

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8×8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev128gm104t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

							(•••••							(· /		
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11SID	046C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	EXIDE	—	EID17	EID16	xxxx
C1RXF11EID	046E								E	EID<15:0>								xxxx
C1RXF12SID	0470	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0		EXIDE	_	EID17	EID16	xxxx
C1RXF12EID	0472					-			E	EID<15:0>								xxxx
C1RXF13SID	0474	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF13EID	0476					-			E	EID<15:0>								xxxx
C1RXF14SID	0478	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF14EID	047A					-			E	EID<15:0>								xxxx
C1RXF15SID	047C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF15EID	047E		•						E	EID<15:0>								xxxx

TABLE 4-11: CAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 FOR dsPIC33EVXXXGM10X DEVICES (CONTINUED)

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: SENT1 RECEIVER REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SENT1CON1	0500	SNTEN	—	SNTSIDL	_	RCVEN	TXM	TXPOL	CRCEN	PPP	SPCEN	_	PS	_	NIBCNT2	NIBCNT1	NIBCNT0	0000
SENT1CON2	0504					TICK	TIME<15:0	> (Transm	it modes)	or SYNCN	IAX<15:0>	(Receive I	mode)					FFFF
SENT1CON3	0508					FRAM	1ETIME<15	:0> (Trans	mit modes) or SYNC	MIN<15:0>	· (Receive	mode)					FFFF
SENT1STAT	050C		_	—		_		—	_	PAUSE	NIB2	NIB1	NIB0	CRCERR	FRMERR	RXIDLE	SYNCTXEN	0000
SENT1SYNC	0510						Synchi	ronization	Time Perio	d Registe	r (Transmit	mode)						0000
SENT1DATL	0514	DATA4<3:0> DATA5<3:0> DATA6<3:0> CRC<3:0> 000								0000								
SENT1DATH	0516		STAT	<3:0>			DATA1	<3:0>			DATA2	2<3:0>			DATA	43<3:0>		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: SENT2 RECEIVER REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SENT2CON1	0520	SNTEN	—	SNTSIDL	—	RCVEN	TXM	TXPOL	CRCEN	PPP	SPCEN	—	PS	-	NIBCNT2	NIBCNT1	NIBCNT0	0000
SENT2CON2	0524					TICK	TIME<15:0	> (Transm	it modes)	or SYNCM	1AX<15:0>	(Receive I	node)					FFFF
SENT2CON3	0528					FRAM	/IETIME<15	:0> (Trans	mit modes) or SYNC	MIN<15:0	> (Receive	mode)					FFFF
SENT2STAT	052C	_	_	—	_	_	_	-	_	PAUSE	NIB2	NIB1	NIB0	CRCERR	FRMERR	RXIDLE	SYNCTXEN	0000
SENT2SYNC	0530						Synchi	ronization	Time Perio	d Registe	r (Transmit	mode)		_				0000
SENT2DATL	0534		DATA4<3:0> DATA5<3:0> DATA6<3:0> CRC<3:0> 0							0000								
SENT2DATH	0536		STAT	<3:0>			DATA1	<3:0>			DATA	2<3:0>			DAT	43<3:0>		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70005144E-page 49

TABLE 4-22: PMD REGISTER MAP FOR dsPIC33EVXXXGM00X/10X FAMILY DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	—	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD ⁽¹⁾	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD	_	_	_	_	_	_	_	_	_	_	0000
PMD4	0766	_	_	_	_	_	_	_	_	_	_		_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_	_	_	_	_	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	_	0000
PMD7	076C	_	_	_	_	_	_	_	_	_	_	_	DMA0MD	_	_	_	_	0000
													DMA1MD					
													DMA2MD					
													DMA3MD					
PMD8	076E	_	_	_	SENT2MD	SENT1MD	_	_	DMTMD	_	_	_	_		_	_	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This feature is available only on dsPIC33EVXXXGM10X devices.

TABLE 4-41: PORTF REGISTER MAP FOR dsPIC33EVXXXGMX06 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	0E64	_	_	_	_	—	—	—	—	—	—	—	-	—	—	TRISF	<1:0>	0003
PORTF	0E66	_	_	_	_	—	_	—	_	_	—	_	—	—	_	RF<1	1:0>	xxxx
LATF	0E68	_	_	_	_	_	_	_	_	_	_	_	_	_	_	LATF<	<1:0>	xxxx
ODCF	0E6A	_	_	_	_	_	_	_	_	_	_	_	_	_	_	ODCF-	<1:0>	0000
CNENF	0E6C	_	_	_	_	_	_	_	_	_	_	_	_	_	_	CNIEF	<1:0>	0000
CNPUF	0E6E	_	_	_	_	_	_	_	_	_	_	_	_	_	_	CNPUF	<1:0>	0000
CNPDF	0E70		_		_	—	_	_	-	_	_	_	_	-		CNPDF	<1:0>	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-42: PORTG REGISTER MAP FOR dsPIC33EVXXXGMX06 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	0E78	—	_	—		—	_		TRISC	6<9:6>					_		—	03C0
PORTG	0E7A	_	_	_	_	—	_		RG<	9:6>			-		_		—	xxxx
LATG	0E7C	—	_	_		—	-		LATG	<9:6>					_		_	xxxx
ODCG	0E7E	—	_	_		—	-		ODCO	6<9:6>					_		_	0000
CNENG	0E80	—	_	_		—	-		CNIEC	6<9:6>					_		_	0000
CNPUG	0E82	_	_	_	_	_	_		CNPU	G<9:6>		_	_	_	_	_	_	0000
CNPDG	0E84	_	_	_	_	_	_		CNPD	G<9:6>		_	_	_	_	_	_	0000
ANSELG	0E86	_	_	_	_	_	_		ANSC	<9:6>		_	_	_	_	_	_	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.2 RTSP Operation

RTSP allows the user application to erase a single page of memory, program a row and to program two instruction words at a time. See Table 1 in the "dsPIC33EVXXXGM00X/10X Product Families" section for the page sizes of each device.memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to era

The Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of program memory, which consists of eight rows (512 instructions) at a time, and to program one row or two adjacent words at a time. The 8-row erase pages and single row write rows are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively. Table 30-13 in **Section 30.0 "Electrical Characteristics"** lists the typical erase and programming times.

The basic sequence for RTSP word programming is to use the TBLWTL and TBLWTH instructions to load two of the 24-bit instructions into the write latches found in configuration memory space. See Figure 4-1 to Figure 4-5 for write latch addresses. Programming is performed by unlocking and setting the control bits in the NVMCON register.

Row programming is performed by loading 192 bytes into data memory and then loading the address of the first byte in that row into the NVMSRCADR register. Once the write has been initiated, the device will automatically load the write latches and increment the NVMSRCADR and the NVMADR(U) registers until all bytes have been programmed. The RPDF bit (NVMCON<9>) selects the format of the stored data in RAM to be either compressed or uncompressed. See Figure 5-2 for data formatting. Compressed data helps to reduce the amount of required RAM by using the upper byte of the second word for the MSB of the second instruction.

For more information on erasing and programming the Flash memory, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual".

- Note 1: Before reprogramming either of the two words in a double-word pair, the user must erase the Flash memory page in which it is located.
 - 2: Before reprogramming any word in a row, the user must erase the Flash memory page in which it is located.

FIGURE 5-2: UNCOMPRESSED/ COMPRESSED FORMAT

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, erase the page that contains the desired address of the location the user wants to change. For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Refer to **"Flash Programming"** (DS70609) in the *"dsPIC33/PIC24 Family Reference Manual"* for details and code examples on programming using RTSP.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 7-1: dspic33evXXXGM00X/10X FAMILY ALTERNATE INTERRUPT VECTOR TAB	URE 7-1:	dsPIC33EVXXXGM00X/10X FAMILY ALTERNATE INTERRUPT VECTOR TABL
---	----------	--

	Peronyod	BSI M < 12.0 > (1) + 0.000000	
	Beggnved	BSLIN(<12.0<7 + 0.000000)	
	Casillatar Esil Tran Vestor	BSLIM<12.0×7+0000002	
		BSLIM<12:0×() + 0x000004	
	Address Error Trap Vector	BSLIM<12.0×7+00000000000000000000000000000000000	
	Generic Hard Trap Vector	BSLIM<12:0>(1)+0x000008	
	Stack Error Trap Vector	BSLIM<12.0>(1)+0.000000A	
	Math Error Trap Vector	BSLIM<12:0>(1)+0x00000C	
	DMAC Error Trap Vector	BSLIM<12:0>(1) + 0x00000E	
	Generic Soft Trap Vector	BSLIM<12:0>(1) + 0x000010	
	Reserved	BSLIM<12:0>(') + 0x000012	-
	Interrupt Vector 0	BSLIM<12:0>(') + 0x000014	
	Interrupt Vector 1	BSLIM<12:0>(1) + 0x000016	
	:	:	
	:	:	
	:	:	
5	Interrupt Vector 52	BSLIM<12:0> ⁽¹⁾ + 0x00007C	
	Interrupt Vector 53	BSLIM<12:0> ⁽¹⁾ + 0x00007E	\backslash
	Interrupt Vector 54	BSLIM<12:0> ⁽¹⁾ + 0x000080	See Table 7-1 for
	:] :	Interrupt Vector Details
	:	:	1
	:	:	
	Interrupt Vector 116	BSLIM<12:0> ⁽¹⁾ + 0x0000FC	
	Interrupt Vector 117	BSLIM<12:0> ⁽¹⁾ + 0x00007E	
	Interrupt Vector 118	BSLIM<12:0> ⁽¹⁾ + 0x000100	
	Interrupt Vector 119	BSLIM<12:0> ⁽¹⁾ + 0x000102	
	Interrupt Vector 120	BSLIM<12:0> ⁽¹⁾ + 0x000104	
	:] :	
	:] :	
	:	1 :	
	Interrupt Vector 244	BSLIM<12:0> ⁽¹⁾ + 0x0001FC	
V	Interrupt Vector 245	BSLIM<12:0> ⁽¹⁾ + 0x0001FE	
Note	1. The address depends on the si	ze of the Boot Segment defined by	v BSLIM<12.0>
NOLG	[(BSLIM<12:0> – 1) x 0x400] +	Offset.	J DOLIM (12.0 ⁻ .

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<7:0>
External Interrupt 2	INT2	RPINR1	INT2R<7:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<7:0>
Input Capture 1	IC1	RPINR7	IC1R<7:0>
Input Capture 2	IC2	RPINR7	IC2R<7:0>
Input Capture 3	IC3	RPINR8	IC3R<7:0>
Input Capture 4	IC4	RPINR8	IC4R<7:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<7:0>
PWM Fault 1	FLT1	RPINR12	FLT1R<7:0>
PWM Fault 2	FLT2	RPINR12	FLT2R<7:0>
UART1 Receive	U1RX	RPINR18	U1RXR<7:0>
UART2 Receive	U2RX	RPINR19	U2RXR<7:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<7:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<7:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<7:0>
CAN1 Receive	C1RX	RPINR26	C1RXR<7:0>
PWM Sync Input 1	SYNCI1	RPINR37	SYNCI1R<7:0>
PWM Dead-Time Compensation 1	DTCMP1	RPINR38	DTCMP1R<7:0>
PWM Dead-Time Compensation 2	DTCMP2	RPINR39	DTCMP2R<7:0>
PWM Dead-Time Compensation 3	DTCMP3	RPINR39	DTCMP3R<7:0>
SENT1 Input	SENT1R	RPINR44	SENT1R<7:0>
SENT2 Input	SENT2R	RPINR45	SENT2R<7:0>

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

11.5.5.1 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn pins is possible. This includes both many-to-one, and one-to-many mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

Function	RPnR<5:0>	Output Name
Default Port	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U2TX	000011	RPn tied to UART2 Transmit
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
C1TX	001110	RPn tied to CAN1 Transmit
OC1	010000	RPn tied to Output Compare 1 Output
OC2	010001	RPn tied to Output Compare 2 Output
OC3	010010	RPn tied to Output Compare 3 Output
OC4	010011	RPn tied to Output Compare 4 Output
C1OUT	011000	RPn tied to Comparator Output 1
C2OUT	011001	RPn tied to Comparator Output 2
C3OUT	011010	RPn tied to Comparator Output 3
SYNCO1	101101	RPn tied to PWM Primary Time Base Sync Output
REFCLKO	110001	RPn tied to Reference Clock Output
C4OUT	110010	RPn tied to Comparator Output 4
C5OUT	110011	RPn tied to Comparator Output 5
SENT1	111001	RPn tied to SENT Out 1
SENT2	111010	RPn tied to SENT Out 2

· · ·	TABLE 11-3:	OUTPUT SELECTION FOR REMAPPABLE PINS (RP	'n)
-------	-------------	---	-----

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC4R7	IC4R6	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0
bit 15	÷					·	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC3R7	IC3R6	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8 bit 7-0	IC4R<7:0>: Assign Input Capture 4 (IC4) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 • • • • • • • • • • • • • • • • • •						

REGISTER 11-5: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0

REGISTER 11-18: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP35R<5:0>: Peripheral Output Function is Assigned to RP35 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP20R<5:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-19: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 7

bit 13-8 **RP37R<5:0>:** Peripheral Output Function is Assigned to RP37 Output Pin bits (see Table 11-3 for peripheral function numbers)

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP36R<5:0>:** Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP120R5 ⁽¹⁾	RP120R4 ⁽¹⁾	RP120R3 ⁽¹⁾	RP120R2 ⁽¹⁾	RP120R1 ⁽¹⁾	RP120R0 ⁽¹⁾
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
-----------	----------------------------

bit 13-8	RP176R<5:0>: Peripheral Output Function is Assigned to RP176 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP120R<5:0>: Peripheral Output Function is Assigned to RP120 Output Pin bits ⁽¹⁾

(see Table 11-3 for peripheral function numbers)

REGISTER 11-29: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP178R<5:0>:** Peripheral Output Function is Assigned to RP178 Output Pin bits (see Table 11-3 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP177R<5:0>:** Peripheral Output Function is Assigned to RP177 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: RP120R<5:0> is present in dsPIC33EVXXXGM006/106 devices only.

R/W-0) U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON ⁽¹) _	TSIDL ⁽²⁾	_	_	_	—	_			
bit 15	·						bit 8			
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0			
_	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾	—	—	TCS ^(1,3)	—			
bit 7							bit 0			
Legend:										
R = Reada	able bit	W = Writable	bit	U = Unimple	mented bit, read	i as '0'				
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own			
bit 15	TON: Timery On bit ⁽¹⁾ 1 = Starts 16-bit Timery 0 = Stors 16-bit Timery									
bit 14	Unimplemen	ted: Read as '	0'							
bit 13	TSIDL: Timer	y Stop in Idle M	lode bit ⁽²⁾							
	1 = Discontinu 0 = Continues	ues module op s module opera	eration when t ition in an Idle	the device ent mode	ers an Idle mod	е				
bit 12-7	Unimplemen	ted: Read as '	0'							
bit 6	TGATE: Time When TCS = This bit is igno When TCS = 1 = Gated tim 0 = Gated tim	TGATE: Timery Gated Time Accumulation Enable bit ⁽¹⁾ When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled								
bit 5-4	TCKPS<1:0> 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1	TCKPS<1:0>: Timery Input Clock Prescale Select bits ⁽¹⁾ 11 = 1:256 10 = 1:64 01 = 1:8								
bit 3-2	Unimplemen	ted: Read as '	n'							
bit 1	TCS: Timerv	Clock Source S	Select bit ^(1,3)							
-	1 = External c 0 = Internal cl	clock is from pir lock (FP)	n, TyCK (on th	e rising edge))					
bit 0	Unimplemen	ted: Read as '	0'							
Note 1:	When 32-bit opera functions are set th	tion is enabled hrough TxCON	(T2CON<3> =	= 1), these bits	have no effect of	on Timery opera	tion; all timer			

REGISTER 13-2: TyCON (T3CON AND T5CON) CONTROL REGISTER

2: When 32-bit timer operation is enabled (T32 = 1) in the Timerx Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

3: The TyCK pin is not available on all timers. See the "Pin Diagrams" section for the available pins.

REGISTER 23-2: CTMUCON2: CTMU CONTROL REGISTER 2 (CONTINUED)

- bit 5-2 EDG2SEL<3:0>: Edge 2 Source Select bits
 - 1111 = Fosc
 - 1110 = OSCI pin
 - 1101 = FRC Oscillator
 - 1100 = BFRC Oscillator
 - 1011 = Internal LPRC Oscillator
 - 1010 = Reserved
 - 1001 = Reserved
 - 1000 = Reserved 0111 = Reserved
 - 0111 = Reserved
 - 0101 = Reserved
 - 0101 = CMP1 module
 - 0011 = CTED2 pin
 - 0010 = CTED2 pin
 - 0001 = OCMP1 module
 - 0000 = IC1 module
- bit 1-0 Unimplemented: Read as '0'

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADRC	—	_	SAMC4 ⁽¹⁾	SAMC3 ⁽¹⁾	SAMC2 ⁽¹⁾	SAMC1 ⁽¹⁾	SAMC0 ⁽¹⁾		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADCS7 ⁽²⁾	ADCS6 ⁽²⁾	ADCS5 ⁽²⁾	ADCS4 ⁽²⁾	ADCS3 ⁽²⁾	ADCS2 ⁽²⁾	ADCS1 ⁽²⁾	ADCS0 ⁽²⁾		
bit 7							bit 0		
Legend:									
R = Readabl	le bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
bit 15	bit 15 ADRC: ADCx Conversion Clock Source bit 1 = ADCx internal RC clock								
	0 = Clock der	ived from syste	m clock						
bit 14-13	Unimplemen	ted: Read as '0)'						
bit 12-8	SAMC<4:0>:	Auto-Sample T	ime bits ⁽¹⁾						
	11111 = 31 T	AD							
	•								
	•								
	00001 = 1 TA	D							
	00000 = 0 TA	D		(2)					
bit 7-0	ADCS<7:0>:	ADCx Convers	ion Clock Sele	ect bits ⁽²⁾					
	11111111 =	TP • (ADCS<7:	0>+1)=TP•	256 = TAD					
	•								
	•								
	00000010 = 0000000000000000000000000000	TP • (ADCS<7) TP • (ADCS<7) TP • (ADCS<7)	0> + 1) = TP • 0> + 1) = TP • 0> + 1) = TP •	3 = TAD 2 = TAD 1 = TAD					
Note 1: ⊤	hese hits are only	used if SSPC	<2·0> (Δ□ν<	N1<7·5>) = 1	11 and SSRCC		>) = 0		
2: T	hese bits are not	used if ADRC (ADxCON3<15	5>) = 1.			-) - 0.		

REGISTER 24-3: ADxCON3: ADCx CONTROL REGISTER 3

	REGIS	STER								
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
HLMS		OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN			
bit 7							bit C			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unk	nown			
bit 15	HLMS: High	or Low-Level I	Masking Select	bit						
	1 = The mask 0 = The mask	king (blanking) king (blanking)	function will pre function will pre	event any asse event any asse	erted ('0') compa erted ('1') compa	arator signal fro arator signal fro	m propagating m propagating			
bit 14	Unimplemer	nted: Read as	'0'							
bit 13	OCEN: OR O	Gate C Input E	nable bit							
	1 = MCI is co 0 = MCI is no	onnected to OF ot connected to	R gate OR gate							
bit 12	OCNEN: OR Gate C Input Inverted Enable bit									
	1 = Inverted 0 = Inverted	MCI is connec MCI is not con	ted to OR gate nected to OR g	jate						
bit 11	OBEN: OR O	OBEN: OR Gate B Input Enable bit								
	1 = MBI is co 0 = MBI is no	onnected to OF ot connected to	R gate OR gate							
bit 10	OBNEN: OR Gate B Input Inverted Enable bit									
	1 = Inverted 0 = Inverted	MBI is connect MBI is not con	ted to OR gate nected to OR g	jate						
bit 9	OAEN: OR O	Gate A Input Ei	nable bit							
	1 = MAI is co 0 = MAI is no	onnected to OF	R gate OR gate							
bit 8	OANEN: OR	Gate A Input	Inverted Enable	e bit						
	1 = Inverted 0 = Inverted	MAI is connect MAI is not con	ted to OR gate nected to OR o	ate						
bit 7	NAGS: AND	Gate Output I	nverted Enable	bit						
	1 = Inverted 0 = Inverted	ANDI is conne ANDI is not co	cted to OR gate nnected to OR	e gate						
bit 6	PAGS: AND	Gate Output E	nable bit	•						
	1 = ANDI is c 0 = ANDI is r	connected to C	R gate to OR gate							
bit 5	ACEN: AND	Gate C Input I	Enable bit							
	1 = MCI is co 0 = MCI is no	onnected to AN	ID gate AND gate							
bit 4	ACNEN: ANI	D Gate C Inpu	t Inverted Enab	ole bit						
	1 = Inverted 0 = Inverted	MCI is connec MCI is not con	ted to AND gat nected to AND	e gate						

27.2 User OTP Memory

Locations, 800F80h-800FFEh, are a One-Time-Programmable (OTP) memory area. The user OTP words can be used for storing product information, such as serial numbers, system manufacturing dates, manufacturing lot numbers and other application-specific information.

27.3 On-Chip Voltage Regulator

All of the dsPIC33EVXXXGM00X/10X family devices power their core digital logic at a nominal 1.8V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 5.0V. To simplify system design, all devices in the dsPIC33EVXXXGM00X/10X family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohm) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (see Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 30-5, located in **Section 30.0 "Electrical Characteristics"**.

Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin.

FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

3: Typical VCAP pin voltage = 1.8V when VDD ≥ VDDMIN.

27.4 Brown-out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the Power-up Timer (PWRT) Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to Parameter SY35 in Table 30-22 of **Section 30.0 "Electrical Characteristics"** for specific TFSCM values.

The BOR status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle mode and resets the device should VDD fall below the BOR threshold voltage. Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed. In these cases, the execution takes multiple instruction cycles with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157).

Field	Description						
#text	Means literal defined by "text"						
(text)	Means "content of text"						
[text]	Means "the location addressed by text"						
{}	Optional field or operation						
a ∈ {b, c, d}	a is selected from the set of values b, c, d						
<n:m></n:m>	Register bit field						
.b	Byte mode selection						
.d	Double-Word mode selection						
.S	Shadow register select						
.w	Word mode selection (default)						
Acc	One of two accumulators {A, B}						
AWB	Accumulator Write-Back Destination Address register \in {W13, [W13]+ = 2}						
bit4	4-bit bit selection field (used in word-addressed instructions) $\in \{015\}$						
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero						
Expr	Absolute address, label or expression (resolved by the linker)						
f	File register address ∈ {0x00000x1FFF}						
lit1	1-bit unsigned literal $\in \{0,1\}$						
lit4	4-bit unsigned literal $\in \{015\}$						
lit5	5-bit unsigned literal $\in \{031\}$						
lit8	8-bit unsigned literal \in {0255}						
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode						
lit14	14-bit unsigned literal $\in \{016384\}$						
lit16	16-bit unsigned literal ∈ {065535}						
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'						
None	Field does not require an entry, can be blank						
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate						
PC	Program Counter						
Slit10	10-bit signed literal ∈ {-512511}						
Slit16	16-bit signed literal ∈ {-3276832767}						
Slit6	6-bit signed literal \in {-1616}						
Wb	Base W register ∈ {W0W15}						
Wd	Destination W register \in { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }						
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }						
Wm Wn	Dividend Divisor Working register pair (Direct Addressing)						

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
63	RETLW	RETLW #lit10,Wn Return with literal in Wn		Return with literal in Wn	1	6 (5)	SFA
64	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
65	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
66	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
67	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
68	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
69	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
70	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
71	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
72	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB
73	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
74	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,Z
75	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
77	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C.DC.N.OV7
		SUBBR	f WREG	WREG = WREG - f - (\overline{C})	1	1	
		GUDDD	when we we	$Wd = Wb - Wb (\overline{C})$	1	1	
		SUBBR					
		SUBBR	WD,#lit5,Wd	vva = IIt5 - VVD - (C)	1	1	C,DC,N,OV,Z

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

FIGURE 30-14: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-32:SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS

АС СНА	RACTERIST	ICS	Standard (unless o Operating	Operatin otherwise temperat	ig Condit stated) ture -40° -40°	i ons: 4.5 °C ≤ TA ≤ °C ≤ TA ≤	V to 5.5V +85°C for Industrial +125°C for Extended
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK2 Frequency		_	9	MHz	See Note 3
SP20	TscF	SCK2 Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4
SP21	TscR	SCK2 Output Rise Time	—	-	—	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDO2 Data Output Fall Time	—	-	—	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDO2 Data Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2sc, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	_	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	_		ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30			ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK2 is 111 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPI2 pins.

dsPIC33EVXXXGM00X/10X FAMILY

© 2013-2016 Microchip Technology Inc.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	X2			6.60
Optional Center Pad Length	Y2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Contact Pad to Contact Pad (X40)	G1	0.30		
Contact Pad to Center Pad (X44)	G2	0.28		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2103C