

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev128gm102t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Digital Signal Controllers	17
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	83
6.0	Resets	
7.0	Interrupt Controller	
8.0	Direct Memory Access (DMA)	109
9.0	Oscillator Configuration	123
10.0	Power-Saving Features	133
11.0	I/O Ports	143
12.0	Timer1	173
13.0	Timer2/3 and Timer4/5	175
14.0	Deadman Timer (DMT)	181
15.0	Input Capture	189
16.0	Output Compare	193
17.0	High-Speed PWM Module	199
18.0		221
19.0		
20.0	Single-Edge Nibble Transmission (SENT)	237
21.0	Universal Asynchronous Receiver Transmitter (UART)	
22.0	Controller Area Network (CAN) Module (dsPIC33EVXXXGM10X Devices Only)	253
23.0	Charge Time Measurement Unit (CTMU)	279
24.0	10-Bit/12-Bit Analog-to-Digital Converter (ADC)	
25.0	Op Amp/Comparator Module	301
26.0	Comparator Voltage Reference	313
	Special Features	
28.0	Instruction Set Summary	327
29.0		
	High-Temperature Electrical Characteristics	
	Characteristics for Industrial/Extended Temperature Devices (-40°C to +125°C)	
33.0	Characteristics for High-Temperature Devices (+150°C)	439
	Packaging Information	
	endix A: Revision History	
	Χ	
	Microchip Web Site	
	omer Change Notification Service	
	omer Support	
Produ	luct Identification System	497

Referenced Sources

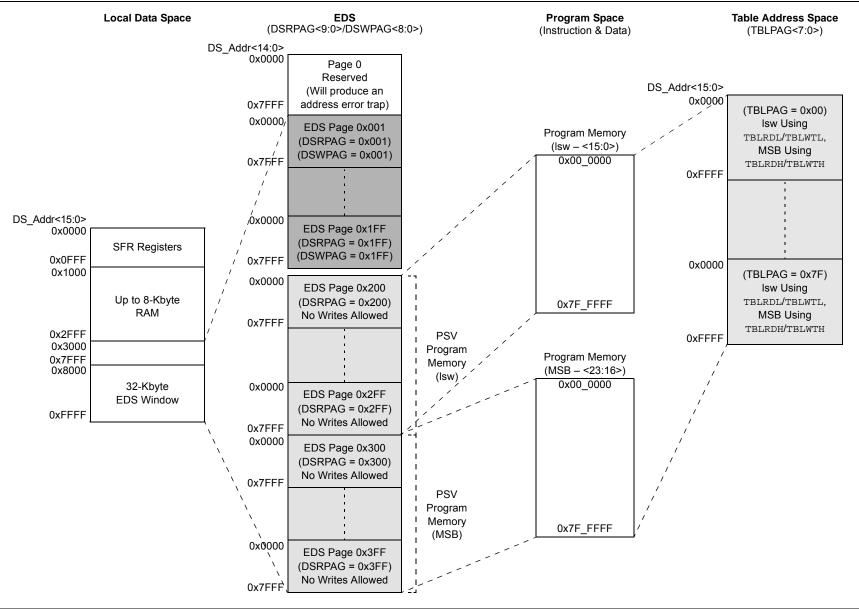
This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Reference Manual"*, which are available from the Microchip web site (www.microchip.com). The following documents should be considered as the general reference for the operation of a particular module or device feature:

- "Introduction" (DS70573)
- "CPU" (DS70359)
- "Data Memory" (DS70595)
- "dsPIC33E/PIC24E Program Memory" (DS70000613)
- "Flash Programming" (DS70609)
- "Interrupts" (DS70000600)
- "Oscillator" (DS70580)
- "Reset" (DS70602)
- "Watchdog Timer and Power-Saving Modes" (DS70615)
- "I/O Ports" (DS70000598)
- "Timers" (DS70362)
- "CodeGuard™ Intermediate Security" (DS70005182)
- "Deadman Timer (DMT)" (DS70005155)
- "Input Capture" (DS70000352)
- "Output Compare" (DS70005157)
- "High-Speed PWM"(DS70645)
- "Analog-to-Digital Converter (ADC)" (DS70621)
- "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582)
- "Serial Peripheral Interface (SPI)" (DS70005185)
- "Inter-Integrated Circuit™ (I²C™)" (DS70000195)
- "Enhanced Controller Area Network (ECAN™)"(DS70353)
- "Direct Memory Access (DMA)" (DS70348)
- "Programming and Diagnostics" (DS70608)
- "Op Amp/Comparator" (DS70000357)
- "Device Configuration" (DS70000618)
- "Charge Time Measurement Unit (CTMU)" (DS70661)
- "Single-Edge Nibble Transmission (SENT) Module" (DS70005145)

CPU Control Registers 3.6

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0		
0A	ОВ	SA ⁽³⁾	SB ⁽³⁾	OAB	SAB	DA	DC		
bit 15	00	0,1	08	0,18	0,10	BA	bit 8		
							bitt		
R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
IPL2 ^(1,2)) IPL1 ^(1,2)	IPL0 ^(1,2)	RA	N	OV	Z	С		
bit 7							bit (
Levend			- h:4						
Legend:		C = Clearable			nonted bit was				
R = Reada		W = Writable		-	mented bit, rea				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	OA: Accumu	lator A Overflo	w Status bit						
	1 = Accumul	ator A has over	flowed						
	0 = Accumul	ator A has not	overflowed						
bit 14	OB: Accumu	lator B Overflo	w Status bit						
		ator B has over							
		ator B has not o							
bit 13	SA: Accumu	lator A Saturati	on 'Sticky' Sta	atus bit ⁽³⁾					
		ator A is satura ator A is not sa		en saturated at	some time				
bit 12	SB: Accumu	lator B Saturati	on 'Sticky' Sta	atus bit ⁽³⁾					
		ator B is satura ator B is not sa		en saturated at	some time				
bit 11	0AB: OA (OB Combined A	Accumulator C	Overflow Status	bit				
		ator A or B has							
	0 = Accumul	ator A and B ha	ave not overflo	owed					
bit 10	SAB: SA S	B Combined A	ccumulator 'S	ticky' Status bit					
		ator A or B is s ator A and B ha			ed at some tim	ie			
bit 9	DA: DO Loop	Active bit							
		s in progress s not in progres	s						
bit 8	-	U Half Carry/B							
		•		(for byte-sized o	data) or 8 th Iow	order bit (for wo	ord-sized data		
		sult occurred	11-		,				
				bit (for byte-siz	ed data) or 8 ^{ti}	^h low-order bit (1	for word-size		
	data) of	the result occu	rred						
	The IPL<2:0> bits Level. The value i								
		-							

3: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using the bit operations.


TABLE 4-1: CPU CORE REGISTER MAP (CONTINUED)

							-											T
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset s
DOENDH	0040	_	—	_	—	—	—	—	—	—	—			DOEND	H<5:0>			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	VAR	_	US1	US0	EDT	DL2	DL1	DL0	SATA	SATB	SATDW	ACCSAT	IPL3	SFA	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	—	BWM3	BWM2	BWM1	BWM0	YWM3	YWM2	YWM1	YWM0	XWM3	XWM2	XWM1	XWM0	0000
XMODSRT	0048							XMC	DSRT<15:	1>							0	xxxx
XMODEND	004A							XMC	DEND<15:	1>							1	xxxx
YMODSRT	004C							YMC	DSRT<15:	1>							0	xxxx
YMODEND	004E							YMC	DEND<15:	1>							1	xxxx
XBREV	0050	BREN	XBREV14	XBREV13	XBREV12	XBREV11	XBREV10	XBREV9	XBREV8	XBREV7	XBREV6	XBREV5	XBREV4	XBREV3	XBREV2	XBREV1	XBREV0	8xxx
DISICNT	0052	_	_							DISICNT	<13:0>							xxxx
TBLPAG	0054	_	_	TBLPAG<7:0>									0000					
MSTRPR	0058		MSTRPR<15:0>								0000							
CTXTSTAT	005A	_	—	_	—	—	CCTXI2	CCTXI1	CCTXI0	—	—	_	_	—	MCTXI2	MCTXI1	MCTXI0	0000

dsPIC33EVXXXGM00X/10X FAMILY

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

FIGURE 4-11: PAGED DATA MEMORY SPACE

DS70005144E-page 70

5.4 Error Correcting Code (ECC)

In order to improve program memory performance and durability, these devices include Error Correcting Code functionality (ECC) as an integral part of the Flash memory controller. ECC can determine the presence of single-bit errors in program data, including which bit is in error, and correct the data automatically without user intervention. ECC cannot be disabled.

When data is written to program memory, ECC generates a 7-bit Hamming code parity value for every two (24-bit) instruction words. The data is stored in blocks of 48 data bits and 7 parity bits; parity data is not memory-mapped and is inaccessible. When the data is read back, the ECC calculates the parity on it and compares it to the previously stored parity value. If a parity mismatch occurs, there are two possible outcomes:

- Single-bit errors are automatically identified and corrected on read-back. An optional device-level interrupt (ECCSBEIF) is also generated.
- Double-bit errors will generate a generic hard trap and the read data is not changed. If special exception handling for the trap is not implemented, a device Reset will also occur.

To use the single-bit error interrupt, set the ECC Single-Bit Error Interrupt Enable bit (ECCSBEIE) and configure the ECCSBEIP bits to set the appropriate interrupt priority.

Except for the single-bit error interrupt, error events are not captured or counted by hardware. This functionality can be implemented in the software application, but it is the user's responsibility to do so.

5.5 Flash Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

5.5.1 KEY RESOURCES

- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

5.6 Control Registers

The following five SFRs are used to read and write the program Flash memory: NVMCON, NVMKEY, NVMADR, NVMADRU and NVMSRCADR.

The NVMCON register (Register 5-1) selects the operation to be performed (page erase, word/row program, inactive panel erase) and initiates the program/erase cycle.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADRU and NVMADR. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word/row for programming operations or the selected page for erase operations. The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA. For row programming operation, data to be written to program Flash memory is written into data memory space (RAM) at an address defined by the NVMSRCADR register (location of the first element in row programming data).

7.3 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EVXXXGM00X/10X family devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

7.4 Interrupt Control and Status Registers

dsPIC33EVXXXGM00X/10X family devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- IFSx
- IECx
- IPCx
- INTTREG

7.4.1 INTCON1 THROUGH INTCON4

Global interrupt control functions are controlled from the INTCON1, INTCON2, INTCON3 and INTCON4 registers.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS), as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior and also contains the Global Interrupt Enable bit (GIE).

INTCON3 contains the status flags for the DMT (Deadman Timer), DMA and ${\tt DO}$ stack overflow status trap sources.

The INTCON4 register contains the ECC Double-Bit Error (ECCDBE) and Software-Generated Hard Trap (SGHT) status bit.

7.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared through software.

7.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into Vector Number (VECNUM<7:0>) and Interrupt Priority Level bit (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

7.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers, refer to **"CPU"** (DS70359) in the *"dsPIC33/PIC24 Family Reference Manual"*.

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU Interrupt Priority Level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-3 to Register 7-7.

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾ (CONTINUED)

- **Note 1:** This bit is cleared when the ROI bit is set and an interrupt occurs.
 - 2: This register resets only on a Power-on Reset (POR).
 - **3:** DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - 4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

bit 1 SPITBF: SPIx Transmit Buffer Full Status bit 1 = Transmit has not yet started, the SPIxTXB bit is full 0 = Transmit has started, the SPIxTXB bit is empty Standard Buffer mode: Automatically set in hardware when the core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR. Enhanced Buffer mode: Automatically set in the hardware when the CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation. bit 0 SPIRBF: SPIx Receive Buffer Full Status bit 1 = Receive is complete, the SPIxRXB bit is full 0 = Receive is incomplete, the SPIxRXB bit is empty Standard Buffer mode:

Automatically set in the hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.

Enhanced Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

REGISTER 20-1: SENTxCON1: SENTx CONTROL REGISTER 1 (CONTINUED)

- bit 3 Unimplemented: Read as '0'
- bit 2-0 NIBCNT<2:0>: Nibble Count Control bits
 - 111 = Reserved; do not use
 - 110 = Module transmits/receives 6 data nibbles in a SENT data pocket
 - 101 = Module transmits/receives 5 data nibbles in a SENT data pocket
 - 100 = Module transmits/receives 4 data nibbles in a SENT data pocket
 - 011 = Module transmits/receives 3 data nibbles in a SENT data pocket
 - 010 = Module transmits/receives 2 data nibbles in a SENT data pocket
 - $\tt 001$ = Module transmits/receives 1 data nibbles in a SENT data pocket
 - 000 = Reserved; do not use
- **Note 1:** This bit has no function in Receive mode (RCVEN = 1).
 - 2: This bit has no function in Transmit mode (RCVEN = 0).

23.1 CTMU Control Registers

REGISTER 23-1: CTMUCON1: CTMU CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN		CTMUSIDL	TGEN ⁽²⁾	EDGEN	EDGSEQEN	IDISSEN ⁽¹⁾	CTTRIG
pit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
 bit 7		—		_	—		bit (
							DIL
Legend:							
R = Readabl	e bit	W = Writable b	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15		CTMU Enable bit					
	1 = Module 0 = Module						
oit 14		nted: Read as '0	3				
pit 13	-	: CTMU Stop in Id					
		inues module op		he device ente	rs Idle mode		
		ies module opera					
bit 12		e Generation Ena					
		elay generation is elay generation is					
oit 11	-	ge Enable bit					
		ire modules are u	ised to trigger	edges (TMRx,	CTEDx, etc.)		
	0 = Softwar	e is used to trigg	er edges (mar	nual set of EDG	SxSTAT)		
bit 10	EDGSEQEN	I: Edge Sequenc	e Enable bit				
	•	event must occu	•	2 event can oc	cur		
bit 9	•	e sequence is ne nalog Current So		.;+(1)			
DIL 9		current source of					
		current source of					
bit 8	CTTRIG: AD	DC Trigger Contro	ol bit				
		triggers the ADC					
	0 = CTMU (does not trigger t	he ADC start of	of conversion			
bit 7-0	Unimpleme	nted: Read as '0	,				
cc Al	onversion cycle DC capacitor b	e Sample-and-Hees. Any software of before conducting	using the ADC	as part of a ca ment. The IDIS	pacitance meas SEN bit, when s	surement must of set to '1', perfor	discharge th rms this fund

capacitor array.
If the TGEN bit is set to '1', then the CMP1 module should be selected as the Edge 2 source in the EDG2SELx bits field; otherwise, the module will not function.

tion. The ADC must be sampling while the IDISSEN bit is active to connect the discharge sink to the

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS	<7:0>			
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown

bit 15-0 CSS<15:0>: ADCx Input Scan Selection bits

1 = Selects ANx for input scan

0 = Skips ANx for input scan

Note 1: On devices with less than 16 analog inputs, all bits in this register can be selected by the user application. However, inputs selected for scan without a corresponding input on the device convert VREFL.

2: CSSx = ANx, where 'x' = 0-5.

REGISTER 25-3: CM4CON: COMPARATOR 4 CONTROL REGISTER (CONTINUED)

bit 7-6	EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits ⁽²⁾
	 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output.
	01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): High-to-low transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): Low-to-high transition of the comparator output.
	00 = Trigger/event/interrupt generation is disabled
bit 5	Unimplemented: Read as '0'
bit 4	CREF: Comparator 4 Reference Select bit (VIN+ input) ⁽¹⁾
	 1 = VIN+ input connects to the internal CVREFIN voltage 0 = VIN+ input connects to the C4IN1+ pin
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CCH<1:0>: Comparator 4 Channel Select bits ⁽¹⁾
	 11 = VIN- input of comparator connects to the C4IN4- pin 10 = VIN- input of comparator connects to the C4IN3- pin 01 = VIN- input of comparator connects to the C4IN2- pin 00 = VIN- input of comparator connects to the C4IN1- pin
Note 1:	Inputs that are selected and not available will be tied to Vss. See the " Pin Diagrams " section for available inputs for each package.

2: After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the comparator Event bit, CEVT (CMxCON<9>), and the Comparator Combined Interrupt Flag, CMPIF (IFS1<2>), must be cleared before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

27.6 In-Circuit Serial Programming

The dsPIC33EVXXXGM00X/10X family devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to "dsPIC33EVXXXGM00X/10X Families Flash Programming Specification" (DS70005137) for details about In-Circuit Serial Programming[™] (ICSP[™]).

Any of the following three pairs of programming clock/ data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

27.7 In-Circuit Debugger

When MPLAB[®] ICD 3 or REAL ICETM is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB X IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the following three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx).

27.8 Code Protection and CodeGuard™ Security

The dsPIC33EVXXXGM00X/10X family devices offer Intermediate CodeGuard Security that supports General Segment (GS) security, Boot Segment (BS) security and Configuration Segment (CS) security. This feature helps protect individual Intellectual Properties.

Note:	Refer to "CodeGuard™ Intermediate
	Security" (DS70005182) in the "dsPIC33/
	PIC24 Family Reference Manual" for
	further information on usage, configuration
	and operation of CodeGuard Security.

29.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

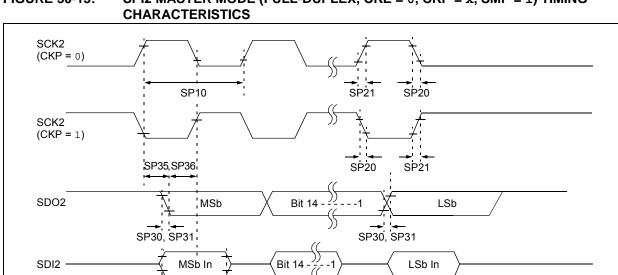
- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

29.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:


- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

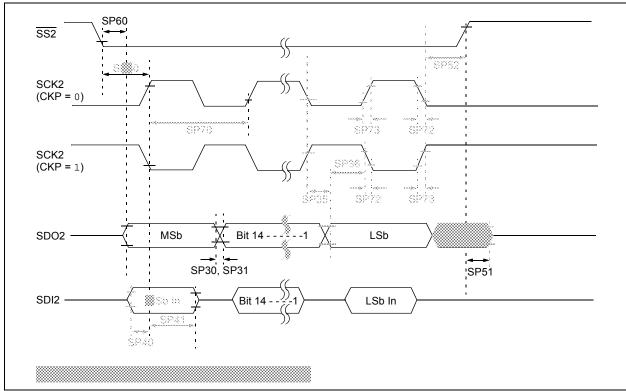
File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

FIGURE 30-15: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING

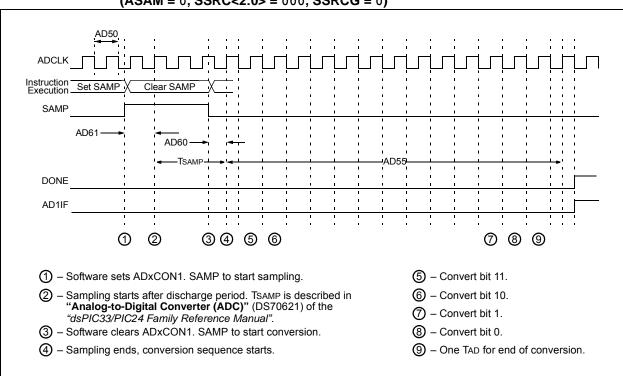
Note: Refer to Figure 30-1 for load conditions.

SP40 SP41


TABLE 30-33: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING REQUIREMENTS

АС СНА	RACTERIST	ICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$							
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions			
SP10	FscP	Maximum SCK2 Frequency		—	9	MHz	-40°C to +125°C and see Note 3			
SP20	TscF	SCK2 Output Fall Time	—		—	ns	See Parameter DO32 and Note 4			
SP21	TscR	SCK2 Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4			
SP30	TdoF	SDO2 Data Output Fall Time	—	—	—	ns	See Parameter DO32 and Note 4			
SP31	TdoR	SDO2 Data Output Rise Time	—	—	—	ns	See Parameter DO31 and Note 4			
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns				
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns				
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	—	ns				
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—		ns				

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

- 3: The minimum clock period for SCK2 is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI2 pins.

FIGURE 30-17: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 30-34: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000, SSRCG = 0)

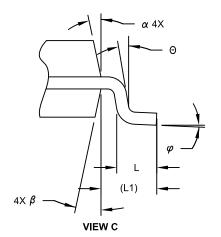
AC CH/	ARACTE	RISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min.	Тур. ⁽⁴⁾	Max.	Units	Conditions		
		Cloc	k Parame	eters					
AD50	TAD	ADC Clock Period	75	_	_	ns			
AD51	tRC	ADC Internal RC Oscillator Period	—	250		ns			
		Con	version F	Rate					
AD55	tCONV	Conversion Time	—	12	_	TAD			
AD56	FCNV	Throughput Rate	—	—	1.1	Msps	Using simultaneous sampling		
AD57a	TSAMP	Sample Time When Sampling Any ANx Input	2	—	—	Tad			
AD57b	TSAMP	Sample Time When Sampling the Op Amp Outputs	4	—	_	TAD			
		Timin	ng Param	eters					
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2	—	3	TAD	Auto-convert trigger is not selected		
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2	—	3	TAD			
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5	_	TAD			
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽²⁾	—	—	20	μS	See Note 3		

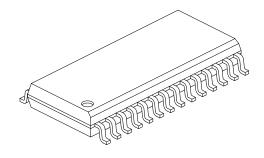
TABLE 30-58: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

- **2:** Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
- **3:** The parameter, tDPU, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (ADxCON1<15>) = 1). During this time, the ADC result is indeterminate.
- 4: These parameters are characterized but not tested in manufacturing.

TABLE 30-59: DMA MODULE TIMING REQUIREMENTS


AC CH	ARACTERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions			
DM1	DMA Byte/Word Transfer Latency	1 Tcy (2)			ns				


Note 1: These parameters are characterized but not tested in manufacturing.

2: Because DMA transfers use the CPU data bus, this time is dependent on other functions on the bus.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

1				
Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	28		
Pitch	е	1.27 BSC		
Overall Height	A	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	17.90 BSC		
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1	1.40 REF		
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.18	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2