

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev128gm104-e-pt

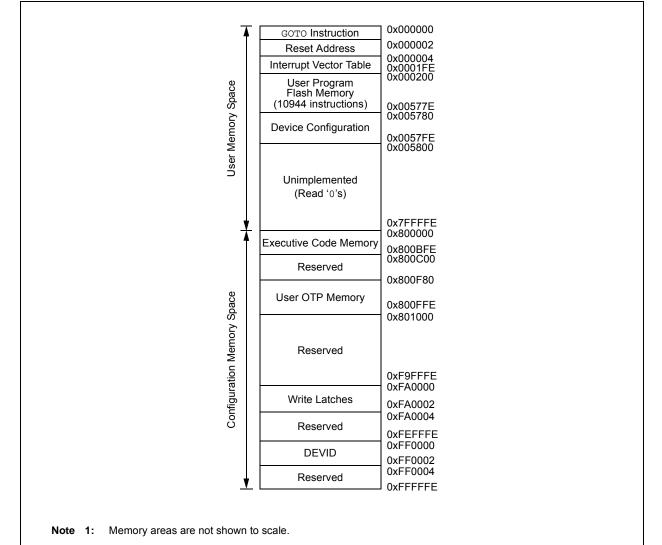
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "dsPIC33E/PIC24E Program Memory" (DS70000613) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EVXXXGM00X/10X family architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the Data Space (DS) during code execution.


4.1 Program Address Space

The program address memory space of the dsPIC33EVXXXGM00X/10X family devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC, during program execution or from table operation, or from DS remapping, as described in Section 4.7 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x02ABFF). The exception is the use of the TBLRD operations, which use TBLPAG<7> to read Device ID sections of the configuration memory space and the TBLWT operations, which are used to set up the write latches located in configuration memory space.

The program memory maps, which are presented by the device family and memory size, are shown in Figure 4-1 through Figure 4-4.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-45: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.4.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

For the MOV instructions, the addressing
mode specified in the instruction can differ
for the source and destination EA. How-
ever, the 4-bit Wb (Register Offset) field is
shared by both source and destination
(but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.4.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The Two-Source Operand Prefetch registers must be members of the set, {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must, therefore, be valid addresses within X Data Space for W8 and W9, and Y Data Space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X Data Space) and W11 (in Y Data Space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.4.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (Branch) instructions use 16-bit signed literals to specify the Branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as a NOP, do not have any operands.

U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
_	_		—		ILR3	ILR2	ILR1
bit 15							bit
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	• • 0001 = CPU	Interrupt Priorit Interrupt Priorit Interrupt Priorit	y Level is 1				
bit 7-0	111111111 = 2 00001001 = 9 00001000 = 2 00000111 = 1 00000101 = 2 00000101 = 2 00000010 = 2 00000010 = 2 00000010 = 2 00000010 = 2	 Vector Nun Reserved Input Captur External Inter External Inter Reserved; d Generic soft DMAC error Math error tr Stack error t Generic hard Address error Oscillator fai 	; do not use er 1 (IC1) errupt 0 (INT0) o not use error trap trap ap rap d trap or trap	ig Interrupt bits			

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<7:0>
External Interrupt 2	INT2	RPINR1	INT2R<7:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<7:0>
Input Capture 1	IC1	RPINR7	IC1R<7:0>
Input Capture 2	IC2	RPINR7	IC2R<7:0>
Input Capture 3	IC3	RPINR8	IC3R<7:0>
Input Capture 4	IC4	RPINR8	IC4R<7:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<7:0>
PWM Fault 1	FLT1	RPINR12	FLT1R<7:0>
PWM Fault 2	FLT2	RPINR12	FLT2R<7:0>
UART1 Receive	U1RX	RPINR18	U1RXR<7:0>
UART2 Receive	U2RX	RPINR19	U2RXR<7:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<7:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<7:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<7:0>
CAN1 Receive	C1RX	RPINR26	C1RXR<7:0>
PWM Sync Input 1	SYNCI1	RPINR37	SYNCI1R<7:0>
PWM Dead-Time Compensation 1	DTCMP1	RPINR38	DTCMP1R<7:0>
PWM Dead-Time Compensation 2	DTCMP2	RPINR39	DTCMP2R<7:0>
PWM Dead-Time Compensation 3	DTCMP3	RPINR39	DTCMP3R<7:0>
SENT1 Input	SENT1R	RPINR44	SENT1R<7:0>
SENT2 Input	SENT2R	RPINR45	SENT2R<7:0>

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0

REGISTER 11-18: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP35R<5:0>: Peripheral Output Function is Assigned to RP35 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP20R<5:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-19: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 7

bit 13-8 **RP37R<5:0>:** Peripheral Output Function is Assigned to RP37 Output Pin bits (see Table 11-3 for peripheral function numbers)

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP36R<5:0>:** Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 0

REGISTER 14-5: DMTCNTL: DEADMAN TIMER COUNT REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			COUNT	ER<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			COUN	ΓER<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown		

bit 15-0 COUNTER<15:0>: Read Current Contents of Lower DMT Counter bits

REGISTER 14-6: DMTCNTH: DEADMAN TIMER COUNT REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			COUNT	ER<31:24>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			COUNT	ER<23:16>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U				U = Unimpler	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow						nown			

bit 15-0 COUNTER<31:16>: Read Current Contents of Higher DMT Counter bits

REGISTER 14-11: DMTHOLDREG: DMT HOLD REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			UPRO	CNT<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			UPR	CNT<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable I	W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			

bit 15-0 UPRCNT<15:0>: Value of the DMTCNTH register when DMTCNTL and DMTCNTH were Last Read bits

Note 1: The DMTHOLDREG register is initialized to '0' on Reset, and is only loaded when the DMTCNTL and DMTCNTH registers are read.

HS-0, HC	HS-0, HC	HS-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTSTAT ⁽¹⁾	CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽²⁾	MDCS ⁽²⁾
bit 15		·					bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
DTC1	DTC0	DTCP ⁽³⁾	—	—	CAM ^(2,4)	XPRES ⁽⁵⁾	IUE ⁽²⁾
bit 7							bit (
Legend:		HC = Hardware	Clearable bit	HS = Hardwa	are Settable bit		
R = Readable	bit	W = Writable bi	t	U = Unimple	mented bit, rea	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 15	FLTSTAT: Fai	ult Interrupt Statu	us bit ⁽¹⁾				
		rupt is pending					
		rrupt is not pendi ared by setting F					
bit 14		rent-Limit Interru					
		mit interrupt is pe	•				
	0 = Current-lin	mit interrupt is no ared by setting C	ot pending				
bit 13	TRGSTAT: Trigger Interrupt Status bit						
		terrupt is pending					
		terrupt is not per ared by setting T					
bit 12	FLTIEN: Fault	t Interrupt Enable	e bit				
		rrupt is enabled	and the FLTST	AT bit is cleare	ed		
bit 11	CLIEN: Curre	nt-Limit Interrup	t Enable bit				
		mit interrupt is er mit interrupt is di		CLSTAT bit is	cleared		
bit 10		ger Interrupt Ena					
	1 = Trigger ev	vent generates a vent interrupts ar	n interrupt requ		bit is cleared		
bit 9		dent Time Base I					
bit 0	1 = PHASEx I	register provides	time base per				
bit 8		er Duty Cycle Re					
	1 = MDC regi	ster provides du ister provides du	ty cycle information	ation for this P			
Note 1: So	ftware must clea	ar the interrupt st	atus here and	in the correspo	onding IFSx bit	in the interrupt	controller.
	These bits should not be changed after the PWMx is enabled (PTEN = 1).						
	DTC<1:0> = 11 for DTCP to be effective; else, DTCP is ignored.						
	e Independent T M bit is ignored.	īme Base (ITB =	1) mode mus	t be enabled to	use Center-Al	igned mode. If	ITB = 0, the
	operate in Exter jister must be '0	nal Period Rese '.	t mode, the ITI	B bit must be ':	1' and the CLM	OD bit in the F	CLCONx

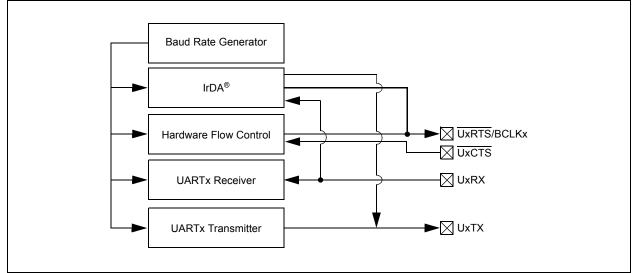
REGISTER 17-7: PWMCONx: PWMx CONTROL REGISTER

21.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X family of devices contains two UART modules.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EVXXXGM00X/10X device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a


hardware flow control option with the $\overline{\text{UxCTS}}$ and $\overline{\text{UxRTS}}$ pins, and also includes an IrDA[®] encoder and decoder.

Note:	Hardware flow control using UxRTS and
	UxCTS is not available on all pin count
	devices. See the "Pin Diagrams" section
	for availability.

The primary features of the UARTx module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop Bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 4.375 Mbps to 67 bps at 16x mode at 70 MIPS
- Baud Rates Ranging from 17.5 Mbps to 267 bps at 4x mode at 70 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- · 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for All UART Error Conditions

FIGURE 21-1: UARTX SIMPLIFIED BLOCK DIAGRAM

21.2 UART Control Registers

REGISTER 21-1: UxMODE: UARTx MODE REGISTER

REGISTER	21-1: UxMO	DE: UARTx N		TER				
R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD		UEN1	UEN0	
bit 15				·			bit 8	
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	
bit 7		101100	Orodity	ыкоп	TDOLLI	TDOLLO	bit (
Legend:		HC = Hardwar	e Clearable bit	t				
R = Readable	e bit	W = Writable I	oit	U = Unimple	mented bit, rea	ad as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown	
bit 15	1 = UARTx is	ARTx Enable bit s enabled; all U s disabled; all U	ARTx pins are					
	is minima							
bit 14	•	ted: Read as '0						
bit 13 USIDL: UARTx Stop in Idle Mode bit 1 = Discontinues module operation when the device enters Idle mode								
		iues module op es module opera			s Idle mode			
bit 12	IREN: IrDA [®]	Encoder and De	ecoder Enable	bit ⁽²⁾				
1 = IrDA encoder and decoder are enabled0 = IrDA encoder and decoder are disabled								
bit 11		le Selection for						
	1 = UxRTS p	oin is in Simplex oin is in Flow Co	mode					
bit 10		ited: Read as '0						
bit 9-8	-	IARTx Pin Enab						
	11 = UxTX, U 10 = UxTX, U 01 = UxTX, U	JxRX and BCLK JxRX, UxCTS a JxRX and UxRT nd UxRX pins a	x p <u>ins are</u> enal nd UxRTS pins S pins are enal	are enabled a bled and used;	nd used ⁽⁴⁾ UxCTS pin is o	controlled by P	ORT latches ⁽⁴	
bit 7	WAKE: UAR	Tx Wake-up on	Start bit Detect	During Sleep	Mode Enable I	oit		
	in hardwa	ontinues to sam are on the follow is not enabled			generated on	the falling edge	, bit is cleare	
bit 6	-	RTx Loopback	Mode Select b	it				
		k mode is enab						
		k mode is disab						
"d: tra	efer to " Univers sPIC33/PIC24 F insmit operation	amily Referenc	e <i>Manual"</i> for i	nformation on e	enabling the U			
	is feature is only	-)).			
3: Th	is feature is only available on 44-pin and 64-pin devices.							

4: This feature is only available on 64-pin devices.

26.2 Comparator Voltage Reference Registers

REGISTER 26-1: CVR1CON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER 1

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0 U-0		U-0	
CVREN	CVROE	—	_	CVRSS	VREFSEL	—	_	
pit 15 bit 8								
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	— CVR6 CVF		CVR4	CVR3 CVR2		CVR1	CVR0	
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CVREN: Comparator Voltage Reference Enable bit
	1 = Comparator voltage reference circuit is powered on
	0 = Comparator voltage reference circuit is powered down
bit 14	CVROE: Comparator Voltage Reference Output Enable (CVREF10 Pin) bit
	1 = Voltage level is output on the CVREF10 pin
	0 = Voltage level is disconnected from the CVREF10 pin
bit 13-12	Unimplemented: Read as '0'
bit 11	CVRSS: Comparator Voltage Reference Source Selection bit
	1 = Comparator reference source, CVRsRC = CVREF+ – AVss
	0 = Comparator reference source, CVRSRC = AVDD – AVSS
bit 10	VREFSEL: Voltage Reference Select bit
	1 = CVREFIN = CVREF+
	0 = CVREFIN is generated by the resistor network
bit 9-7	Unimplemented: Read as '0'
bit 6-0	CVR<6:0>: Comparator Voltage Reference Value Selection bits
	1111111 = 127/128 x VREF input voltage
	•
	•
	0000000 = 0.0 volts

File Name	Address	Device Memory Size (Kbytes)	23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FSEC	005780	32																	
	00AB80	64		AIVTDIS				CSS2	CSS1	CSS0	CWRP	GSS1	0000	GWRP		BSEN	BSS1	BSS0	
	015780	128	-	AIVIDIS	_	—	_	0332	0331	0330	CWRF	6551	GSS0 G	GWRF	_	- DOLN	6001	8330	BWRP
	02AB80	256																	
FBSLIM	005790	32																	
	00AB90	64		_	_	_	BSLIM<12:0>												
	015790	128																	
	02AB90	256																	
Reserved	005794	32																	
	00AB94 64 — Reserved ⁽		Reserved ⁽¹⁾	d ⁽¹⁾ —	-	-		_		-	_	—	—	—	-	_	—		
			1 toool vou																
	02AB94	256																	
FOSCSEL																			
	00AB98	64		_	_		_	_	_	_	_	IESO		_	_	_	FNOSC2	FNOSC1	FNOSC0
	015798	128																	
	02AB98	256																	
FOSC	00579C	32																	
	00AB9C	64		_	_	_	_	_	_	_	PLLKEN	FCKSM1 FCKSM0 IOL1WAY - OSCIOFNC POSCMI				POSCMD1	1 POSCMD0		
	01579C	128	-																
514/0 7	02AB9C	256													-	-			
FWDT	0057A0	32	-																
	00ABA0	64		_	_	_	_	_	_	WDTWIN1	WDTWIN0	WINDIS	FWDTEN1	FWDTEN0	WDTPRE	WDTPS3	WDTPS2	WDTPS1	WDTPS0
	0157A0	128	-																
FPOR	02ABA0 0057A4	256 32																	
FPUR	0057A4 00ABA4	32 64	-																
	00ABA4 0157A4	64 128		—	—	—	—	—	—	_	—	—	—	—	—	—	—	—	BOREN
	0157A4 02ABA4	256	1																
FICD	02ABA4	32																	
	0057A8	64	1																
0157A8 128		-	—	—	_	—	—	—	—	Reserved ⁽²⁾	i ⁽²⁾			-	ICS1	ICS0			
	0157A8		1																
	UZADAŎ	200																1	

TABLE 27-1: CONFIGURATION WORD REGISTER MAP

Legend: — = unimplemented, read as '1'.

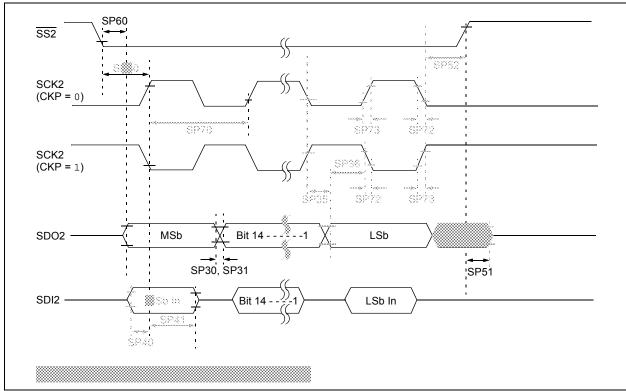
Note 1:This bit is reserved and must be programmed as '0'.2:This bit is reserved and must be programmed as '1'.

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
78	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
79	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	5	None
80	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	5	None
81	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
82	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
83	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
84	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
1		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
85	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

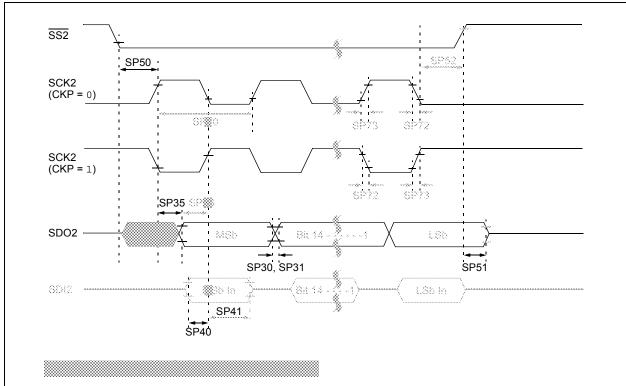
TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

30.0 ELECTRICAL CHARACTERISTICS


This section provides an overview of dsPIC33EVXXXGM00X/10X family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EVXXXGM00X/10X family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.


Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	0.3V to +6.0V
Voltage on VCAP with respect to Vss	1.62V to 1.98V
Maximum current out of Vss pin	350 mA
Maximum current into Vod pin ⁽²⁾	350 mA
Maximum current sunk by any I/O pin	20 mA
Maximum current sourced by I/O pin	18 mA
Maximum current sourced/sunk by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).

FIGURE 30-17: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

FIGURE 30-19: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-42:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—	—	25	MHz	See Note 3
SP72	TscF	SCK1 Input Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP73	TscR	SCK1 Input Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO1 Data Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCK1 Edge	20	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	—	_	ns	
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	_	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	—	_	ns	See Note 4
SP60	TssL2doV	SDO1 Data Output Valid after SS1 Edge	—	—	50	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 40 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

TABLE 30-44:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

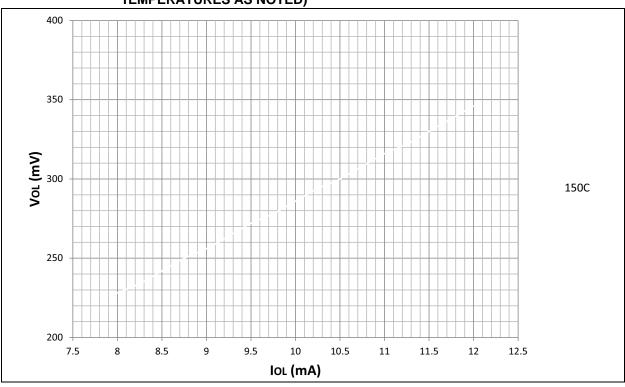
AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾ Max.		Units	Conditions	
SP70	FscP	Maximum SCK1 Input Frequency		_	25	MHz	See Note 3	
SP72	TscF	SCK1 Input Fall Time	—			ns	See Parameter DO32 and Note 4	
SP73	TscR	SCK1 Input Rise Time	_			ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDO1 Data Output Rise Time	—			ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20			ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	_	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SS1} \downarrow$ to SCK1 \uparrow or SCK1 \downarrow Input	120	—	_	ns		
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	See Note 4	
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40		_	ns	See Note 4	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 40 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.


TABLE 30-50: OP AMP/COMPARATOR x SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 3): 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
		Con	parator AC C	haracte	ristics			
CM10	Tresp	Response Time	_	19	80	ns	V+ input step of 100 mV, V- input held at VDD/2	
CM11	TMC2OV	Comparator Mode Change to Output Valid	—	_	10	μs		
		Con	nparator DC C	haracte	ristics			
CM30	VOFFSET	Comparator Offset Voltage	-80	±60	80	mV		
CM31	VHYST	Input Hysteresis Voltage		30	—	mV		
CM32	Trise/ Tfall	Comparator Output Rise/Fall Time	—	20	—	ns	1 pF load capacitance on input	
CM33	Vgain	Open-Loop Voltage Gain	—	90	—	db		
CM34	VICM	Input Common-Mode Voltage	AVss	—	AVDD	V		
		Or	o Amp AC Cha	aracteris	stics			
CM20	SR	Slew Rate	_	9	_	V/µs	10 pF load	
CM21	Рм	Phase Margin	—	35	—	°C	G = 100V/V, 10 pF load	
CM22	Gм	Gain Margin	—	20	—	db	G = 100V/V, 10 pF load	
CM23	Gbw	Gain Bandwidth	—	10	—	MHz	10 pF load	
		Op	o Amp DC Cha	aracteris	stics			
CM40	VCMR	Common-Mode Input Voltage Range	AVss	—	AVDD	V		
CM41	CMRR	Common-Mode Rejection Ratio	—	45	—	db	Vcm = AVdd/2	
CM42	VOFFSET	Op Amp Offset Voltage	-50	±6	50	mV		
CM43	Vgain	Open-Loop Voltage Gain	_	90	—	db		
CM44	los	Input Offset Current	—	—	—	_	See pad leakage currents in Table 30-10	
CM45	lв	Input Bias Current	_		—	_	See pad leakage currents in Table 30-10	
CM46	Ιουτ	Output Current	—	_	420	μA	With minimum value of RFEEDBACK (CM48)	
CM48	RFEEDBACK	Feedback Resistance Value	8		—	kΩ	Note 2	
CM49a	Vout	Output Voltage	AVss + 0.075	_	AVDD - 0.075	V	Ιουτ = 420 μΑ	

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

2: Resistances can vary by ±10% between op amps.

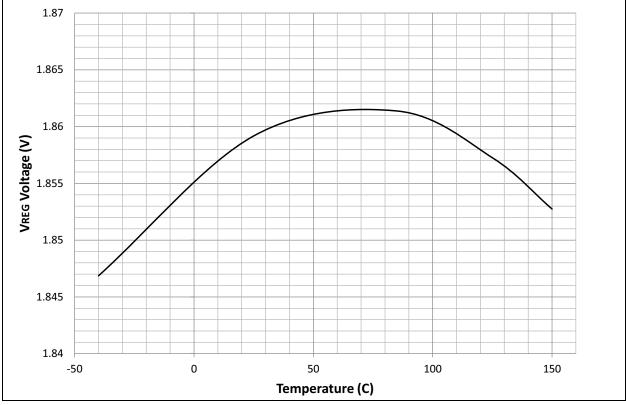

3: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

FIGURE 33-29: TYPICAL Vol 4x DRIVER PINS vs. Iol (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

33.11 VREG

