

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Decalis	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev128gm102-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-19: NVM REGISTER MAP

									-			-					-	
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0728	WR	WREN	WRERR	NVMSIDL	_	_	RPDF	URERR	_	—	_	_	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000
NVMADR	072A									NVMADR<	15:0>							0000
NVMADRU	072C	_	_	_	_		_	_	_				NVMAD	RU<23:16>				0000
NVMKEY	072E	_	_	_	_		_	_	_				NVMK	EY<7:0>				0000
NVMSRCADRL	0730								NVMSF	RCADR<15:	1>						0	0000
NVMSRCADRH	0732	_	_	_	_		_	_	_				NVMSRC	ADR<23:16>				0000
Lonondy				Desetual	an are chour	a in heaven	d a stress al											

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: SYSTEM CONTROL REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR		_	VREGSF		СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	_	_	OSWEN	Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	PLLPOST1	PLLPOST0	_	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0	0000
PLLFBD	0746	-	—		—	_	_	—				PL	LDIV<8:0>					0000
OSCTUN	0748	-	—		—	_	_	—		_	_			TUN	<5:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the Configuration fuses.

TABLE 4-21: REFERENCE CLOCK REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
REFOCON	074E	ROON	-	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_	_	_	_	_	—	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-33: PORTA REGISTER MAP FOR dsPIC33EVXXXGMX02 DEVICES

																		· · · · · · · · · · · · · · · · · · ·
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	—	_	—	—	—	—	_	_	_	_		-	TRISA<4:0>	>		DF9F
PORTA	0E02	_	_	_	_	_	_	_	_	_	_	_			RA<4:0>			0000
LATA	0E04	_	_	_	_	_	_	_	_	_	_	_			LATA<4:0>			0000
ODCA	0E06	_	_	_	_	_	_	_	_	_	_	_		(ODCA<4:0>	>		0000
CNENA	0E08	_	_	_	_	_	_	_	_	_	_	_		(CNIEA<4:0	>		0000
CNPUA	0E0A	_	_	_	_	_	_	_	_	_	_	_		C	NPUA<4:0	>		0000
CNPDA	0E0C	_	_	_	_	_	_	_	_	_	_	_		C	NPDA<4:0	>		0000
ANSELA	0E0E	_	_	_	_	_	_	_	_	_	_	_	ANSA4	_	1	ANSA<2:0>		1813
SR1A	0E10	_	—	_	_	_	_	_	_	—	_	_	SR1A4	_	—	—	—	0000
SR0A	0E12	_	_	_	—	—	-	—		_	_		SR0A4	_	_	-	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-34: PORTB REGISTER MAP FOR dsPIC33EVXXXGMX06 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E14								TRISB<15	:0>								FFFF
PORTB	0E16								RB<15:0	>								xxxx
LATB	0E18								LATB<15:	0>								xxxx
ODCB	0E1A		ODCB<15:0> 0.0							0000								
CNENB	0E1C								CNIEB<15	:0>								0000
CNPUB	0E1E								CNPUB<15	5:0>								0000
CNPDB	0E20								CNPDB<15	5:0>								0000
ANSELB	0E22		ANSB<9:7> ANSB<3:0> 03							038F								
SR1B	0E24		_	_	_				SR1B<9:7>		_		SR1B4	—	_	—		0000
SR0B	0E26	_	—	_	_	_	_	:	SR0B<9:7>		_	_	SR0B4	_	-	_	_	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	_	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R-0, HS, SC	R-0, HS, SC
—	—	—		—		ECCDBE ⁽¹⁾	SGHT
bit 7							bit 0
Legend:		HS = Hardwar	e Settable bit	SC = Softwa	re Clearable bi	t	
R = Readable b	bit	W = Writable b	bit	U = Unimplei	mented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

bit 15-2	Unimplemented: Read as '0'
bit 1	ECCDBE: ECC Double-Bit Error Trap bit ⁽¹⁾
	1 = ECC double-bit error trap has occurred0 = ECC double-bit error trap has not occurred
bit 0	SGHT: Software-Generated Hard Trap Status bit
	1 = Software-generated hard trap has occurred0 = Software-generated hard trap has not occurred

Note 1: ECC double-bit error causes a generic hard trap.

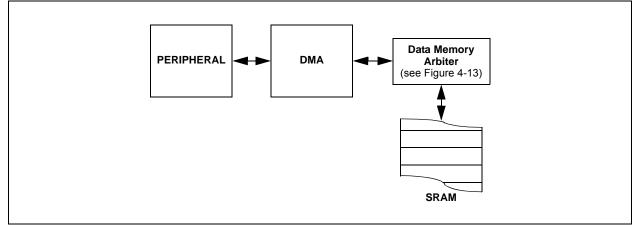
U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
_	_		—		ILR3	ILR2	ILR1
bit 15				· · · · · · · · · · · · · · · · · · ·			bit
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	• • 0001 = CPU	Interrupt Priorit Interrupt Priorit Interrupt Priorit	y Level is 1				
bit 7-0	111111111 = 2 00001001 = 9 00001000 = 2 00000111 = 1 00000101 = 2 00000101 = 2 00000010 = 2 00000010 = 2 00000010 = 2 00000010 = 2	 Vector Nun Reserved Input Captur External Inter External Inter Reserved; d Generic soft DMAC error Math error tr Stack error t Generic hard Address error Oscillator fai 	; do not use er 1 (IC1) errupt 0 (INT0) o not use error trap trap ap rap d trap or trap	ig Interrupt bits			

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Direct Memory Access (DMA)" (DS70348) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The DMA Controller transfers data between Peripheral Data registers and Data Space SRAM. For the simplified DMA block diagram, refer to Figure 8-1.


In addition, DMA can access the entire data memory space. The data memory bus arbiter is utilized when either the CPU or DMA attempts to access SRAM, resulting in potential DMA or CPU stalls.

The DMA Controller supports 4 independent channels. Each channel can be configured for transfers to or from selected peripherals. The peripherals supported by the DMA Controller include:

- CAN
- Analog-to-Digital Converter (ADC)
- Serial Peripheral Interface (SPI)
- UART
- Input Capture
- Output Compare

Refer to Table 8-1 for a complete list of supported peripherals.

FIGURE 8-1: PERIPHERAL TO DMA CONTROLLER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SYNC	I1R<7:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_		_	—
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-8	(see Table 1 10110101 = 00000001 =	:0>: Assign PW 1-2 for input pin Input tied to RF Input tied to CM Input tied to Vs	selection nur PI181 MP1		o the Correspor	nding RPn Pin b	bits

REGISTER 11-13: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37

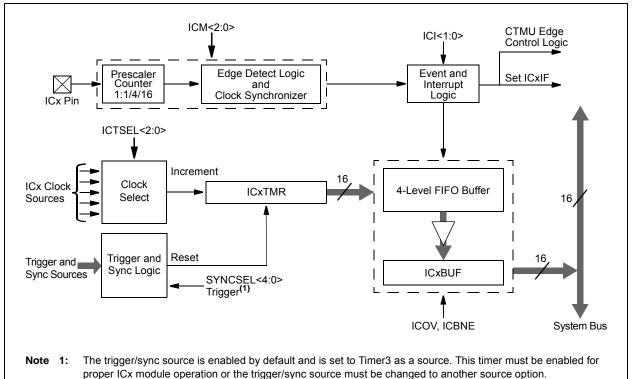
bit 7-0 Unimplemented: Read as '0'

REGISTER 11-14: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DTCM	P1R<7:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_	_				—
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
R = Readabl -n = Value at		W = Writable '1' = Bit is set		U = Unimpler '0' = Bit is cle		l as '0' x = Bit is unkr	nown
	DTCMP1R< (see Table 1 10110101 =	'1' = Bit is set 7:0>: Assign PV 1-2 for input pin Input tied to RF	VM Dead-Tirr selection nur PI181	'0' = Bit is cle	ared	x = Bit is unkr	-
-n = Value at	DTCMP1R< (see Table 1 10110101 = 00000001 =	'1' = Bit is set 7:0>: Assign PV 1-2 for input pin	WM Dead-Tirr selection nur PI181 MP1	'0' = Bit is cle	ared	x = Bit is unkr	-

bit 7-0 Unimplemented: Read as '0'

15.0 INPUT CAPTURE


- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Input Capture" (DS70000352) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33EVXXXGM00X/10X family devices support 4 input capture channels.

Key features of the input capture module include:

- Hardware-Configurable for 32-Bit Operation in All Modes by Cascading Two Adjacent modules
- Synchronous and Trigger Modes of Output Compare Operation, with up to 31 User-Selectable Trigger/Sync Sources Available
- A 4-Level FIFO Buffer for Capturing and Holding Timer Values for Several Events
- Configurable Interrupt Generation
- Up to Six Clock Sources Available for Each Module, Driving a Separate Internal 16-Bit Counter

Figure 15-1 shows a block diagram of the Input capture module.

FIGURE 15-1: INPUT CAPTURE x MODULE BLOCK DIAGRAM

REGISTER 15-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0	SYNCSEL<4:0>: Input Source Select for Synchronization and Trigger Operation bits ⁽⁴⁾
	11111 = Reserved
	11110 = Reserved
	1110 = Reserved
	11100 = CTMU trigger is the source for the capture timer synchronization
	11011 = ADC1 interrupt is the source for the capture timer synchronization ⁽⁵⁾
	11010 = Analog Comparator 3 is the source for the capture timer synchronization ⁽⁵⁾
	11001 = Analog Comparator 2 is the source for the capture timer synchronization ⁽⁵⁾
	11000 = Analog Comparator 1 is the source for the capture timer synchronization ⁽⁵⁾
	10111 = Analog Comparator 5 is the source for the capture timer synchronization ⁽⁵⁾
	10110 = Analog Comparator 4 is the source for the capture timer synchronization ⁽⁵⁾
	10101 = Reserved
	10100 = Reserved
	10011 = Input Capture 4 interrupt is the source for the capture timer synchronization
	10010 = Input Capture 3 interrupt is the source for the capture timer synchronization
	10001 = Input Capture 2 interrupt is the source for the capture timer synchronization
	10000 = Input Capture 1 interrupt is the source for the capture timer synchronization
	01111 = GP Timer5 is the source for the capture timer synchronization
	01110 = GP Timer4 is the source for the capture timer synchronization
	01101 = GP Timer3 is the source for the capture timer synchronization
	01100 = GP Timer2 is the source for the capture timer synchronization
	01011 = GP Timer1 is the source for the capture timer synchronization
	01010 = Reserved
	01001 = Reserved
	01000 = Input Capture 4 is the source for the capture timer synchronization ⁽⁶⁾
	00111 = Input Capture 3 is the source for the capture timer synchronization ⁽⁶⁾
	00110 = Input Capture 2 is the source for the capture timer synchronization ⁽⁶⁾
	00101 = Input Capture 1 is the source for the capture timer synchronization ⁽⁶⁾ 00100 = Output Compare 4 is the source for the capture timer synchronization
	00011 = Output Compare 3 is the source for the capture timer synchronization
	00011 – Output Compare 3 is the source for the capture timer synchronization
	00001 = Output Compare 1 is the source for the capture timer synchronization
	00000 = Reserved
Note 1:	The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.

- **Note 1:** The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by the SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own sync or trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - 6: When the source ICx timer rolls over, then in the next clock cycle, trigger or synchronization occurs.

REGISTER 16-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits
 - 111 = Center-Aligned PWM mode: Output sets high when OCxTMR = OCxR and sets low when OCxTMR = OCxRS⁽¹⁾
 - 110 = Edge-Aligned PWM mode: Output sets high when OCxTMR = 0 and sets low when OCxTMR = $OCxR^{(1)}$
 - 101 = Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare mode: Compare event with OCxR, continuously toggles OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

REGISTER 16-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits 11111 = OCxRS compare event is used for synchronization 11110 = INT2 is the source for compare timer synchronization 11101 = INT1 is the source for compare timer synchronization 11100 = CTMU Trigger is the source for compare timer synchronization 11011 = ADC1 interrupt is the source for compare timer synchronization 11010 = Analog Comparator 3 is the source for compare timer synchronization 11001 = Analog Comparator 2 is the source for compare timer synchronization 11000 = Analog Comparator 1 is the source for compare timer synchronization 10111 = Analog Comparator 5 is the source for compare timer synchronization 10110 = Analog Comparator 4 is the source for compare timer synchronization 10101 = Capture timer is unsynchronized 10100 = Capture timer is unsynchronized 10011 = Input Capture 4 interrupt is the source for compare timer synchronization 10010 = Input Capture 3 interrupt is the source for compare timer synchronization 10001 = Input Capture 2 interrupt is the source for compare timer synchronization 10000 = Input Capture 1 interrupt is the source for compare timer synchronization 01111 = GP Timer5 is the source for compare timer synchronization 01110 = GP Timer4 is the source for compare timer synchronization 01101 = GP Timer3 is the source for compare timer synchronization 01100 = GP Timer2 is the source for compare timer synchronization 01011 = GP Timer1 is the source for compare timer synchronization 01010 = Compare timer is unsynchronized 01001 = Compare timer is unsynchronized 01000 = Capture timer is unsynchronized 00101 = Compare timer is unsynchronized 00100 = Output Compare 4 is the source for compare timer synchronization^(1,2) 00011 = Output Compare 3 is the source for compare timer synchronization^(1,2) 00010 = Output Compare 2 is the source for compare timer synchronization^(1,2) 00001 = Output Compare 1 is the source for compare timer synchronization^(1,2)
 - 00000 = Compare timer is unsynchronized
- **Note 1:** Do not use the OCx module as its own synchronization or trigger source.
 - 2: When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.

REGISTER 17-3: PTPER: PWMx PRIMARY MASTER TIME BASE PERIOD REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PTPE	R<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			PTPE	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown

bit 15-0 **PTPER<15:0>:** Primary Master Time Base (PMTMR) Period Value bits

REGISTER 17-4: SEVTCMP: PWMx PRIMARY SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		SEVTC	MP<15:8>				
						bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		SEVTO	CMP<7:0>				
						bit 0	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
	R/W-0	R/W-0 R/W-0 it W = Writable bi	SEVTC R/W-0 R/W-0 SEVTC	SEVTCMP<15:8> R/W-0 R/W-0 R/W-0 SEVTCMP<7:0> SEVTCMP<7:0>	SEVTCMP<15:8> R/W-0 R/W-0 R/W-0 SEVTCMP<7:0> SEVTCMP<7:0>	SEVTCMP<15:8> R/W-0 R/W-0 R/W-0 R/W-0 SEVTCMP<7:0> Image: Several content of the second content of th	

bit 15-0 SEVTCMP<15:0>: Special Event Compare Count Value bits

dsPIC33EVXXXGM00X/10X FAMILY

REGISTER 17-12: TRGCONX: PWMx TRIGGER CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	—	—	—	—	
bit 15 bit 8								

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	— TRGSTRT5 ⁽¹⁾ TRGSTRT4 ⁽¹⁾ TRG		TRGSTRT3 ⁽¹⁾	TRGSTRT2 ⁽¹⁾	TRGSTRT1 ⁽¹⁾	TRGSTRT0 ⁽¹⁾	
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-12 TRGDIV<3:0>: Trigger Output Divider bits

- 1111 = Triggers output for every 16th trigger event
- 1110 = Triggers output for every 15th trigger event
- 1101 = Triggers output for every 14th trigger event
- 1100 = Triggers output for every 13th trigger event
- 1011 = Triggers output for every 12th trigger event
- 1010 = Triggers output for every 11th trigger event
- 1001 = Triggers output for every 10th trigger event
- 1000 = Triggers output for every 9th trigger event
 - 0111 = Triggers output for every 8th trigger event
 - 0110 = Triggers output for every 7th trigger event
 - 0101 = Triggers output for every 6th trigger event
 - 0100 = Triggers output for every 5th trigger event 0011 = Triggers output for every 4th trigger event
 - 0010 = Triggers output for every 3rd trigger event
 - 0001 = Triggers output for every 2nd trigger event
- 0000 = Triggers output for every trigger event
- bit 11-6 **Unimplemented:** Read as '0'

bit 5-0 TRGSTRT<5:0>: Trigger Postscaler Start Enable Select bits⁽¹⁾

111111 = Waits 63 PWM cycles before generating the first trigger event after the module is enabled

- •
- •

000010 = Waits 2 PWM cycles before generating the first trigger event after the module is enabled 000001 = Waits 1 PWM cycle before generating the first trigger event after the module is enabled 000000 = Waits 0 PWM cycles before generating the first trigger event after the module is enabled

Note 1: The secondary PWM generator cannot generate PWMx trigger interrupts.

REGISTER 17-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 7-3	FLTSRC<4:0>: Fault Control Signal Source Select for PWM Generator x bits 11111 = Fault 32 (default) 11110 = Reserved
	•
	•
	•
	01100 = Op Amp/Comparator 5 01011 = Comparator 4 01010 = Op Amp/Comparator 3 01001 = Op Amp/Comparator 2 01000 = Op Amp/Comparator 1 00111 = Fault 8 00110 = Fault 7 00101 = Fault 7 00101 = Fault 6 00100 = Fault 5 00011 = Fault 4 00010 = Fault 3 00001 = Fault 2 00000 = Fault 1
bit 2	FLTPOL: Fault Polarity for PWM Generator x bit ⁽²⁾
	 1 = The selected Fault source is active-low 0 = The selected Fault source is active-high
bit 1-0	FLTMOD<1:0>: Fault Mode for PWM Generator x bits
	 11 = Fault input is disabled 10 = Reserved 01 = The selected Fault source forces the PWMxH, PWMxL pins to FLTDAT<1:0> values (cycle) 00 = The selected Fault source forces the PWMxH, PWMxL pins to FLTDAT<1:0> values (latched condition)

- **Note 1:** If the PWMLOCK Configuration bit (FDEVOPT<0>) is a '1', the FCLCONx register can only be written after the unlock sequence has been executed.
 - 2: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

18.2 SPI Control Registers

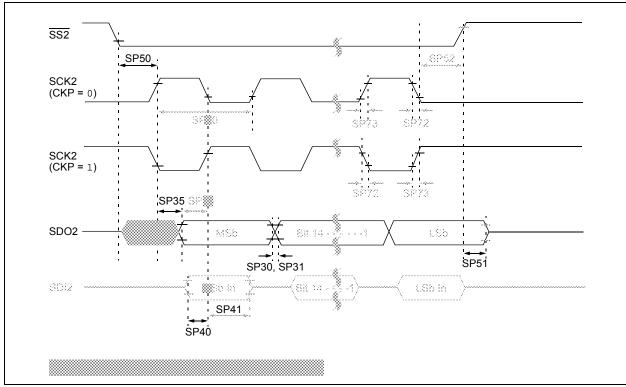
REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
SPIEN	_	SPISIDL		_	SPIBEC2	SPIBEC1	SPIBEC0		
bit 15							bit 8		
R/W-0	R/C-0, HS	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HS, HC	R-0, HS, HC		
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF		
bit 7							bit C		
Legend:		HC = Hardware	e Clearable bit		are Settable b				
R = Readable		W = Writable b	pit	U = Unimple	mented bit, re	ead as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	C = Clearable	e bit		
bit 15	SPIEN: SPIX	Enable bit							
bit 10		he SPIx module	and configure	s SCKx SDO	c SDIx and \overline{S}	<u>Sx</u> as serial po	rt pins		
		the SPIx module	•				it pino		
bit 14	Unimplemen	ted: Read as '0	,						
bit 13	SPISIDL: SP	Ix Stop in Idle M	ode bit						
		ues the SPIx most the SPIx modu			vice enters Idl	e mode			
bit 12-11		ted: Read as '0	-						
bit 10-8	SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode)								
	Master mode: Number of SPIx transfers are pending.								
	Slave mode:	Plx transfers are							
bit 7	SRMPT: SPIx Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode)								
	1 = The SPIx	Shift register is Shift register is	empty and rea	•		-			
bit 6		x Receive Over							
	1 = A new b previous	yte/word is com data in the SPI	pletely receive BUF register	ed and discard	led; the user	application ha	s not read the		
L:4 F		has not occurre		lid in Enhance		-)			
bit 5	SRXMPT: SPIx Receive FIFO Empty bit (valid in Enhanced Buffer mode) 1 = RX FIFO is empty								
	1 = RX FIFO 0 = RX FIFO								
bit 4-2		SPIx Buffer Inte	errupt Mode bit	s (valid in Enh	anced Buffer	mode)			
		pt when the SP	-			/			
		pt when the las							
	100 = Interru	pt when the las							
		ry location pt when the SP	ly receive buffe	er is full (SPIRI	RF hit is set)				
		pt when the SP							
	001 = Interru	pt when data is	available in the	e SPIx receive	buffer (SRM				
	 001 = Interrupt when data is available in the SPIx receive buffer (SRMPT bit is set) 000 = Interrupt when the last data in the SPIx receive buffer is read, and as a result, the buffer is empty (SRXMPT bit is set) 								

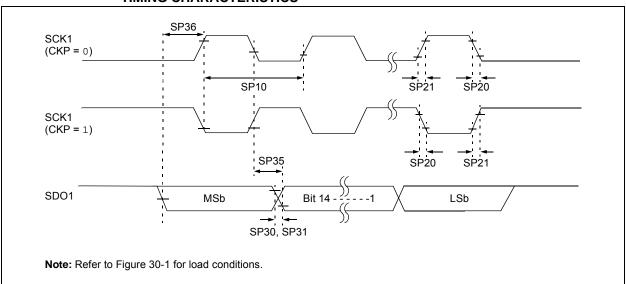
Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
8	BSW	BSW.C Ws,Wb		Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	4	SFA
		CALL	Wn	Call indirect subroutine	1	4	SFA
		CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA, SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	$f = \overline{f}$	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - C)$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
22	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
23	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
24	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
					-	,	

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

30.0 ELECTRICAL CHARACTERISTICS


This section provides an overview of dsPIC33EVXXXGM00X/10X family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EVXXXGM00X/10X family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

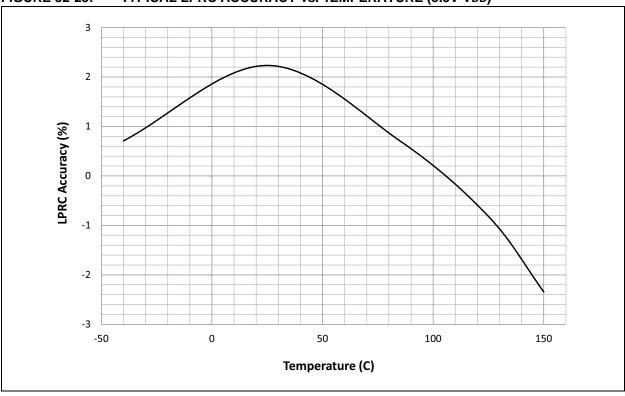

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +6.0V
Voltage on VCAP with respect to Vss	1.62V to 1.98V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	
Maximum current sunk by any I/O pin	
Maximum current sourced by I/O pin	
Maximum current sourced/sunk by all ports ⁽²⁾	200 mA

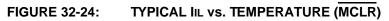
- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).

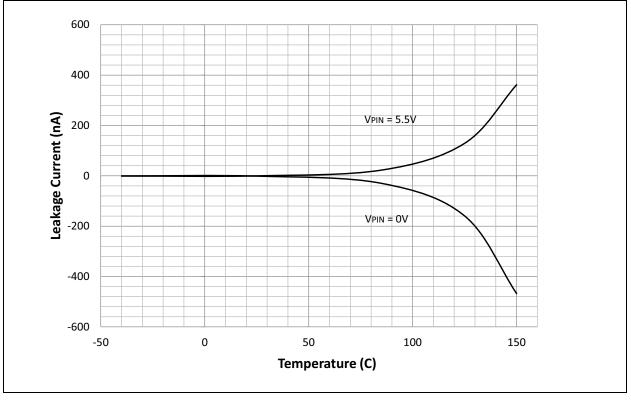
FIGURE 30-18: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

FIGURE 30-21: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

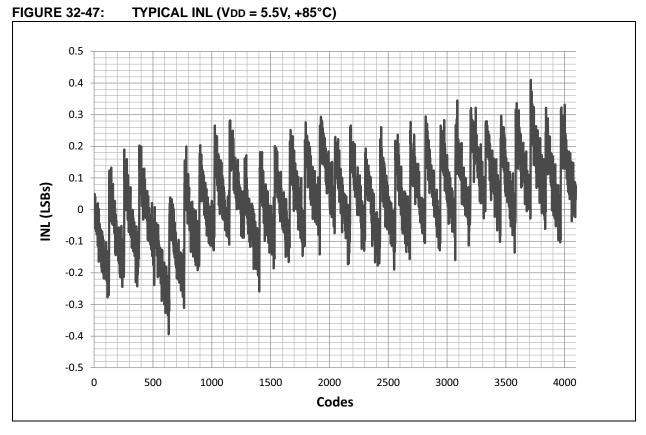

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	am. Symbol Characteristic ⁽¹⁾ Min. Typ. ⁽²⁾ Max. Units						Conditions	
SP10	FscP	Maximum SCK1 Frequency	—	_	25	MHz	See Note 3	
SP20	TscF	SCK1 Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4	
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDO1 Data Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	_	6	20	ns		
SP36	TdiV2scH, TdiV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	—	—	ns		

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.


- **3:** The minimum clock period for SCK1 is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI1 pins.

dsPIC33EVXXXGM00X/10X FAMILY



32.7 Leakage Current

dsPIC33EVXXXGM00X/10X FAMILY

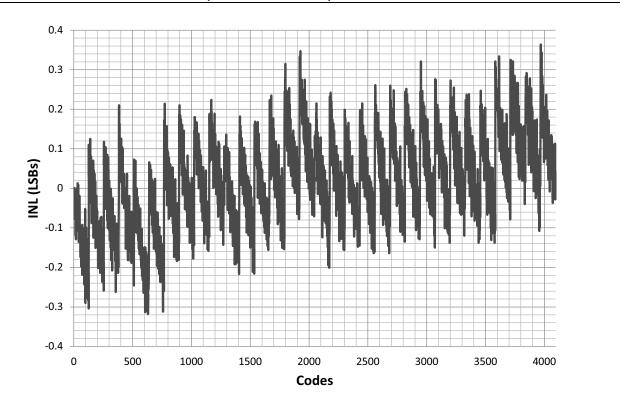


FIGURE 32-48: TYPICAL INL (VDD = 5.5V, +125°C)