Space) and W11 (in Y Data Space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.4.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (Branch) instructions use 16-bit signed literals to specify the Branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as a NOP, do not have any operands.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
—		_	—	—	_		—					
bit 15							bit 8					
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0					
_			—	RQCOL3	RQCOL2	RQCOL1	RQCOL0					
bit 7							bit 0					
Legend:												
R = Readab	Readable bitW = Writable bitU = Unimplemented bit, read as '0'											
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown												
bit 15-4	Unimplemer	nted: Read as '	0'									
bit 3	RQCOL3: Cl	nannel 3 Transfe	er Request C	Collision Flag bit								
				est collision is d								
		•	•	est collision is n								
bit 2			•	Collision Flag bit								
				est collision is de								
L:1.4		•		est collision is no								
bit 1			•	Collision Flag bit								
		 1 = User force and interrupt-based request collision is detected 0 = User force and interrupt-based request collision is not detected 										
bit 0		•	•	collision Flag bit								
			•	est collision is d								
				est collision is n								

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

11.6 High-Voltage Detect (HVD)

dsPIC33EVXXXGM00X/10X devices contain High-Voltage Detection (HVD) which monitors the VCAP voltage. The HVD is used to monitor the VCAP supply voltage to ensure that an external connection does not raise the value above a safe level (~2.4V). If high core voltage is detected, all I/Os are disabled and put in a tristate condition. The device remains in this I/O tri-state condition as long as the high-voltage condition is present.

11.7 I/O Helpful Tips

- 1. In some cases, certain pins, as defined in Table 30-10 under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes that the resulting current being injected into the device, that is clamped internally by the VDD and VSS power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins by default after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Pin Configuration registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.

- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name, from left-to-right. The left most function name takes precedence over any function to its right in the naming convention; for example, AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD – 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specifications. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH, and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of this data sheet. For example:

VOH = 4.4V at IOH = -8 mA and VDD = 5V

The maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current, <12 mA, is technically permitted. For more information, refer to the VOH/ IOH specifications in **Section 30.0 "Electrical Characteristics"**.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0
bit 7							bit 0

REGISTER 11-22: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP43R<5:0>: Peripheral Output Function is Assigned to RP43 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP42R<5:0>: Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-23: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP49R5	RP49R4	RP49R3	RP49R2	RP49R1	RP49R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP48R5	RP48R4	RP48R3	RP48R2	RP48R1	RP48R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8**RP49R<5:0>:** Peripheral Output Function is Assigned to RP49 Output Pin bits
(see Table 11-3 for peripheral function numbers)bit 7-6**Unimplemented:** Read as '0'

bit 5-0 **RP48R<5:0>:** Peripheral Output Function is Assigned to RP48 Output Pin bits

(see Table 11-3 for peripheral function numbers)

Note 1: This register is present in dsPIC33EVXXXGM004/104/006/106 devices only.

12.1 Timer1 Control Register

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
TON ⁽¹⁾	—	TSIDL	—	—	_	—	—		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0		
	TGATE	TCKPS1	TCKPS0	—	TSYNC ⁽¹⁾	TCS ⁽¹⁾	—		
bit 7							bit 0		
Legend:									
R = Readable		W = Writable		-	mented bit, read				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
		o							
bit 15	TON: Timer1								
	1 = Starts 16- 0 = Stops 16-								
bit 14	•	ted: Read as '	י)						
bit 13	-	1 Stop in Idle N							
2.1.10				he device ente	ers Idle mode				
	 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode 								
bit 12-7	Unimplemen	ted: Read as '	כי						
bit 6	TGATE: Time	r1 Gated Time	Accumulation	Enable bit					
	When TCS = This bit is igno								
	When TCS =								
		e accumulation							
bit 5-4		e accumulation		a Salaat hita					
DIL 3-4	11 = 1:256	: Timer1 Input							
	10 = 1:64								
	01 = 1:8								
	00 = 1:1								
bit 3	-	ted: Read as '			(1)				
bit 2		er1 External Clo	ock Input Synd	chronization Se	elect bit ⁽¹⁾				
	<u>When TCS =</u> 1 = External c		nchronized						
	1 = External clock input is synchronized 0 = External clock input is not synchronized								
	When TCS =	=	,						
	This bit is igno								
bit 1		Clock Source S							
	1 = External c 0 = Internal cl	clock is from pii lock (FP)	n, T1CK (on th	ne rising edge)					
bit 0	Unimplemen	ted: Read as '	כי						
	en Timer1 is en mpts by user se				ode (TCS = 1, T nored.	SYNC = 1, TO	N = 1), any		

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	—	—	—		—
bit 15							bit 8
R-0, HC	R-0, HC	R-0, HC	U-0	U-0	U-0	U-0	R-0
BAD1	BAD2	DMTEVENT		—	_		WINOPN
bit 7							bit 0
Legend:		HC = Hardwar	e Clearable bit				
R = Readable	e bit	W = Writable b	it	U = Unimple	mented bit, re	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15-8	Unimplemer	nted: Read as '0	3				
bit 7	BAD1: Dead	man Timer Bad	STEP1<7:0> V	alue Detect bit			
		STEP1<7:0> va STEP1<7:0> va					
bit 6	BAD2: Dead	man Timer Bad	STEP2<7:0> V	alue Detect bit			
		STEP2<7:0> va STEP2<7:0> va					
bit 5	DMTEVENT:	Deadman Time	r Event bit				
	 1 = Deadman Timer event was detected (counter expired, or bad STEP1<7:0> or STEP2<7:0> valu was entered prior to counter increment) 0 = Deadman Timer event was not detected 						
bit 4-1		nted: Read as '0		I			
bit 0	-	adman Timer C		ŀ			
Sit 0	1 = Deadmar	n Timer clear wir	ndow is open	-			
		n Timer clear wir	nor obe	11			

REGISTER 14-4: DMTSTAT: DEADMAN TIMER STATUS REGISTER

15.1 Input Capture Control Registers

REGISTER 15-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

REGISTER	15-1: ICxCO	N1: INPUT C	CAPTURE x CO	ONTROL REG	ISTER 1							
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0					
_		ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	_					
bit 15		•					bit					
U-0	R/W-0	R/W-0	R-0, HC, HS	R-0, HC, HS	R/W-0	R/W-0	R/W-0					
_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0					
bit 7							bit					
Legend:		HC = Hardwa	re Clearable bit	HS = Hardwar	re Settable bit							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is un	known					
bit 15-14	Unimplemen	ted: Read as '	0'									
bit 13	-		p in Idle Mode C	control bit								
		-	t in CPU Idle mod									
		-	tinue to operate		de							
bit 12-10			e x Timer Select									
			is the clock sour	ce of the ICx								
	110 = Reserv											
		101 = Reserved 100 = T1CLK is the clock source of the ICx (only the synchronous clock is supported)										
		011 = T5CLK is the clock source of the ICx										
	010 = T4CLK is the clock source of the ICx											
			ource of the ICx									
bit 9-7		ted: Read as '										
bit 6-5	ICI<1:0>: Nur	mber of Captur	es per Interrupt S	Select bits (this fi	eld is not used	if ICM<2:0> =	001 or 111					
	11 = Interrupt	ICI<1:0>: Number of Captures per Interrupt Select bits (this field is not used if ICM<2:0> = 001 or 111) 11 = Interrupt on every fourth capture event										
		10 = Interrupt on every third capture event										
	01 = Interrupt on every second capture event 00 = Interrupt on every capture event											
	-											
bit 4	-	-	flow Status Flag									
			overflow has occu									
bit 3		-	fer Not Empty St		nlv)							
	-	-	s not empty, at le	-	• •	an be read						
		pture x buffer i										
bit 2-0	ICM<2:0>: In	put Capture x	Mode Select bits									
			tions as an inter		CPU Sleep an	d Idle modes	(rising edg					
			control bits are r	ot applicable)								
		ed (module is d	,		nturo modo)							
			/ 16th rising edge / 4th rising edge									
			/ rising edge (Sir									
			/ falling edge (Si									
		re mode, every	edge, rising and			CI<1:0>) is not	t used in th					
	,		ule is turned off									

000 = Input Capture x module is turned off

REGISTER 19-3: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	 S: I2Cx Start bit Updated when Start, Reset or Stop is detected; cleared when the I²C module is disabled, I2CEN = 0. 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Indicates that a Start bit was not detected last
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	 1 = Read: Indicates that the data transfer is output from the slave 0 = Write: Indicates that the data transfer is input to the slave
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive is complete, the I2CxRCV bit is full
	0 = Receive is not complete, the I2CxRCV bit is empty
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full (8 bits of data)
	0 = Transmit is complete, I2CxTRN is empty

REGISTER 19-4: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
—	—	—	—	—	—	MSK<9:8>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
MSK<7:0>								

bit 7				bit 0	
Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-10 Unimplemented: Read as '0'

bit 9-0 MSK<9:0>: I2Cx Mask for Address Bit x Select bits

1 = Enables masking for bit x of the incoming message address; bit match is not required in this position

0 = Disables masking for bit x; bit match is required in this position

REGISTER 20-2: SENTxSTAT: SENTx STATUS REGISTER (CONTINUED)

bit 0 SYNCTXEN: SENTx Synchronization Period Status/Transmit Enable bit⁽¹⁾ Module in Receive Mode (RCVEN = 1):

1 = A valid synchronization period was detected; the module is receiving nibble data

0 = No synchronization period has been detected; the module is not receiving nibble data

Module in Asynchronous Transmit Mode (RCVEN = 0, TXM = 0):

The bit always reads as '1' when the module is enabled, indicating the module transmits SENTx data frames continuously. The bit reads '0' when the module is disabled.

Module in Synchronous Transmit Mode (RCVEN = 0, TXM = 1):

1 = The module is transmitting a SENTx data frame

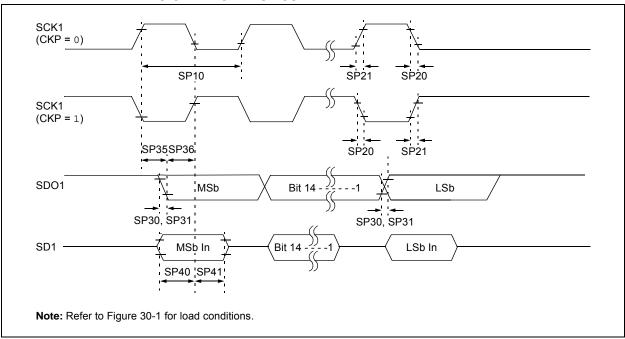
- 0 = The module is not transmitting a data frame, user software may set SYNCTXEN to start another data frame transmission
- Note 1: In Receive mode (RCVEN = 1), the SYNCTXEN bit is read-only.

REGISTER 21-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 5	ABAUD: Auto-Baud Enable bit
	 1 = Baud rate measurement on the next character is enabled – requires reception of a Sync field (55h) before other data; cleared in hardware upon completion 0 = Baud rate measurement is disabled or has completed
bit 4	URXINV: UARTx Receive Polarity Inversion bit
	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits 0 = One Stop bit
Note 1:	Refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the

- "dsPIC33/PIC24 Family Reference Manual" for information on enabling the UART module for receive or transmit operation.
- 2: This feature is only available for the 16x BRG mode (BRGH = 0).
- **3:** This feature is only available on 44-pin and 64-pin devices.
- **4:** This feature is only available on 64-pin devices.

TABLE 30-34:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK2 Input Frequency	—	—	15	MHz	See Note 3
SP72	TscF	SCK2 Input Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP73	TscR	SCK2 Input Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO2 Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO2 Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	SS2 ↓ to SCK2 ↑ or SCK2 ↓ Input	120	-	—	ns	
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 Tcy + 40	—	_	ns	See Note 4
SP60	TssL2doV	SDO2 Data Output Valid after	—	_	50	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

FIGURE 30-23: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-43:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK1 Input Frequency	—		25	MHz	See Note 3	
SP72	TscF	SCK1 Input Fall Time	—	_	_	ns	See Parameter DO32 and Note 4	
SP73	TscR	SCK1 Input Rise Time	—	_	_	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	—	_	ns		
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	-	—	ns		
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	See Note 4	
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 TCY + 40	—	_	ns	See Note 4	
SP60	TssL2doV	SDO1 Data Output Valid after SS1 Edge	—	—	50	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 40 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

dsPIC33EVXXXGM00X/10X FAMILY

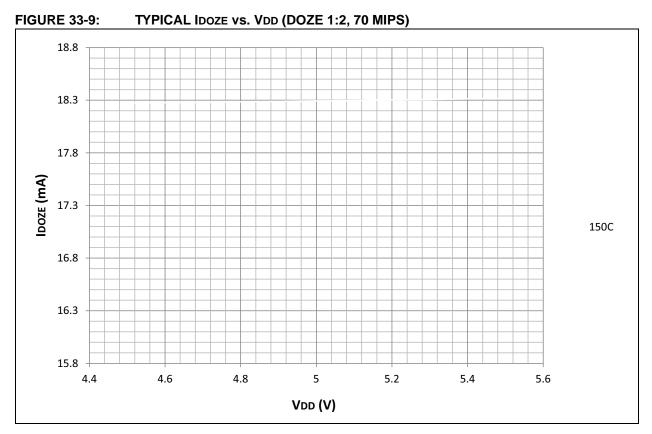
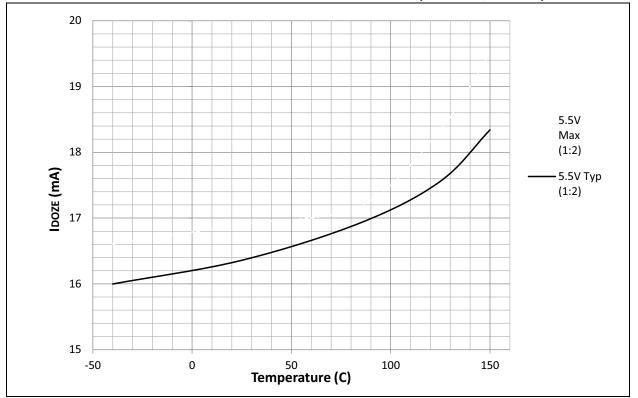



FIGURE 33-10: TYPICAL/MAXIMUM IDOZE vs. TEMPERATURE (DOZE 1:2, 70 MIPS)

© 2013-2016 Microchip Technology Inc.

SENTx Module	
Shared I/O Port Structure	143
SPIx Module	
Type B Timer (Timer2 and Timer4)	
Type B/Type C Timer Pair (32-Bit Timer)	177
Type C Timer (Timer3 and Timer5)	
UARTx Module	247
User-Programmable Blanking Function	
Watchdog Timer (WDT)	325
Brown-out Reset (BOR)	

С

C Compilers		
MPLAB XC	338	
CAN		
CAN Module		
Control Registers		
Message Buffers		
Word 0		
Word 1		
Word 2		
Word 3		
Word 4		
Word 5		
Word 6		
Word 7		
Modes of Operation		
Overview	253	
Characteristics for High-Temperature		
Devices (+150°C)	439	
Characteristics for Industrial/Extended Temperature		
Devices (-40°C to +125°C)		
Charge Time Measurement Unit (CTMU)	279	
Charge Time Measurement Unit. See CTMU.		
Code Examples		
Port Write/Read	144	
PORTA Slew Selections	145	
PWM1 Write-Protected Register		
Unlock Sequence	200	
PWRSAV Instruction Syntax	133	
Code Protection3	17, 326	
CodeGuard Security 3	17, 326	
Comparator Voltage Reference		
Configuring	313	
Control Registers	315	
Configuration Bits	317	
Description	320	
Controller Area Network (CAN)	253	
Controller Area Network. See CAN.		
CPU		
Addressing Modes		
Arithmetic Logic Unit (ALU)		
Control Registers		
Data Space Addressing	21	
DSP Engine	30	
Instruction Set	21	
Programmer's Model	23	
CTMU		
Control Registers		
Customer Change Notification Service	493	
Customer Notification Service		
Customer Support	493	

D

Data Address Space
Alignment
Memory Map for 256-Kbyte Devices
Memory Map for 32-Kbyte Devices
Memory Map for 64/128-Kbyte Devices
Near Data Space
SFR Space
Width
Data Space
Extended X72
Memory Arbitration, Bus Master Priority
Paged Memory Scheme
DC Characteristics
Brown-out Reset (BOR)
CTMU Current Source
Doze Current (IDOZE)
Filter Capacitor (CEFC) Specifications
High Temperature
Brown-out Reset (BOR)
CTMU Current Source
I/O Pin Input Specifications
I/O Pin Output Specifications
Idle Current (IDLE)
Op Amp/ Comparator x
Operating Current (IDD)
Operating MIPS vs. Voltage
Power-Down Current (IPD)
Program Memory
Temperature and Voltage Specifications
Doze Current (IDOZE)
I/O Pin Input Specifications
I/O Pin Output Specifications
Idle Current (IDLE)
Internal Band Gap Reference Voltage
Op Amp/Comparator x Specifications
Op Amp/Comparator x Voltage Reference
Specifications
Operating Current (IDD)
Operating MIPS vs. Voltage
Power-Down Current (IPD)
Program Memory
Temperature and Voltage Specifications
Thermal Operating Conditions
Deadman Timer (DMT)
Control Registers
Deadman Timer. See DMT.
Development Support
Direct Memory Access. See DMA.
DMA Controller
Channel to Peripheral Associations
Control Registers 111
Supported Peripherals 109
DMAC Registers
DMAxCNT
DMAxCON 111
DMAxPAD 111
DMAxREQ 111
DMAxSTAH/L 111
DMAxSTBH/L 111
DMT
Doze Mode 135

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Product Group Pin Count Tape and Reel Fla Package		Example: dsPIC33EV256GM006-I/PT: dsPIC33, Enhanced Voltage, 256-Kbyte Program Memory, 64-Pin, Industrial Temperature, TQFP Package.
Architecture:	33 = 16-Bit Digital Signal Controller	
Family:	EV = Enhanced Voltage	
Product Group:	GM = General Purpose plus Motor Control Family	
Pin Count:	02 = 28-Pin 04 = 44-Pin 06 = 64-Pin	
Temperature Range	$ \begin{array}{rcl} & = & -40^{\circ} \text{C to } +85^{\circ} \text{C (Industrial)} \\ \text{E} & = & -40^{\circ} \text{C to } +125^{\circ} \text{C (Extended)} \\ \text{H} & = & -40^{\circ} \text{C to } +150^{\circ} \text{C (High)} \end{array} $	
Package:	MM =Plastic Quad Flat, No Lead Package – (28-pin) 6x6x0.9 mm body (QFN-S)SO =Plastic Small Outline – (28-pin) 7.50 mm body (SOIC)SS =Plastic Shrink Small Outline – (28-pin) 5.30 mm body (SSOP)SP =Skinny Plastic Dual In-Line – (28-pin) 300 mil body (SPDIP)ML =Plastic Quad Flat, No Lead Package – (44-pin) 8x8 mm body (QFN)MR =Plastic Quad Flat, No Lead Package – (64-pin) 9x9x0.9 mm body (QFN)PT =Plastic Thin Quad Flatpack – (44-pin) 10x10x1 mm body (TQFP)PT =Plastic Thin Quad Flatpack – (64-pin) 10x10x1 mm body (TQFP)	