

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8×8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev128gm104-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4	ABLE 4-9: CAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 OR 1 FOR dsPIC33EVXXXGM10X DEVICES																	
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	—	-	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0	OPMODE2	OPMODE1	OPMODE0	—	CANCAP	—	_	WIN	0480
C1CTRL2	0402	_	_	_	—	_	—	—	—	—	—	—		[DNCNT<4:0>			0000
C1VEC	0404	_	_	_	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	_	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0	0000
C1FCTRL	0406	DMABS2	DMABS1	DMABS0	_	_	_	_	_	_	_	FSA5	FSA4	FSA3	FSA2	FSA1	FSA0	0000
C1FIFO	0408	_	_	FBP5	FBP4	FBP3	FBP2	FBP1	FBP0	_	_	FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0	0000
C1INTF	040A	_	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C	_	_	_	_	_	_	_	_	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E	TERRCNT7	TERRCNT6	TERRCNT5	TERRCNT4	TERRCNT3	TERRCNT2	TERRCNT1	TERRCNT0	RERRCNT7	RERRCNT6	RERRCNT5	RERRCNT4	RERRCNT3	RERRCNT2	RERRCNT1	RERRCNT0	0000
C1CFG1	0410	_	_	_	_	_	_	_	_	SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	0000
C1CFG2	0412	_	WAKFIL	_	_	_	SEG2PH2	SEG2PH1	SEG2PH0	SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0	0000
C1FEN1	0414								FLTE	N<15:0>								FFFF
C1FMSKSEL1	0418	F7MSK1	F7MSK0	F6MSK1	F6MSK0	F5MSK1	F5MSK0	F4MSK1	F4MSK0	F3MSK1	F3MSK0	F2MSK1	F2MSK0	F1MSK1	F1MSK0	F0MSK1	F0MSK0	0000
C1FMSKSEL2	041A	F15MSK1	F15MSK0	F14MSK1	F14MSK0	F13MSK1	F13MSK0	F12MSK1	F12MSK0	F11MSK1	F11MSK0	F10MSK1	F10MSK0	F9MSK1	F9MSK0	F8MSK1	F8MSK0	0000

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4-10: CAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 FOR dsPIC33EVXXXGM10X DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E		See definition when WIN = x															
C1RXFUL1	0420								RXFUL	<15:0>								0000
C1RXFUL2	0422								RXFUL	<31:16>								0000
C1RXOVF1	0428		RXOVF<15:0> 0000															
C1RXOVF2	042A								RXOVF	<31:16>								0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PRI1	TX1PRI0	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PRI1	TX0PRI0	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PRI1	TX3PRI0	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PRI1	TX2PRI0	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PRI1	TX5PRI0	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PRI1	TX4PRI0	0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PRI1	TX7PRI0	TXEN6	TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PRI1	TX6PRI0	xxxx
C1RXD	0440		CAN1 Receive Data Word Register xxxx								xxxx							
C1TXD	0442							CAN1	Transmit D	ata Word R	egister							xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.5 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing, since these two registers are used as the SFP and SSP, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a Bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.5.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.5.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags, as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM) to which Modulo Addressing is to be applied is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X Data Space when XWM is set to any value other than '1111' and the XMODEN bit (MODCON<15>) is set

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y Data Space when YWM is set to any value other than '1111' and the YMODEN bit (MODCON<14>) is set.

Figure 4-15 shows an example of Modulo Addressing operation.

Note: Y Data Space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear).

FIGURE 4-15: MODULO ADDRESSING OPERATION EXAMPLE

4.7.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through the Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a Program Space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. The TBLRDL and TBLWTL instructions access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the Program Space location (P<15:0>) to a data address (D<15:0>).
 - In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.

- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>) is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, as in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

Similarly, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space. Accessing the program memory with table instructions is shown in Figure 4-18.

FIGURE 4-18: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0		
CHEN	SIZE	DIR	HALF	NULLW	—	<u> </u>			
bit 15			•				bit 8		
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0		
	—	AMODE1	AMODE0	—	—	MODE1	MODE0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	Iown		
bit 15	CHEN: DMA	Channel Enabl	e bit						
	1 = Channel	is enabled							
hit 14		is uisableu	zo hit						
DIL 14	1 = Byte								
0 = Word									
bit 13	DIR: DMA Tra	ansfer Directior	n bit (source/de	estination bus	select)				
	1 = Reads fro	om RAM addre	ss, writes to p	eripheral addre	ess				
	0 = Reads fro	om peripheral a	address, writes	to RAM addre	ess				
bit 12	HALF: DMA	Block Transfer	Interrupt Selec	ct bit					
	1 = Initiates i	nterrupt when I	half of the data	a has been mov	ved				
hit 11		Data Perinher	all Ul the uata	Select bit	. u				
DIC 11	1 = Null data	write to perioh	eral in addition	to RAM write	(DIR bit must	also be clear)			
	0 = Normal o	peration							
bit 10-6	Unimplemen	ted: Read as '	0'						
bit 5-4	AMODE<1:0	>: DMA Channe	el Addressing	Mode Select b	its				
	11 = Reserve	d							
	10 = Peripher	ral Indirect moc	le						
	01 = Register	Indirect with P	It Post-Increm	ent mode					
hit 3-2	Unimplemen	ted: Read as '	n'	mode					
bit 1-0	MODE<1:0>:	DMA Channel	Operating Mo	de Select bits					
	11 = One-Sho	ot Pina-Pona m	odes are enal	oled (one block	transfer from	/to each DMA bi	uffer)		
	10 = Continue	ous Ping-Pong	modes are en	abled			/		
	01 = One-Sho	ot Ping-Pong m	odes are disa	bled					
	00 = Continuo	ous Ping-Pong	modes are dis	sabled					

REGISTER 8-1: DMAxCON: DMA CHANNEL x CONTROL REGISTER

REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	_	—		_	—	—	_				
bit 15		•	•	•		•	bit 8				
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1				
	—	—	_		LSTCH	1<3:0>					
bit 7							bit 0				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-4	Unimplemen	ted: Read as '	0'								
bit 3-0	LSTCH<3:0>	: Last DMAC C	hannel Active	e Status bits							
	1111 = No D	MA transfer ha	s occurred sin	ice system Res	set						
	1110 = Rese r	rved									
	•										
	•										
	0100 = Reser	rved									
	0011 = Last c	lata transfer w	as handled by	Channel 3							
	0010 = Last c	lata transfer w	as handled by	Channel 2							
	0001 = Last c	data transfer wa	as handled by	Channel 1							
	0000 = Last c	lata transfer wa	as handled by	Channel 0							

11-0	11-0	11-0	11-0	11-0	11-0	11-0	R/W-0			
0-0			0-0		0-0	0-0				
	_	_	_	_	_		PLLDIV8			
bit 15							bit 8			
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0			
			PLLDI	V<7:0>						
bit 7							bit 0			
I										
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at l	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
				0 200000						
bit 15_0	Unimplemen	ted: Read as '	ר י							
						(t)				
DIT 8-0	PLLDIV<8:0>	: PLL Feedbac	K Divisor dits	(also denoted	as 'M', PLL mui	itiplier)				
	111111111 =	= 513								
	•									
	•									
	•									
	000110000 =	= 50 (default)								
	•									
	•									
	•									
	00000010 =	= 4								
	00000001 =	= 3								
	0000000000	= 2								

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER⁽¹⁾

Note 1: This register is reset only on a Power-on Reset (POR).

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 11-24: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6⁽¹⁾

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP55R<5:0>: Peripheral Output Function is Assigned to RP55 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP54R<5:0>: Peripheral Output Function is Assigned to RP54 Output Pin bits

(see Table 11-3 for peripheral function numbers)

Note 1: This register is present in dsPIC33EVXXXGM004/104/006/106 devices only

REGISTER 11-25: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP57R5	RP57R4	RP57R3	RP57R2	RP57R1	RP57R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		RP56R5	RP56R4	RP56R3	RP56R2	RP56R1	RP56R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	i as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP57R<5:0>:** Peripheral Output Function is Assigned to RP57 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP56R<5:0>:** Peripheral Output Function is Assigned to RP56 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: This register is present in dsPIC33EVXXXGM004/104/006/106 devices only.

NOTES:

R-0, HSC	R-0, HSC	R-0, HSC	U-0	U-0	R/C-0, HSC	R-0, HSC	R-0, HSC					
ACKSTAT	TRSTAT	ACKTIM	_	_	BCL	GCSTAT	ADD10					
bit 15							bit 8					
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC					
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF					
bit 7							bit 0					
Legend:		C = Clearab	ole bit	HSC = Hardwa	are Settable/Clear	rable bit						
R = Readab	le bit	W = Writabl	e bit	U = Unimplem	ented bit, read a	is '0'						
-n = Value a	t POR	'1' = Bit is s	et	'0' = Bit is clea	ired	HS = Hardware	e Settable bit					
bit 15	ACKSTAT: A	Acknowledge	Status bit (up	dated in all Mas	ster and Slave m	iodes)						
	1 = Acknowle0 = Acknowle	edge was not edge was rec	received from sl	n slave ave								
bit 14	TRSTAT: Tra	ansmit Status	bit (when ope	erating as I ² C m	aster: applicable	e to master trans	smit operation)					
	1 = Master tr 0 = Master tr	= Master transmit is in progress (8 bits + ACK) = Master transmit is not in progress										
bit 13	ACKTIM: Ac	0 = Master transmit is not in progress ACKTIM: Acknowledge Time Status bit (valid in I ² C. Slave mode only)										
	1 = Indicates	s I ² C bus is ir	an Acknowle	edge sequence,	set on 8 th falling	g edge of SCLx of	clock					
	0 = Not an A	cknowledge	sequence, cle	eared on 9 th risi	ng edge of SCL	clock						
bit 12-11	Unimpleme	nted: Read a	s '0'									
bit 10	BCL: Bus Co	ollision Detec	t bit (Master/S	Slave mode; cle	ared when I ² C r	nodule is disable	ed, I2CEN = 0)					
	1 = A bus co	Ilision has be	en detected o	during a master	or slave transm	it operation						
hit 0		sion has not i	oeen delecied	J rod after Stop dr	staction)							
DIL 9	1 = General		was received									
	0 = General	call address	was not recei	ved								
bit 8	ADD10: 10-E	Bit Address S	tatus bit (clea	red after Stop o	letection)							
	1 = 10-bit ad 0 = 10-bit ad	dress was m dress was no	atched ot matched									
bit 7	IWCOL: Writ	te Collision D	etect bit									
	1 = An atten	npt to write to	the I2CxTRN	l register failed	because the I ² C	module is busy;	must be cleared					
	in softwa	are has not occ	urred									
bit 6			orflow Elag bit	ł								
bit 0	1 = A byte w	as received	while the 12C	RCV register is	s still holding the	previous byte: l	2COV is a "don't					
	care" in Transmit mode, must be cleared in software											
bit 5	D A: Data/A	ddress hit (w	hen onerating	n as l ² C slave)								
211.0	1 = Indicates	that the last	byte received	d was data								
	0 = Indicates	s that the last	byte received	d or transmitted	was an address							
bit 4	P: I2Cx Stop	bit										
	Updated when 1 = Indicates 0 = Indicates	en Start, Reso s that a Stop I s that a Stop I	et or Stop is d pit has been o pit was not de	etected; cleare letected last tected last	d when the I ² C r	nodule is disable	ed, I2CEN = 0.					

REGISTER 19-3: I2CxSTAT: I2Cx STATUS REGISTER

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 22-1: CANX MODULE BLOCK DIAGRAM

22.2 Modes of Operation

The CANx module can operate in one of several operation modes selected by the user. These modes include:

- · Initialization mode
- Disable mode
- Normal Operation mode
- · Listen Only mode
- Listen All Messages mode
- · Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CxCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CxCTRL1<7:5>). The module does not change the mode and the OPMODEx bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
DMABS2	DMABS1	DMABS0	_	—	_	—	—
bit 15					•		bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	FSA5	FSA4	FSA3	FSA2	FSA1	FSA0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	x = Bit is unkr	nown					
bit 15-13 bit 12-6 bit 5-0	DMABS<2:0: 111 = Reserv 110 = 32 buff 101 = 24 buff 100 = 16 buff 011 = 12 buff 010 = 8 buffe 001 = 6 buffe 000 = 4 buffe Unimplemen FSA<5:0>: FI 11111 = Rec 11110 = Rec	>: DMA Buffer S red fers in RAM fers in RAM fers in RAM fers in RAM rs in RAM rs in RAM rs in RAM ted: Read as '0 IFO Area Starts eive Buffer RB3 eive Buffer RB3 eive Buffer RB3 RX Buffer TRB1 RX Buffer TRB1	Size bits ,' with Buffer b 31 30	its			

REGISTER 22-4: CxFCTRL: CANx FIFO CONTROL REGISTER

REGISTER 22-8: CxEC: CANx TRANSMIT/RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
TERRCNT<7:0>									
bit 15							bit 8		
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
RERRCNT<7:0>									
bit 7 bit C									
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set	1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		

bit 15-8 TERRCNT<7:0>: Transmit Error Count bits

bit 7-0 **RERRCNT<7:0>:** Receive Error Count bits

REGISTER 22-9: CxCFG1: CANx BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	—	—	—
bit 15					- -		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-8	Unimplemen	ted: Read as '	0'				
bit 7-6	SJW<1:0>: Synchronization Jump Width bits						
	11 = Length is	s 4 x Tq					
	10 = Length is	s 3 x TQ					
	01 = Length is 00 = Length is	s 1 x To					
bit 5-0	BRP<5:0>: B	aud Rate Pres	caler bits				
	11 1111 = T	Q = 2 x 64 x 1/l	FCAN				
	•						
	•						
	• $00 0010 = T$	$0 = 2 \times 3 \times 1/E_{0}$					
	$00 \ 0001 = T$	$Q = 2 \times 2 \times 1/F$	CAN				
	00 0000 = T	$q = 2 \times 1 \times 1/F$	CAN				

23.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Charge Time Measurement Unit (CTMU)" (DS70661) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:

- Nine Edge Input Trigger Sources
- Polarity Control for Each Edge Source
- Control of Edge Sequence
- · Control of Response to Edges
- · Time Measurement Resolution Down to 200 ps
- Accurate Current Source Suitable for Capacitive Measurement
- On-Chip Temperature Measurement using a Built-in Diode
- Pulse Generation Generates a Pulse using the C1INB Comparator Input and Outputs the Pulse onto the CTPLS Remappable Output

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock.

The CTMU module is ideal for interfacing with capacitive-based sensors. The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 and CTMUCON2 enable the module and control edge source selection, edge source polarity selection and edge sequencing. The CTMUICON register controls the selection and trim of the current source.

TABLE 30-31: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK2 Frequency	_		15	MHz	See Note 3	
SP20	TscF	SCK2 Output Fall Time	—	-	—	ns	See Parameter DO32 and Note 4	
SP21	TscR	SCK2 Output Rise Time	—	-	—	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDO2 Data Output Fall Time	—	—	—	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDO2 Data Output Rise Time	—	-	—	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns		
SP36	TdiV2scH, TdiV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

32.12 VBOR

FIGURE 32-35: TYPICAL BOR TRIP RANGE vs. TEMPERATURE

32.13 RAM Retention

FIGURE 32-36: TYPICAL RAM RETENTION VOLTAGE vs. TEMPERATURE

FIGURE 32-39: TYPICAL CTMU CURRENT (IRNG) vs. TEMPERATURE

32.16 CTMU Temperature Forward Diode

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 33-15: **TYPICAL/MAXIMUM** ∆IwDT vs. **TEMPERATURE** 12 10 8 IPD (NA) 6 5.5V Max – 5.5V Typ 4 2 0 -50 0 50 100 150 Temperature (C)

33.5 FRC

33.12 VBOR

33.13 RAM Retention

© 2013-2016 Microchip Technology Inc.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch			0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)				0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Leads	Ν	44				
Lead Pitch	е	0.80 BSC				
Overall Height	Α	-	-	1.20		
Standoff	A1	0.05	-	0.15		
Molded Package Thickness	A2	0.95	1.00	1.05		
Overall Width	E	12.00 BSC				
Molded Package Width	E1	10.00 BSC				
Overall Length	D	12.00 BSC				
Molded Package Length	D1	10.00 BSC				
Lead Width	b	0.30	0.37	0.45		
Lead Thickness	С	0.09	-	0.20		
Lead Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	θ	0°	3.5°	7°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2