

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev128gm004t-e-mlvao

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IADLE	4-10.	FER			DELECI	OUIFU	I KEGIS			USFIC	JJEV/		00/1001		>			
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0670	—	—	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	-	—	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	0000
RPOR1	0672	_	_	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0	_		RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0	0000
RPOR2	0674	_	_	RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0	_		RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0	0000
RPOR3	0676	_	_	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0	_		RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0	0000
RPOR4	0678	_	_	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0	_		RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0	0000
RPOR5	067A	_	_	RP49R5	RP49R4	RP49R3	RP49R2	RP49R1	RP49R0	_		RP48R5	RP48R4	RP48R3	RP48R2	RP48R1	RP48R0	0000
RPOR6	067C	_	_	RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0	_		RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0	0000
RPOR7	067E	_	_	RP57R5	RP57R4	RP57R3	RP57R2	RP57R1	RP57R0	_		RP56R5	RP56R4	RP56R3	RP56R2	RP56R1	RP56R0	0000
RPOR8	0680	_	_	RP70R5	RP70R4	RP70R3	RP70R2	RP70R1	RP70R0	_		RP69R5	RP69R4	RP69R3	RP69R2	RP69R1	RP69R0	0000
RPOR9	0682	_	_	RP118R5	RP118R4	RP118R3	RP118R2	RP118R1	RP118R0	_		RP97R5	RP97R4	RP97R3	RP97R2	RP97R1	RP97R0	0000
RPOR10	0684	_	_	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0	_		RP120R5	RP120R4	RP120R3	RP120R2	RP120R1	RP120R0	0000
RPOR11	0686	_	_	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0	_		RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0	0000
RPOR12	0688	_	_	RP180R5	RP180R4	RP180R3	RP180R2	RP180R1	RP180R0	_		RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0	0000
RPOR13	068A	_	_	_	_	_	_	_	_	_				RP181	R<5:0>			0000

TABLE 4-16: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EVXXXGM006/106 DEVICES

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.7.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through the Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a Program Space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. The TBLRDL and TBLWTL instructions access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the Program Space location (P<15:0>) to a data address (D<15:0>).
 - In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.

- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>) is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, as in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

Similarly, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space. Accessing the program memory with table instructions is shown in Figure 4-18.

FIGURE 4-18: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/ 10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programming" (DS70609) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X family devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

The Flash memory can be programmed in the following three ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows for a dsPIC33EVXXXGM00X/10X family device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (PGECx/PGEDx) lines, and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed

devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

Enhanced ICSP uses an on-board bootloader, known as the Program Executive (PE), to manage the programming process. Using an SPI data frame format, the Program Executive can erase, program and verify program memory. For more information on Enhanced ICSP, refer to the specific device programming specification.

RTSP is accomplished using the TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data as a double program memory word, a row of 64 instructions (192 bytes) and erase program memory in blocks of 512 instruction words (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

The Flash memory read and the double-word programming operations make use of the TBLRD and TBLWT instructions, respectively. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of the program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of the program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

© 2013-2016 Microchip Technology Inc.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 7-1: dspic33evXXXGM00X/10X FAMILY ALTERNATE INTERRUPT VECTOR TAB	URE 7-1:	dsPIC33EVXXXGM00X/10X FAMILY ALTERNATE INTERRUPT VECTOR TABL
---	----------	--

	Peronyod	BSI M < 12.0 > (1) + 0.000000	
	Beggnved	BSLIN(<12.0<7 + 0.000000)	
	Casillatar Esil Tran Vestor	BSLIM<12.0×7+0000002	
		BSLIM<12:0×() + 0x000004	
	Address Error Trap Vector	BSLIM<12.0×7+00000000000000000000000000000000000	
	Generic Hard Trap Vector	BSLIM<12:0>(1)+0x000008	
	Stack Error Trap Vector	BSLIM<12.0>(1)+0.000000A	
	Math Error Trap Vector	BSLIM<12:0>(1)+0x00000C	
	DMAC Error Trap Vector	BSLIM<12:0>(1) + 0x00000E	
	Generic Soft Trap Vector	BSLIM<12:0>(1) + 0x000010	
	Reserved	BSLIM<12:0>(') + 0x000012	-
	Interrupt Vector 0	BSLIM<12:0>(') + 0x000014	
	Interrupt Vector 1	BSLIM<12:0>(1) + 0x000016	
	:	:	
	:	:	
	:	:	
5	Interrupt Vector 52	BSLIM<12:0> ⁽¹⁾ + 0x00007C	
	Interrupt Vector 53	BSLIM<12:0> ⁽¹⁾ + 0x00007E	\backslash
	Interrupt Vector 54	BSLIM<12:0> ⁽¹⁾ + 0x000080	See Table 7-1 for
	:] :	Interrupt Vector Details
	:	:	1
	:	:	
	Interrupt Vector 116	BSLIM<12:0> ⁽¹⁾ + 0x0000FC	
	Interrupt Vector 117	BSLIM<12:0> ⁽¹⁾ + 0x00007E	
	Interrupt Vector 118	BSLIM<12:0> ⁽¹⁾ + 0x000100	
	Interrupt Vector 119	BSLIM<12:0> ⁽¹⁾ + 0x000102	
	Interrupt Vector 120	BSLIM<12:0> ⁽¹⁾ + 0x000104	
	:] :	
	:] :	
	:	1 :	
	Interrupt Vector 244	BSLIM<12:0> ⁽¹⁾ + 0x0001FC	
V	Interrupt Vector 245	BSLIM<12:0> ⁽¹⁾ + 0x0001FE	
Note	1. The address depends on the si	ze of the Boot Segment defined by	v BSLIM<12:0>
NOLG	[(BSLIM<12:0> – 1) x 0x400] +	Offset.	J DOLIM (12.0 ⁻ .

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit 8
R/W-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_
bit 7							bit 0
Legend:		HC = Hardwa	re Clearable bi	it			
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unk	nown
bit 15	NSTDIS: Int	errupt Nesting	Disable bit				
	1 = Interrupt	nesting is disa	abled				
b :# 4.4		nesting is ena					
DIL 14	1 = Tran way	s caused by ov	verflow of Accur	mulator A			
	0 = Trap wa	s not caused by	y overflow of A	ccumulator A			
bit 13	OVBERR: A	ccumulator B (Overflow Trap I	Flag bit			
	1 = Trap was	s caused by ov	verflow of Accu	mulator B			
h # 10	0 = Irap was	s not caused by	y overflow of A	Councilator B	laa hit		
DIL 12	1 = Tran way	Accumulator A	Catastrophic over	Overnow Trap F	lag bil lator A		
	0 = Trap was	s not caused by	y catastrophic over	overflow of Accu	imulator A		
bit 11	COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit						
	 1 = Trap was caused by catastrophic overflow of Accumulator B 0 = Trap was not caused by catastrophic overflow of Accumulator B 						
bit 10	OVATE: Acc	umulator A Ov	erflow Trap En	able bit			
	1 = Trap ove 0 = Trap is c	erflow of Accun lisabled	nulator A				
bit 9	OVBTE: Acc	cumulator B Ov	/erflow Trap Er	able bit			
	1 = Trap ove 0 = Trap is c	erflow of Accun lisabled	nulator B				
bit 8	COVTE: Ca	tastrophic Over	rflow Trap Enal	ble bit			
	1 = Trap on 0 = Trap is c	catastrophic ov lisabled	verflow of Accu	mulator A or B i	s enabled		
bit 7	SFTACERR	: Shift Accumu	lator Error Stat	us bit			
	1 = Math err 0 = Math err	or trap was car or trap was car	used by an inva used by an inva	alid accumulator alid accumulator	shift shift		
bit 6	DIV0ERR: D	ivide-by-Zero	Error Status bit				
	1 = Math err 0 = Math err	or trap was car or trap was no	used by a divid t caused by a c	e-by-zero livide-by-zero			
bit 5	DMACERR:	DMAC Trap F	lag bit				
	1 = DMAC t	rap has occurre	ed				
hit 4		Math Error Sto	tus bit				
	1 = Math err	or tran has occ	curred				
	0 = Math err	or trap has not	occurred				

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

© 2013-2016 Microchip Technology Inc.

REGISTER 11-11:	RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23
-----------------	---

U-0	<u>U-0</u>	<u>U-0</u>	<u> </u>	<u>U-0</u>	U-0	<u>U-0</u>	U-0
	—	—	—	—		—	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SS2R	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	
bit 15-8	Unimplemen	ted: Read as '	כי				
bit 7-0 SS2R<7:0>: Assign SPI2 Slave Select (SS2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181							
	00000001 =	Input tied to CN	/IP1				

00000000 = Input tied to Vss

REGISTER 11-12: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	—	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			C1RX	R<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unk	nown	

bit 15-8	Unimplemented: Read as '0'
bit 7-0	C1RXR<7:0>: Assign CAN1 RX Input (C1RX) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	10110101 = Input tied to RPI181
	•
	•
	•
	0000001 = Input tied to CMP1
	0000000 = Input tied to Vss

— vit 15	—	RP70R5	RP70R4	RP70R3	RP70R2	RP70R1	RP70R0
oit 15							1.11.0
							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP69R5	RP69R4	RP69R3	RP69R2	RP69R1	RP69R0
oit 7							bit 0
U-0 — vit 7	U-0	R/W-0 RP69R5	R/W-0 RP69R4	R/W-0 RP69R3	R/W-0 RP69R2	R/W-0 RP69R1	R/ RP

REGISTER 11-26: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP70R<5:0>: Peripheral Output Function is Assigned to RP70 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP69R<5:0>: Peripheral Output Function is Assigned to RP69 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: This register is present in dsPIC33EVXXXGM004/104/006/106 devices only.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP118R5	RP118R4	RP118R3	RP118R2	RP118R1	RP118R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	RP97R5	RP97R4	RP97R3	RP97R2	RP97R1	RP97R0
bit 7							bit 0

REGISTER 11-27: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8**RP118R<5:0>:** Peripheral Output Function is Assigned to RP118 Output Pin bits
(see Table 11-3 for peripheral function numbers)bit 7-6**Unimplemented:** Read as '0'

bit 5-0 **RP97R<5:0>:** Peripheral Output Function is Assigned to RP97 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: This register is present in dsPIC33EVXXXGM004/106 devices only.

REGISTER 22-22: CxRXFUL1: CANx RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
			RXFL	IL<15:8>				
bit 15							bit 8	
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
			RXF	JL<7:0>				
bit 7							bit 0	
Legend:		C = Writable I	bit, but only '	0' can be writter	to clear the b	bit		
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is				'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-0 RXFUL<15:0>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 22-23: CxRXFUL2: CANx RECEIVE BUFFER FULL REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
			RXFU	_<31:24>				
bit 15							bit 8	
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
			RXFU	_<23:16>				
bit 7							bit 0	
Legend:		C = Writable I	bit, but only '()' can be writter	n to clear the b	vit		
R = Readable bit W = Writal			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleare					ared	x = Bit is unkr	nown	

bit 15-0 RXFUL<31:16>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	
bit 15							bit 8	
								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	
EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0		—	
bit 7							bit 0	
Legend:			,					
R = Readable	e bit		bit		nented bit, read			
-n = Value at	POR	'1' = Bit is set		$0^{\circ} = Bit is clear$	ared	x = Bit is unkr	nown	
bit 15	EDG1MOD: E 1 = Edge 1 is 0 = Edge 1 is	Edge 1 Edge Sa s edge-sensitive s level-sensitive	ampling Mode s e	Selection bit				
bit 14	EDG1POL: E	dge 1 Polarity	Select bit					
	1 = Edge 1 is 0 = Edge 1 is	s programmed f s programmed f	or a positive e	dge response edge response				
bit 13-10	EDG1SEL<3:	: 0>: Edge 1 So	urce Select bits	5				
	1111 = Fosc 1110 = OSCI pin 1101 = FRC Oscillator 100 = BFRC Oscillator 1011 = Internal LPRC Oscillator 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved 0101 = Reserved 0101 = Reserved 0101 = Reserved 0101 = CTED1 pin 001 = OCTED2 pin 0001 = OCT module							
bit 9	EDG2STAT: E Indicates the $=$ 1 = Edge 2 h 0 = Edge 2 h	Edge 2 Status b status of Edge as occurred	it 2 and can be v	vritten to contro	ol the edge sou	rce.		
bit 8	EDG1STAT: E Indicates the s 1 = Edge 1 h 0 = Edge 1 h	Edge 1 Status b status of Edge as occurred as not occurred	it 1 and can be v	vritten to contro	ol the edge sou	rce.		
bit 7	EDG2MOD: E 1 = Edge 2 is 0 = Edge 2 is	Edge 2 Edge Sa edge-sensitive level-sensitive	ampling Mode : e	Selection bit				
bit 6	EDG2POL: E 1 = Edge 2 is 0 = Edge 2 is	dge 2 Polarity s programmed f programmed f	Select bit for a positive eq for a negative e	dge response edge response				

REGISTER 23-2: CTMUCON2: CTMU CONTROL REGISTER 2

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2, 3 OR 5) (CONTINUED)

- bit 7-6 EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits⁽³⁾
 - 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0)
 - 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0)

 $\frac{\text{If CPOL} = 1 \text{ (inverted polarity):}}{\text{Low-to-high transition of the comparator output.}}$ $\frac{\text{If CPOL} = 0 \text{ (non-inverted polarity):}}{\text{High-to-low transition of the comparator output.}}$

01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity selected comparator output (while CEVT = 0)

If CPOL = 1 (inverted polarity):

High-to-low transition of the comparator output.

- If CPOL = 0 (non-inverted polarity):
- Low-to-high transition of the comparator output.
- 00 = Trigger/event/interrupt generation is disabled
- bit 5 Unimplemented: Read as '0'
- bit 4 **CREF:** Comparator x Reference Select bit (VIN+ input)⁽¹⁾
 - 1 = VIN+ input connects to the internal CVREFIN voltage
 - 0 = VIN+ input connects to the CxIN1+ pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Op Amp/Comparator x Channel Select bits⁽¹⁾
 - 11 = Inverting input of op amp/comparator connects to the CxIN4- pin
 - 10 = Inverting input of op amp/comparator connects to the CxIN3- pin
 - 01 = Inverting input of op amp/comparator connects to the CxIN2- pin
 - 00 = Inverting input of op amp/comparator connects to the CxIN1- pin
- Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.
 - **2:** The op amp and the comparator can be used simultaneously in these devices. The OPAEN bit only enables the op amp while the comparator is still functional.
 - 3: After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the Comparator x Event bit, CEVT (CMxCON<9>), and the Comparator Interrupt Flag, CMPIF (IFS1<2>), must be cleared before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

TABLE 30-22: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{array}{ll} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions			
SY00	Τρυ	Power-up Period	—	400	600	μs				
SY10	Tost	Oscillator Start-up Time	_	1024 Tos C	—	—	Tosc = OSC1 period			
SY11	TPWRT	Power-up Timer Period	—	1	—	ms	Using LPRC parameters indicated in F21a/F21b (see Table 30-20)			
SY12	Twdt	Watchdog Timer Time-out Period	0.8	_	1.2	ms	WDTPRE = 0, WDTPS<3:0> = 0000, using LPRC tolerances indicated in F21a/F21b (see Table 30-20) at +85°C			
			3.2		4.8	ms	WDTPRE = 1, WDTPS<3:0> = 0000, using LPRC tolerances indicated in F21a/F21b (see Table 30-20) at +85°C			
SY13	Tioz	I/O H <u>igh-Im</u> pedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs				
SY20	TMCLR	MCLR Pulse Width (low)	2	—	-	μs				
SY30	TBOR	BOR Pulse Width (low)	1	—	—	ms				
SY35	TFSCM	Fail-Safe Clock Monitor Delay	-	500	900	μs	-40°C to +85°C			
SY36	TVREG	Voltage Regulator Standby-to-Active mode Transition Time	_	_	30	μs				
SY37	TOSCDFRC	FRC Oscillator Start-up Delay	46	48	54	μs				
SY38	Toscolprc	LPRC Oscillator Start-up Delay	—	—	70	μs				

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

TABLE 30-45:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK1 Input Frequency		_	25	MHz	See Note 3	
SP72	TscF	SCK1 Input Fall Time	_			ns	See Parameter DO32 and Note 4	
SP73	TscR	SCK1 Input Rise Time	—			ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDO1 Data Output Fall Time	—			ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDO1 Data Output Rise Time	—		_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	_	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓ Input	120		_	ns		
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	See Note 4	
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	_	_	ns	See Note 4	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 40 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

TABLE 30-46: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽⁴⁾		Min. ⁽¹⁾	Max.	Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 2)	—	μS		
			400 kHz mode	Tcy/2 (BRG + 2)	_	μs		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	—	μS		
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 2)	—	μs		
			400 kHz mode	TCY/2 (BRG + 2)	—	μS		
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)	—	μS	-	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	100	ns		
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250	—	ns		
		Setup Time	400 kHz mode	100	—	ns		
			1 MHz mode ⁽²⁾	40	—	ns		
IM26	THD:DAT	Data Input	100 kHz mode	0	—	μS		
		Hold Time	400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽²⁾	0.2	—	μS		
IM30	TSU:STA	Start Condition	100 kHz mode	TCY/2 (BRG + 2)	—	μS	Only relevant for	
		Setup Time	400 kHz mode	TCY/2 (BRG + 2)	_	μS	Repeated Start	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)	—	μS	condition	
IM31	THD:STA	Start Condition	100 kHz mode	TCY/2 (BRG + 2)	—	μS	After this period, the	
		Hold Time	400 kHz mode	TCY/2 (BRG +2)	_	μS	first clock pulse is	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)	—	μS	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	TCY/2 (BRG + 2)	—	μS		
		Setup Time	400 kHz mode	TCY/2 (BRG + 2)	_	μS		
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)	—	μS		
IM34	THD:STO	Stop Condition	100 kHz mode	TCY/2 (BRG + 2)	—	μS		
		Hold Time	400 kHz mode	TCY/2 (BRG + 2)	_	μS		
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)	—	μS		
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns		
		From Clock	400 kHz mode	—	1000	ns		
			1 MHz mode ⁽²⁾	—	400	ns		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be	
			400 kHz mode	1.3		μS	free before a new	
			1 MHz mode ⁽²⁾	0.5		μS	transmission can start	
IM50	Св	Bus Capacitive L	oading		400	pF		
IM51	TPGD	Pulse Gobbler De	elay	65	390	ns	See Note 3	

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to "Inter-Integrated Circuit™ (I²C[™])" (DS70000195) in the "dsPIC33/PIC24 Family Reference Manual". Please see the Microchip web site for the latest "dsPIC33/PIC24 Family Reference Manual" sections.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

4: These parameters are characterized but not tested in manufacturing.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$								
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions				
ADC Accuracy (12-Bit Mode)											
AD20a	Nr	Resolution	1:	2 data bi	ts	bits					
AD21a	INL	Integral Nonlinearity	-2	—	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V				
AD22a	DNL	Differential Nonlinearity	> -1	-	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V				
AD23a	Gerr	Gain Error	-10	4	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V				
AD24a	EOFF	Offset Error	-10	1.75	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V				
AD25a	—	Monotonicity ⁽²⁾	_			_	Guaranteed				
		Dynamic	c Perforn	nance (1	2-Bit Mo	de)	-				
AD30a	THD	Total Harmonic Distortion	—		-75	dB					
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	_	dB					
AD32a	SFDR	Spurious Free Dynamic Range	80			dB					
AD33a	FNYQ	Input Signal Bandwidth	—		250	kHz					
AD34a	ENOB	Effective Number of Bits	11.09	11.3	_	bits					

TABLE 30-55: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

2: The conversion result never decreases with an increase in the input voltage.

32.0 CHARACTERISTICS FOR INDUSTRIAL/EXTENDED TEMPERATURE DEVICES (-40°C TO +125°C)

33.10 Voltage Output Low (VOL) – Voltage Output High (VOH)

FIGURE 33-26: TYPICAL VOH 8x DRIVER PINS vs. IOH (GENERAL PURPOSE I/Os,

FIGURE 33-29: TYPICAL Vol 4x DRIVER PINS vs. Iol (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

33.11 VREG

33.14 Comparator Op Amp Offset

FIGURE 33-33: TYPICAL COMPARATOR OFFSET vs. Vcm

Revision E (September 2016)

This revision incorporates the following updates:

- Sections:
 - Added new Section 32.0 "Characteristics for Industrial/Extended Temperature Devices (-40°C to +125°C)" and Section 33.0 "Characteristics for High-Temperature Devices (+150°C)".
 - Updated the Qualification and Class B Support section.
 - Updated Section 27.6 "In-Circuit Serial Programming".
 - Updated **Section 34.0** "**Packaging Information**" with the addition of the 28-Lead SSOP package information and new packaging diagram revisions.
 - Updated the "**Product Identification System**" section with the addition of the 28-Lead SSOP package.
- · Figures:
 - Updated Figure 4-6.
- Registers:
 - Updated Register 25-2, Register 25-3, Register 27-1 and Register 27-2.
- Tables:
 - Updated Table 30-7, Table 30-9, Table 30-39, Table 30-40, Table 30-41, Table 30-42, Table 30-43, Table 30-44 and Table 30-45.