

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·>>F

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev128gm102-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2)
	<pre>111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)</pre>
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop is in progress 0 = REPEAT loop is not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = Overflow has not occurred for signed arithmetic
bit 1	Z: MCU ALU Zero bit
	 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	 1 = A carry-out from the Most Significant bit (MSb) of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1.	The IPI <2:0> hits are concatenated with the IPI 3 hit (CORCON<3>) to form the CPI I Interrupt Priority

- **Note 1:** The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL3 = 1. User interrupts are disabled when IPL3 = 1.
 - 2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
 - **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using the bit operations.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT ⁽¹⁾	DL2	DL1	DL0
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0
Legend:		C = Clearable	e bit				
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	VAR: Variable	e Exception Pro	ocessing Later	ncy Control bit			
	1 = Variable e	exception proce	essing latency	is enabled			
	0 = Fixed exc	eption process	sing latency is	enabled			
bit 14	Unimplemen	ted: Read as '	0'				
bit 13-12	US<1:0>: DSP Multiply Unsigned/Signed Control bits						
	11 = Reserve	d		-			
	10 = DSP eng 01 = DSP eng	gine multiplies	are unsigned				
	00 = DSP engine multiplies are signed						
bit 11	EDT: Early DO	Loop Termina	ation Control b	it(1)			
	1 = Terminate 0 = No effect	s executing th	e ⊃⊙ loop at th	ne end of the c	urrent loop itera	ation	
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	its			
	111 = 7 DO lo	ops are active					
	•						
	•						
	001 = 1 DO lo	op is active					
	000 = 0 DO lo	ops are active					
bit 7	SATA: ACCA	Saturation En	able bit				
	1 = Accumula	tor A saturatio	n is enabled				
	0 = Accumula	itor A saturatio	n is disabled				
bit 6	SATB: ACCB	Saturation En	able bit				
	1 = Accumula	itor B saturatio	n is enabled				
bit 5	bit 5 SATDW: Data Space Write from DSD Engine Seturation Enable bit						
DIC O	1 = Data Space	ce write satura	tion is enabled				
	0 = Data Space	ce write satura	tion is disable	d			
bit 4	ACCSAT: Acc	cumulator Satu	ration Mode S	Select bit			
	1 = 9.31 satur	ration (super s	aturation)				
	0 = 1.31 satur	ration (normal	saturation)				
Note 1:	This bit is always r	ead as '0'.					

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

TABLE 4-24: OUTPUT COMPARE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0		_	ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0904							Ou	tput Cor	npare 1 Se	econdary Re	gister						xxxx
OC1R	0906								Outp	ut Compare	e 1 Register							xxxx
OC1TMR	0908							Out	put Con	npare 1 Tin	ner Value Re	gister						xxxx
OC2CON1	090A	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	_	ENFLTA	—	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	090E		Output Compare 2 Secondary Register xxxx							xxxx								
OC2R	0910		Output Compare 2 Register xxxx							xxxx								
OC2TMR	0912							Out	put Com	npare 2 Tin	ner Value Re	gister						xxxx
OC3CON1	0914	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_		ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	0918							Ou	tput Cor	npare 3 Se	econdary Re	gister						xxxx
OC3R	091A								Outp	ut Compare	e 3 Register							xxxx
OC3TMR	091C							Out	put Com	npare 3 Tin	ner Value Re	gister						xxxx
OC4CON1	091E	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	Ι	ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC4RS	0922							Ou	tput Cor	npare 4 Se	econdary Re	gister						xxxx
OC4R	0924								Outp	ut Compare	e 4 Register							xxxx
OC4TMR	0926							Out	put Con	npare 4 Tin	ner Value Re	gister						xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Allocating different Page registers for read and write access allows the architecture to support data movement between different pages in the data memory. This is accomplished by setting the DSRPAG register value to the page from which you want to read, and configure the DSWPAG register to the page to which it needs to be written. Data can also be moved from different PSV to EDS pages by configuring the DSRPAG and DSWPAG registers to address PSV and EDS space, respectively. The data can be moved between pages by a single instruction.

When an EDS or PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the EDS or PSV pages can occur at the page boundaries when:

- The initial address, prior to modification, addresses an EDS or a PSV page.
- The EA calculation uses Pre- or Post-Modified Register Indirect Addressing. However, this does not include Register Offset Addressing.

In general, when an overflow is detected, the DSxPAG register is incremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. When an underflow is detected, the DSxPAG register is decremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. This creates a linear EDS and PSV address space, but only when using the Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0, EDS and PSV spaces. Table 4-43 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when an overflow or underflow occurs, the EA<15> bit is set and the DSxPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- · Register Indirect with Register Offset Addressing
- Modulo Addressing
- · Bit-Reversed Addressing

TABLE 4-43:OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS AND
PSV SPACE BOUNDARIES^(2,3,4)

0/11			Before		After			
0/0, R/W	Operation	DSxPAG	DS EA<15>	Page Description	DSxPAG	DS EA<15>	Page Description	
O, Read		DSRPAG = 0x1FF	1	EDS: Last Page	DSRPAG = 0x1FF	0	See Note 1	
O, Read	[++Wn]	DSRPAG = 0x2FF	1	PSV: Last Isw Page	DSRPAG = 0x300	1	PSV: First MSB Page	
O, Read	[Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB Page	DSRPAG = 0x3FF	0	See Note 1	
O, Write		DSWPAG = 0x1FF	1	EDS: Last Page	DSWPAG = 0x1FF	0	See Note 1	
U, Read	r 1	DSRPAG = 0x001	1	PSV Page	DSRPAG = 0x001	0	See Note 1	
U, Read	[Wn] Or [Wn]	DSRPAG = 0x200	1	PSV: First Isw Page	DSRPAG = 0x200	0	See Note 1	
U, Read	[111]	DSRPAG = 0x300	1	PSV: First MSB Page	DSRPAG = 0x2FF	1	PSV: Last lsw Page	

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the Base Data Space (0x0000-0x8000).

2: An EDS access with DSxPAG = 0x000 will generate an address error trap.

3: Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate an address error trap.

4: Pseudolinear Addressing is not supported for large offsets.

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, port pins can also be individually configured for either digital or open-drain outputs. This is controlled by the Open-Drain Control x register (ODCx) associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs other than VDD by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin.

See Table 30-10 in **Section 30.0 "Electrical Characteristics**" for the maximum VIH specification of each pin.

11.2 Configuring Analog and Digital Port Pins

The ANSELx registers control the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as timers, UARTs, etc., the corresponding ANSELx bits must be cleared.

The ANSELx register has a default value of 0xFFFF. Therefore, all pins that share analog functions are analog (not digital) by default.

Pins with analog functions affected by the ANSELx registers are listed with a buffer type of analog in the Pinout I/O Descriptions table (see Table 1-1 in **Section 1.0 "Device Overview"**).

If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or comparator module.

When the PORTx register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP, as shown in Example 11-1.

11.3 Input Change Notification (ICN)

The Input Change Notification function (ICN) of the I/O ports allows devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States, even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State.

Three control registers are associated with the ICN functionality of each I/O port. The CNENx registers contain the ICN interrupt enable control bits for each of the input pins. Setting any of these bits enables an ICN interrupt for the corresponding pins.

Each I/O pin also has a weak pull-up and a weak pulldown connected to it. The pull-ups and pull-downs act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note: The pull-ups and pull-downs on ICN pins should always be disabled when the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

4			
	MOV	0xFF00, W0	; Configure PORTB<15:8>
			; as inputs
	MOV	W0, TRISB	; and PORTB<7:0>
			; as outputs
	NOP		; Delay 1 cycle
	BTSS	PORTB, #13	; Next Instruction

11.8 Peripheral Pin Select Registers

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INT1F	<7:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 7		•					bit 0

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	i as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
		_	—		—	—	_	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			INT2F	R<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-8	Unimplemen	ted: Read as '	o'					
bit 7-0	INT2R<7:0>: (see Table 11-	Assign Externa -2 for input pin	al Interrupt 2 (selection num	INT2) to the C bers)	orresponding RI	Pn Pin bits		
	10110101 =	Input tied to RF	PI181					
	•							
	•							
	00000001 = 00000000 =	Input tied to CM Input tied to Vs	ИР1 s					

REGISTER 11-15: RPINR39: PERIPHERAL PIN SELECT INPUT REGISTER 39

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| DTCMP3R7 | DTCMP3R6 | DTCMP3R5 | DTCMP3R4 | DTCMP3R3 | DTCMP3R2 | DTCMP3R1 | DTCMP3R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| DTCMP2R7 | DTCMP2R6 | DTCMP2R5 | DTCMP2R4 | DTCMP2R3 | DTCMP2R2 | DTCMP2R1 | DTCMP2R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	DTCMP3R<7:0>: Assign PWM Dead-Time Compensation Input 3 to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	10110101 = Input tied to RPI181
	•
	•
	00000001 = Input tied to CMP1
	00000000 = Input tied to Vss
bit 7-0	DTCMP2R<7:0>: Assign PWM Dead-Time Compensation Input 2 to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	10110101 = Input tied to RPI181
	•
	•
	•
	00000001 = Input tied to CMP1
	0000000 = Input tied to Vss

REGISTER 14-11: DMTHOLDREG: DMT HOLD REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			UPRO	CNT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			UPR	CNT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is u			x = Bit is unkr	nown			

bit 15-0 UPRCNT<15:0>: Value of the DMTCNTH register when DMTCNTL and DMTCNTH were Last Read bits

Note 1: The DMTHOLDREG register is initialized to '0' on Reset, and is only loaded when the DMTCNTL and DMTCNTH registers are read.

REGISTER 17-1: PTCON: PWMx TIME BASE CONTROL REGISTER (CONTINUED)

bit 6-4	SYNCSRC<2:0>: Synchronous Source Selection bits ⁽¹⁾						
	111 = Reserved						
	•						
	•						
	•						
	100 = Reserved						
	011 = Reserved						
	010 = Reserved						
	001 = Reserved						
	000 = SYNCI1 input from PPS						
bit 3-0	SEVTPS<3:0>: Special Event Trigger Output Postscaler Select bits ⁽¹⁾						
	1111 = 1:16 postscaler generates a Special Event Trigger on every sixteenth compare match event						
	•						
	•						
	•						
	0001 = 1:2 postscaler generates a Special Event Trigger on every second compare match event						
	0000 = 1:1 postscaler generates a Special Event Trigger on every compare match event						

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

REGISTER 17-2: PTCON2: PWMx PRIMARY MASTER CLOCK DIVIDER SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	_	_	_	—	—
						bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	_	_	_	F	PCLKDIV<2:0>(1)
						bit 0
	U-0 —	U-0 U-0 — — —	U-0 U-0 U-0 — — — —	U-0 U-0 U-0 U-0 — — — — —	U-0 U-0 U-0 U-0 R/W-0 — — — — — —	U-0 U-0 U-0 U-0 R/W-0 R/W-0 PCLKDIV<2:0>(1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 PCLKDIV<2:0>: PWMx Input Clock Prescaler (Divider) Select bits⁽¹⁾

- 111 = Reserved
- 110 = Divide-by-64
- 101 = Divide-by-32
- 100 = Divide-by-16
- 011 = Divide-by-8
- 010 = Divide-by-4
- 001 = Divide-by-2

000 = Divide-by-1, maximum PWMx timing resolution (power-on default)

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 17-13: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾ (CONTINUED)

- bit 1
 SWAP: SWAP PWMxH and PWMxL Pins bit

 1 = PWMxH output signal is connected to the PWMxL pin; PWMxL output signal is connected to the PWMxH pin

 0 = PWMxH and PWMxL pins are mapped to their respective pins

 bit 0
 OSYNC: Output Override Synchronization bit

 1 = Output overrides through the OVRDAT<1:0> bits are synchronized to the PWMx time base

 0 = Output overrides through the OVRDAT<1:0> bits occur on the next CPU clock boundary
- Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1).
 - 2: If the PWMLOCK Configuration bit (FDEVOPT<0>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

REGISTER 17-14: TRIGx: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	ИР<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimplei	mented bit, read	i as '0'	

bit 15-0 **TRGCMP<15:0>:** Trigger Control Value bits

'1' = Bit is set

When the primary PWMx functions in the local time base, this register contains the compare values that can trigger the ADC module.

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SSEN ⁽²) СКР	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾		
bit 7							bit 0		
Legend:									
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	IOWN		
			- 1						
DIT 15-13	Unimplemen	ted: Read as							
DIT 12	DISSCK: DIS	able SCKX Pin	DIT (SPI Maste	tions as I/O)				
	0 = Internal S	PI clock is usa	bled, pin func	10115 85 1/0					
bit 11	DISSDO: Dis	able SDOx Pin	bit						
	1 = SDOx pin	is not used by	the module; p	oin functions a	s I/O				
	0 = SDOx pin	is controlled b	y the module						
bit 10	MODE16: Wo	ord/Byte Comm	unication Sele	ect bit					
	1 = Communi	ication is word-	wide (16 bits)						
hit 0		ata Input Sam	vide (o bits)						
DIL 9	Master mode	ata input Sainp	ne Fliase bil						
	1 = Input data	<u>.</u> a is sampled at	the end of dat	ta output time					
	0 = Input data	a is sampled at	the middle of	data output tin	ne				
	Slave mode:			n Clava mada					
hit Q		dao Soloct bit	3PIX IS USED I 1)	n Slave mode.					
DILO	1 = Serial out	nut data chanc	, les on transitio	on from active	clock state to Id	le clock state (r	efer to hit 6)		
	0 = Serial out	put data chang	es on transitio	on from Idle clo	ock state to activ	/e clock state (r	efer to bit 6)		
bit 7	SSEN: Slave	Select Enable	bit (Slave mod	de) ⁽²⁾					
	$1 = \overline{SSx}$ pin is	s used for Slave	e mode						
	0 = SSx pin is	s not used by th	ne module; pin	is controlled I	by port function				
bit 6	bit 6 CKP: Clock Polarity Select bit								
	 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level 								
bit 5	it 5 MSTEN: Master Mode Enable bit								
	1 = Master m	ode							
	0 = Slave mo	de							
Note 1:	The CKE bit is not	used in Frame	d SPI modes	Program this	bit to '0' for Fran	ned SPI modes	3		
	(FRMEN = 1).			ogiani uno			-		
2:	This bit must be cl	eared when FF	RMEN = 1.						
0-	Do not oot both and	manuel a			a af 1.1				

REGISTER 18-2: SPIxCON1: SPIx CONTROL REGISTER 1

3: Do not set both primary and secondary prescalers to the value of 1:1.

21.1 UART Helpful Tips

- In multi-node direct connect UART networks, UART receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the Idle state, the default of which is logic high (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a Start bit detection and will cause the first byte received, after the device has been initialized, to be invalid. To avoid this situation, the user should use a pullup or pull-down resistor on the RX pin, depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.

2. The first character received on wake-up from Sleep mode, caused by activity on the UxRX pin of the UART module, will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock, relative to the incoming UxRX bit timing, is no longer synchronized, resulting in the first character being invalid. This is to be expected.

REGISTER 22-22: CxRXFUL1: CANx RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFL	IL<15:8>			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	JL<7:0>			
bit 7							bit 0
Legend:		C = Writable I	bit, but only '()' can be writter	to clear the b	bit	
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown	

bit 15-0 RXFUL<15:0>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 22-23: CxRXFUL2: CANx RECEIVE BUFFER FULL REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFUI	_<31:24>			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFUI	_<23:16>			
bit 7							bit 0
Legend:		C = Writable I	bit, but only 'C)' can be writter	to clear the b	it	
R = Readable bit W = Writable bit U = Unimplemented bit, read				id as '0'			
-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown						nown	

bit 15-0 RXFUL<31:16>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

23.1 CTMU Control Registers

REGISTER 23-1: CTMUCON1: CTMU CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CTMUE	N —	CTMUSIDL	TGEN ⁽²⁾	EDGEN	EDGSEQEN	IDISSEN ⁽¹⁾	CTTRIG				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
			_	_							
bit 7	bit 7 bit 0										
Legend:											
R = Reada	able bit	W = Writable t	bit	U = Unimpler	nented bit, read	as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15		CTMUL Enchla bit									
DIL 15											
	0 = Module	e is disabled									
bit 14	Unimpleme	ented: Read as '0	,								
bit 13	CTMUSIDL	: CTMU Stop in lo	dle Mode bit								
	1 = Discon	tinues module op	eration when t	he device ente	rs Idle mode						
		ues module opera	tion in Idle mo	de							
bit 12	TGEN: Time	e Generation Ena	ble bit ⁽²⁾								
	1 = Edge d 0 = Edge d	elay generation is	s enabled s disabled								
bit 11	EDGEN: Ed	dge Enable bit									
	1 = Hardwa	are modules are u	sed to trigger	edges (TMRx,	CTEDx, etc.)						
	0 = Softwa	re is used to trigg	er edges (mar	ual set of EDO	SxSTAT)						
bit 10	EDGSEQE	N: Edge Sequenc	e Enable bit								
	1 = Edge 1	event must occu	r before Edge	2 event can oc	cur						
hit 9		nalog Current So	urce Control h	_{.it} (1)							
bit b	1 = Analog	current source of	utput is around	led							
	0 = Analog	current source of	utput is not gro	ounded							
bit 8	CTTRIG: A	DC Trigger Contro	ol bit								
	1 = CTMU	triggers the ADC	start of conver	rsion							
1:170	0 = CIMU	does not trigger t	he ADC start o	of conversion							
Dit 7-0	Unimpleme	ented: Read as '0	i"								
Note 1:	The ADC modu	le Sample-and-H	old (S&H) cap	acitor is not au	tomatically disc	harged betwee	n sample/				
	conversion cycles. Any software using the ADC as part of a capacitance measurement must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1' performs this func-						discharge the rms this func-				

capacitor array.
If the TGEN bit is set to '1', then the CMP1 module should be selected as the Edge 2 source in the EDG2SELx bits field; otherwise, the module will not function.

tion. The ADC must be sampling while the IDISSEN bit is active to connect the discharge sink to the

30.2 AC Characteristics and Timing Parameters

This section defines the dsPIC33EVXXXGM00X/10X family AC characteristics and timing parameters.

TABLE 30-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 4.5V to 5.5V					
	(unless otherwise stated)					
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
	Operating voltage VDD range as described in Section 30.1 "DC Characteristics" .					

FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 30-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	—	15	pF	In XT and HS modes, when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	—	_	400	pF	In I ² C mode

TABLE 30-50: OP AMP/COMPARATOR x SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions (see Note 3): 4.5V to 5.5V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
					$-40^{\circ}C \le TA$	-40°C \leq TA \leq +125°C for Extended	
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
Comparator AC Characteristics							
CM10	Tresp	Response Time	—	19	80	ns	V+ input step of 100 mV, V- input held at VDD/2
CM11	Тмс2о∨	Comparator Mode Change to Output Valid	—	_	10	μs	
Comparator DC Characteristics							
CM30	VOFFSET	Comparator Offset Voltage	-80	±60	80	mV	
CM31	VHYST	Input Hysteresis Voltage	—	30	_	mV	
CM32	TRISE/ TFALL	Comparator Output Rise/Fall Time	—	20	—	ns	1 pF load capacitance on input
CM33	Vgain	Open-Loop Voltage Gain	—	90	—	db	
CM34	VICM	Input Common-Mode Voltage	AVss	—	AVDD	V	
Op Amp AC Characteristics							
CM20	SR	Slew Rate	—	9	—	V/µs	10 pF load
CM21	Рм	Phase Margin	—	35	_	°C	G = 100V/V, 10 pF load
CM22	Gм	Gain Margin	—	20	_	db	G = 100V/V, 10 pF load
CM23	GBW	Gain Bandwidth	—	10		MHz	10 pF load
Op Amp DC Characteristics							
CM40	VCMR	Common-Mode Input Voltage Range	AVss	-	AVDD	V	
CM41	CMRR	Common-Mode Rejection Ratio	—	45	_	db	VCM = AVDD/2
CM42	VOFFSET	Op Amp Offset Voltage	-50	±6	50	mV	
CM43	Vgain	Open-Loop Voltage Gain	—	90		db	
CM44	los	Input Offset Current	—	-	_	_	See pad leakage currents in Table 30-10
CM45	lв	Input Bias Current	—	-	_	_	See pad leakage currents in Table 30-10
CM46	Ιουτ	Output Current		_	420	μA	With minimum value of RFEEDBACK (CM48)
CM48	RFEEDBACK	Feedback Resistance Value	8	_		kΩ	Note 2
CM49a	Vout	Output Voltage	AVss + 0.075	_	AVDD - 0.075	V	Ιουτ = 420 μΑ

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

2: Resistances can vary by ±10% between op amps.

3: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

33.0 CHARACTERISTICS FOR HIGH-TEMPERATURE DEVICES (+150°C)

33.1 IDD

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 33-4: TYPICAL IDD vs. VDD (EC MODE, 40 MIPS)

34.1 Package Marking Information (Continued)

PIN 1-

Example

Example

64-Lead QFN (9x9x0.9 mm)

64-Lead TQFP (10x10x1 mm)

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support