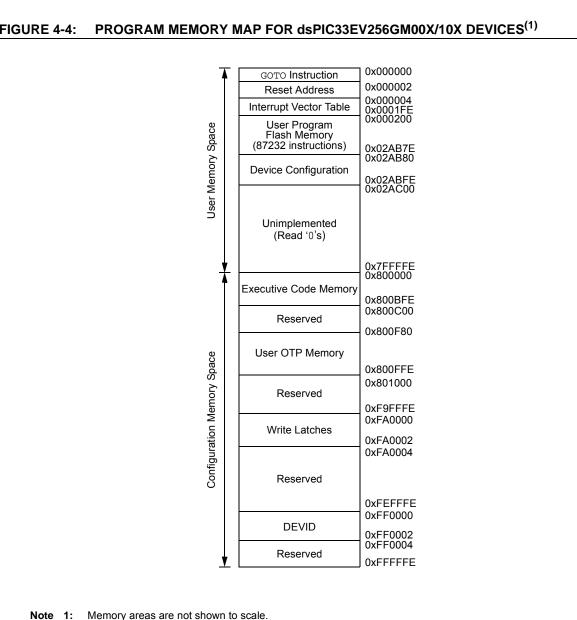


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XE

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 36x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev128gm106-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-4:

TABLE 4-24: OUTPUT COMPARE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	—	ENFLTA	_	—	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV	_		-	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0904							Ou	tput Con	npare 1 Se	condary Re	gister						xxxx
OC1R	0906								Outpu	ut Compare	e 1 Register							xxxx
OC1TMR	0908							Out	put Com	pare 1 Tin	ner Value Re	gister						xxxx
OC2CON1	090A	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_		ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	090E							Ou	tput Con	npare 2 Se	condary Re	gister						xxxx
OC2R	0910								Outpu	ut Compare	e 2 Register							xxxx
OC2TMR	0912							Out	put Com	pare 2 Tin	ner Value Re	gister						xxxx
OC3CON1	0914	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_		ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN	OCINV	_		-	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	0918							Ou	tput Con	npare 3 Se	condary Re	gister						xxxx
OC3R	091A								Outpu	ut Compare	e 3 Register							xxxx
OC3TMR	091C							Out	put Com	pare 3 Tin	ner Value Re	gister						xxxx
OC4CON1	091E	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_		ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC4RS	0922							Ou	tput Con	npare 4 Se	condary Reg	gister						xxxx
OC4R	0924								Outpu	ut Compare	e 4 Register							xxxx
OC4TMR	0926	Output Compare 4 Timer Value Register										xxxx						
Logondu			-	ot: – unim		1 /-1	- · ·											<i>.</i>

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.3.2 EXTENDED X DATA SPACE

The lower portion of the base address space range, between 0x0000 and 0x2FFF, is always accessible regardless of the contents of the Data Space Page registers; it is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x002FFF with the base address bit, EA<15> = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of Base Data Space, in combination with DSRPAG = 0x000 or DSWPAG = 0x000. Consequently, the DSRPAG and DSWPAG registers are initialized to 0x001 at Reset.

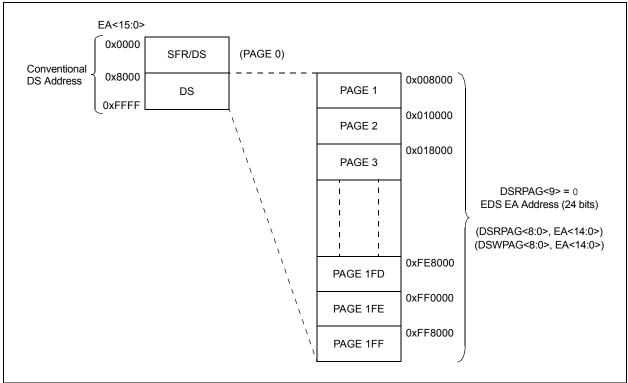

- Note 1: DSxPAG should not be used to access Page 0. An EDS access with DSxPAG set to 0x000 will generate an address error trap.
 - 2: Clearing the DSxPAG in software has no effect.

FIGURE 4-12: EDS MEMORY MAP

The remaining pages, including both EDS and PSV pages, are only accessible using the DSRPAG or DSWPAG registers in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where the base address bit, EA<15> = 1.

For example, when DSRPAG = 0x001 or DSWPAG = 0x001, accesses to the upper 32 Kbytes, 0x8000 to 0xFFFF of the Data Space, will map to the EDS address range of 0x008000 to 0x00FFFF. When DSRPAG = 0x002 or DSWPAG = 0x002, accesses to the upper 32 Kbytes of the Data Space will map to the EDS address range of 0x010000 to 0x017FFF and so on, as shown in the EDS memory map in Figure 4-12.

For more information on the PSV page access using Data Space Page registers, refer to **Section 5.0 "Program Space Visibility from Data Space"** in **"dsPIC33E/PIC24E Program Memory"** (DS70000613) of the *"dsPIC33/PIC24 Family Reference Manual"*.

REGISTER		CON: DMA C					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHEN	SIZE	DIR	HALF	NULLW	—	—	_
bit 15				•			bit 8
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
—	—	AMODE1	AMODE0	—	_	MODE1	MODE0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	CHEN: DMA	Channel Enabl	le bit				
	1 = Channel						
	0 = Channel	is disabled					
bit 14	SIZE: DMA D	ata Transfer S	ize bit				
	1 = Byte 0 = Word						
L:1 1 0		anafar Direction	a hit (a a ura a /d	activation bus	a a la at)		
bit 13		ansfer Directior om RAM addre	-		-		
		om peripheral a					
bit 12		Block Transfer					
		nterrupt when	-		ved		
		nterrupt when					
bit 11	NULLW: Null	Data Peripher	al Write Mode	Select bit			
		write to periph	eral in addition	n to RAM write	(DIR bit must	also be clear)	
	0 = Normal c	peration					
bit 10-6	-	ted: Read as '					
bit 5-4		>: DMA Chann	el Addressing	Mode Select b	its		
	11 = Reserve		1.				
		ral Indirect moon Indirect without reading the second s		ent mode			
	•	Indirect with F					
bit 3-2	•	ted: Read as '					
bit 1-0	-	DMA Channel		de Select bits			
					transfer from	/to each DMA bu	(ffer)
		ous Ping-Pong	modes are en	abled			
		ot Ping-Pong n ous Ping-Pong	nodes are disa	bled			

REGISTER 8-1: DMAxCON: DMA CHANNEL x CONTROL REGISTER

10.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of peripherals being clocked constitutes lower consumed power.

The dsPIC33EVXXXGM00X/10X family devices can manage power consumption in the following four methods:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- · Software Controlled Doze mode
- · Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into Sleep mode
PWRSAV #IDLE_MODE ; Put the device into Idle mode

10.1 Clock Frequency and Clock Switching

The dsPIC33EVXXXGM00X/10X family devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or highprecision oscillators by simply changing the NOSCx bits (OSCCON<10:8>). For more information on the process of changing a system clock during operation, as well as limitations to the process, see **Section 9.0 "Oscillator Configuration"**.

10.2 Instruction-Based Power-Saving Modes

The dsPIC33EVXXXGM00X/10X family devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the Assembler Include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

11.8 Peripheral Pin Select Registers

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INT1R	<7:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit C

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	-	_	—	—	—	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			INT2F	R<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-8	Unimplemen	ted: Read as ')'					
bit 7-0		Assign Externa -2 for input pin			orresponding RI	Pn Pin bits		
	10110101 =	Input tied to RF	91181					
	•							
	•							
	•		-					
		Input tied to CN						
	00000000 =	Input tied to Vs	S					

HS-0, HC	HS-0, HC	HS-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTSTAT ⁽¹⁾	CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽²⁾	MDCS ⁽²⁾
bit 15		·					bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
DTC1	DTC0	DTCP ⁽³⁾	—	—	CAM ^(2,4)	XPRES ⁽⁵⁾	IUE ⁽²⁾
bit 7							bit (
Legend:		HC = Hardware	Clearable bit	HS = Hardwa	are Settable bit		
R = Readable	bit	W = Writable bi	t	U = Unimple	mented bit, rea	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 15	FLTSTAT: Fai	ult Interrupt Statu	us bit ⁽¹⁾				
		rupt is pending					
		rrupt is not pendi ared by setting F					
bit 14		rent-Limit Interru					
		mit interrupt is pe	•				
	0 = Current-lin	mit interrupt is no ared by setting C	ot pending				
bit 13		igger Interrupt Si					
		terrupt is pending					
		terrupt is not per ared by setting T					
bit 12	FLTIEN: Fault	t Interrupt Enable	e bit				
		rrupt is enabled	and the FLTST	AT bit is cleare	ed		
bit 11	CLIEN: Curre	nt-Limit Interrup	t Enable bit				
		mit interrupt is er mit interrupt is di		CLSTAT bit is	cleared		
bit 10		ger Interrupt Ena					
	1 = Trigger ev	vent generates a vent interrupts ar	n interrupt requ		bit is cleared		
bit 9		dent Time Base I					
bit 0	1 = PHASEx I	register provides	time base per				
bit 8		er Duty Cycle Re					
	1 = MDC regi	ster provides du ister provides du	ty cycle information	ation for this P			
Note 1: So	ftware must clea	ar the interrupt st	atus here and	in the correspo	onding IFSx bit	in the interrupt	controller.
		not be changed a		-	-		
		DTCP to be effe					
	e Independent T M bit is ignored.	īme Base (ITB =	1) mode mus	t be enabled to	use Center-Al	igned mode. If	ITB = 0, the
	operate in Exter jister must be '0	nal Period Rese '.	t mode, the ITI	B bit must be ':	1' and the CLM	OD bit in the F	CLCONx

REGISTER 17-7: PWMCONx: PWMx CONTROL REGISTER

REGISTER 17-8: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER

		DAMA		D/14/ 0		D 44/ 0					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			PDC	x<15:8>							
bit 15							bit 8				
]				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			PDC	\$x<7:0>							
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable b	oit	U = Unimplem	nented bit, read	d as '0'					
-n = Value at P	n = Value at POR (1' = Bit is set 0' = Bit is cleared x = Bit is unknown										

bit 15-0 PDCx<15:0>: PWMx Generator Duty Cycle Value bits

REGISTER 17-9: PHASEx: PWMx PRIMARY PHASE-SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 PHASEx<15:0>: PWMx Phase-Shift Value or Independent Time Base Period for the PWM Generator bits

Note 1: If ITB (PWMCONx<9>) = 0, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output modes (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs.

 If ITB (PWMCONx<9>) = 1, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output modes (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Independent Time Base period value for PWMxH and PWMxL.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15			Diocon	DICCDO	MODEIO	Olin	bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽²⁾	CKP	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾
bit 7				1			bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
			_ 1				
bit 15-13	-	ted: Read as '					
bit 12		PI clock is disa	-	er modes only)			
		PI clock is disa PI clock is ena		ao 1/U			
bit 11		able SDOx Pin					
	1 = SDOx pin	is not used by	the module; p	oin functions as	; I/O		
		is controlled b					
bit 10	MODE16: Wo	ord/Byte Comm	unication Sele	ect bit			
		cation is word-	, ,				
		cation is byte-	. ,				
bit 9		ata Input Samp	ole Phase bit				
	Master mode:	: a is sampled at	the end of da	ta output time			
				data output time	ie		
	Slave mode:	-		n Slave mode.			
bit 8	CKE: Clock E	dge Select bit	1)				
					clock state to Id		
bit 7	SSEN: Slave	Select Enable	bit (Slave mo	de) ⁽²⁾			
		s used for Slav					
	0 = SSx pin is	s not used by the	ne module; pir	n is controlled b	y port function		
bit 6		olarity Select I					
				ve state is a low e state is a high			
bit 5	MSTEN: Mas	ter Mode Enab	le bit				
	1 = Master m 0 = Slave mo						
	he CKE bit is not FRMEN = 1).	used in Frame	d SPI modes.	Program this b	oit to '0' for Frai	med SPI modes	S
-	his bit must be cl	eared when FF	RMEN = 1.				
	o not set both pri			ers to the value	e of 1:1.		

REGISTER 18-2: SPIxCON1: SPIx CONTROL REGISTER 1

3: Do not set both primary and secondary prescalers to the value of 1:1.

19.2 I²C Control Registers

REGISTER 19-1: I2CxCON1: I2Cx CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/S-1	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN		I2CSIDL	SCLREL ⁽¹⁾	STRICT	A10M	DISSLW	SMEN
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0, HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7	•		•		•		bit 0

Legend:	S = Settable bit HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	k = Bit is unknown

bit 15	I2CEN: I2Cx Enable bit (writable from SW only)
	 1 = Enables the I²C module and configures the SDAx and SCLx pins as serial port pins 0 = Disables the I²C module and all I²C pins are controlled by port functions
bit 14	Unimplemented: Read as '0'
bit 13	I2CSIDL: I2Cx Stop in Idle Mode bit
	 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	SCLREL: SCLx Release Control bit (I ² C Slave mode only) ⁽¹⁾
	Module resets and (I2CEN = 0) sets SCLREL = 1.
	$\frac{\text{If STREN = }0}{2}$
	1 = Releases clock
	0 = Forces clock low (clock stretch)
	If STREN = 1: 1 = Releases clock
	0 = Holds clock low (clock stretch); user may program this bit to '0', clock stretch at the next SCLx low
bit 11	STRICT: Strict I ² C Reserved Address Rule Enable bit
	1 = Strict reserved addressing is enforced
	In Slave mode, the device does not respond to reserved address space and addresses falling in that category are NACKed.
	0 = Reserved addressing would be Acknowledged
	In Slave mode, the device will respond to an address falling in the reserved address space. When there is a match with any of the reserved addresses, the device will generate an ACK.
bit 10	A10M: 10-Bit Slave Address Flag bit
	1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address
bit 9	DISSLW: Slew Rate Control Disable bit
	 1 = Slew rate control is disabled for Standard Speed mode (100 kHz, also disabled for 1 MHz mode) 0 = Slew rate control is enabled for High-Speed mode (400 kHz)
bit 8	SMEN: SMBus Input Levels Enable bit
	 1 = Enables the input logic so thresholds are compliant with the SMBus specification 0 = Disables the SMBus-specific inputs
Note 1:	Automatically cleared to '0' at the beginning of slave transmission; automatically cleared to '0' at the end of slave reception.

2: Automatically cleared to '0' at the beginning of slave transmission.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	_	—	—	—	—	—				
bit 15							bit 8				
R-0	R-0	R-0	R-0	R-0	R/C-0	R-0	R/W-0, HC				
PAUSE	NIB2	NIB1	NIB0	CRCERR	FRMERR	RXIDLE	SYNCTXEN ⁽¹⁾				
bit 7	NIDZ	NIDT	NIBO	GROLIN		INNIDEL	bit (
							Dit t				
Legend:		C = Clearabl	e bit	HC = Hardwa	are Clearable b	oit					
R = Readab	ole bit	W = Writable	e bit	U = Unimplemented bit, read as '0'							
-n = Value a	at POR	'1' = Bit is se	et	'0' = Bit is cle	nown						
bit 15-8	-	nted: Read as									
bit 7		PAUSE: Pause Period Status bit									
		1 = The module is transmitting/receiving a pause period									
oit 6-4		0 = The module is not transmitting/receiving a pause period									
л 0-4	NIB<2:0>: Nibble Status bit Module in Transmit Mode (RCVEN = 0):										
	$\frac{\text{Module in Transmit Mode (RCVEN = 0)}{111} = \text{Module is transmitting a CRC nibble}$										
	110 = Module is transmitting Data Nibble 6										
	101 = Module is transmitting Data Nibble 5										
	100 = Module is transmitting Data Nibble 4										
	011 = Module is transmitting Data Nibble 3 010 = Module is transmitting Data Nibble 2										
	001 = Module is transmitting Data Nibble 1										
	000 = Module is transmitting a status nibble or pause period, or is not transmitting										
	Module in Receive Mode (RCVEN = 1):										
	111 = Module is receiving a CRC nibble or was receiving this nibble when an error occurred										
	110 = Module is receiving Data Nibble 6 or was receiving this nibble when an error occurred										
	101 = Module is receiving Data Nibble 5 or was receiving this nibble when an error occurred 100 = Module is receiving Data Nibble 4 or was receiving this nibble when an error occurred										
	011 = Module is receiving Data Nibble 3 or was receiving this nibble when an error occurred										
	010 = Module is receiving Data Nibble 2 or was receiving this nibble when an error occurred										
	001 = Module is receiving Data Nibble 1 or was receiving this nibble when an error occurred										
	000 = Module is receiving a status nibble or waiting for Sync										
bit 3	CRCERR: CRC Status bit (Receive mode only)										
	 1 = A CRC error occurred for the 1-6 data nibbles in SENTxDATH/L 0 = A CRC error has not occurred 										
bit 2	FRMERR: Framing Error Status bit (Receive mode only)										
	1 = A data nibble was received with less than 12 tick periods or greater than 27 tick periods										
	0 = Framing error has not occurred										
bit 1	RXIDLE: SE	NTx Receiver	Idle Status bit (Receive mode	e only)						
		 1 = The SENTx data bus has been Idle (high) for a period of SYNCMAX<15:0> or greater 0 = The SENTx data bus is not Idle 									
	0 = 1he SEN	I x data bus is	s not Idle								
Note 1: I	n Receive mode	(RCVEN = 1)	. the SYNCTXE	N bit is read-c	only.						

REGISTER 20-2: SENTxSTAT: SENTx STATUS REGISTER

Note 1: In Receive mode (RCVEN = 1), the SYNCTXEN bit is read-only.

22.0 CONTROLLER AREA NETWORK (CAN) MODULE (dsPIC33EVXXXGM10X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Enhanced Controller Area Network (ECAN™)" (DS70353) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

22.1 Overview

The Controller Area Network (CAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/ protocol was designed to allow communications within noisy environments. The dsPIC33EVXXXGM10X devices contain one CAN module.

The CAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details. The CAN module features are as follows:

- Implementation of the CAN Protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and Extended Data Frames
- 0 to 8-Byte Data Length
- Programmable Bit Rate, up to 1 Mbit/sec
- Automatic Response to Remote Transmission Requests
- Up to Eight Transmit Buffers with Application Specified Prioritization and Abort Capability (each buffer can contain up to 8 bytes of data)
- Up to 32 Receive Buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 Full (Standard/Extended Identifier) Acceptance Filters
- Three Full Acceptance Filter Masks
- DeviceNet[™] Addressing Support
- Programmable Wake-up Functionality with Integrated Low-Pass Filter
- Programmable Loopback Mode Supports Self-Test Operation
- Signaling through Interrupt Capabilities for All CAN Receiver and Transmitter Error States
- Programmable Clock Source
- Programmable Link to Input Capture 2 (IC2) module for Timestamping and Network Synchronization
- Low-Power Sleep and Idle Modes

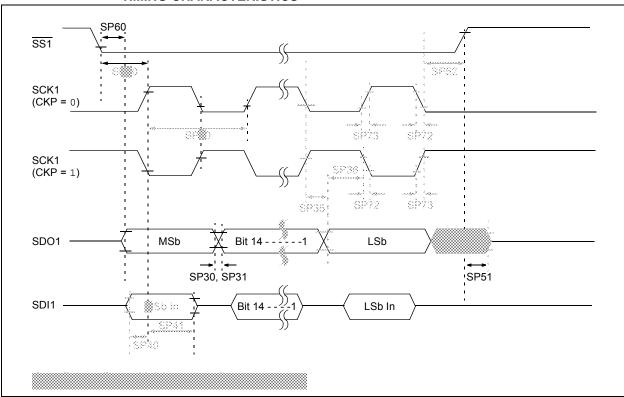
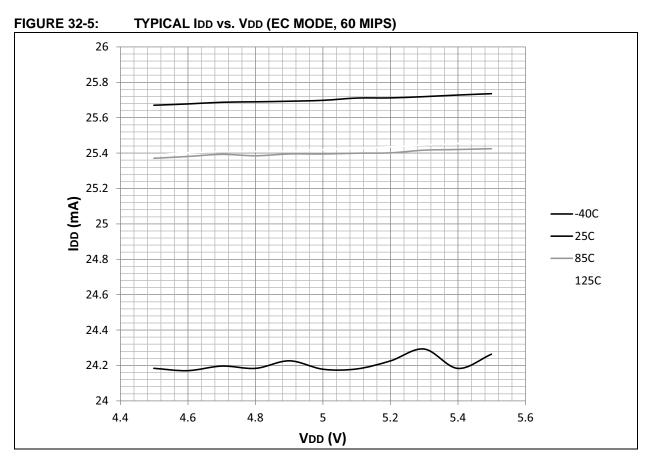

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors, and then matched against filters to see if it should be received and stored in one of the Receive registers.

Figure 22-1 shows a block diagram of the CANx module.

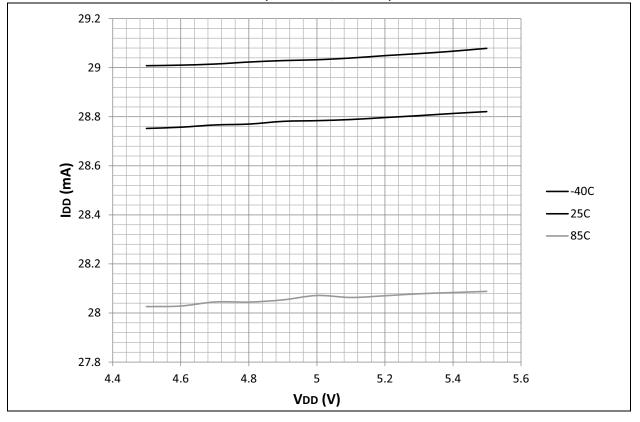
REGISTER	24-2: ADx	CON2: ADCx (CONTROL RI	EGISTER 2						
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
VCFG2 ⁽¹⁾	VCFG1 ⁽¹⁾	VCFG0 ⁽¹⁾	—	_	CSCNA	CHPS1	CHPS0			
bit 15							bit			
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS			
bit 7			0111112			Dor m	bit			
<u> </u>										
Legend: R = Readable	- hit	M = Mritabla k			monted hit read					
		W = Writable k	DIL	•	nented bit, read					
-n = Value at	PUR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown			
bit 15-13	VCFG<2:0>	Converter Volta	ge Reference	Configuration I	oits ⁽¹⁾					
	Value	VREFH	VREFL							
	xxx	AVdd	AVss							
bit 12-11	Unimpleme	ented: Read as '0	,							
bit 10	CSCNA: Input Scan Select bit									
	1 = Scans inputs for CH0+ during Sample MUX A									
		ot scan inputs								
bit 9-8	CHPS<1:0>: Channel Select bits									
	In 12-Bit Mode (AD21B = 1), CHPS<1:0> bits are Unimplemented and are Read as '0':									
	1x = Converts CH0, CH1, CH2 and CH3 01 = Converts CH0 and CH1									
	00 = Converts CH0									
bit 7	BUFS: Buffer Fill Status bit (only valid when BUFM = 1)									
	1 = ADCx is currently filling the second half of the buffer; the user application should access data in th									
	first half of the buffer									
	0 = ADCx is currently filling the first half of the buffer; the user application should access data in th second half of the buffer									
bit 6-2	SMPI<4:0>: Increment Rate bits									
	When ADDMAEN = 0: x1111 = Generates interrupt after completion of every 16th sample/conversion operation									
	x1110 = Generates interrupt after completion of every 15th sample/conversion operation									
	•									
	•									
	• x0001 = Generates interrupt after completion of every 2nd sample/conversion operation									
	x0000 = Generates interrupt after completion of every sample/conversion operation									
	When ADDMAEN = 1:									
	11111 = Increments the DMA address after completion of every 32nd sample/conversion operation 11110 = Increments the DMA address after completion of every 31st sample/conversion operation									
	•									
	•									
	00001 = Increments the DMA address after completion of every 2nd sample/conversion operation									
		crements the DMA								
Note 1. Th		H Input is connec	ted to AVpp ar	nd the VREEL in	inut is connecte	d to AVss				

REGISTER 24-2: ADxCON2: ADCx CONTROL REGISTER 2

Note 1: The ADCx VREFH Input is connected to AVDD and the VREFL input is connected to AVss.


FIGURE 30-24: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

AC CH/	ARACTER	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristic	aracteristic Min. Typ. Max.		Units	Conditions				
	Device Supply									
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or VBOR	_	Lesser of: VDD + 0.3 or 5.5	V				
AD02	AVss	Module Vss Supply	Vss – 0.3	_	Vss + 0.3	V				
			Refere	nce Inpu	ıts					
AD05	Vrefh	Reference Voltage High	4.5	_	5.5	V	VREFH = AVDD, VREFL = AVSS = 0			
AD06	VREFL	Reference Voltage Low	AVss		AVDD - VBORMIN	V	See Note 1			
AD06a			0	_	0	V	VREFH = AVDD, VREFL = AVSS = 0			
AD07	Vref	Absolute Reference Voltage	4.5	_	5.5	V	Vref = Vrefh – Vrefl			
AD08	IREF	Current Drain	—		10 600	μA μA	ADC off ADC on			
AD09	lad	Operating Current	_	5 2		mA mA	ADC operating in 10-bit mode (see Note 1) ADC operating in 12-bit mode (see Note 1)			
		•	Anal	og Input			•			
AD12	VINH	Input Voltage Range Vinн	VINL		VREFH	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input			
AD13	VINL	Input Voltage Range Vın∟	VREFL	_	AVss + 1V	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input			
AD17	Rin	Recommended Impedance of Analog Voltage Source	_		200	Ω	Impedance to achieve maximum performance of ADC			


TABLE 30-54: ADC MODULE SPECIFICATIONS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

dsPIC33EVXXXGM00X/10X FAMILY

© 2013-2016 Microchip Technology Inc.

dsPIC33EVXXXGM00X/10X FAMILY

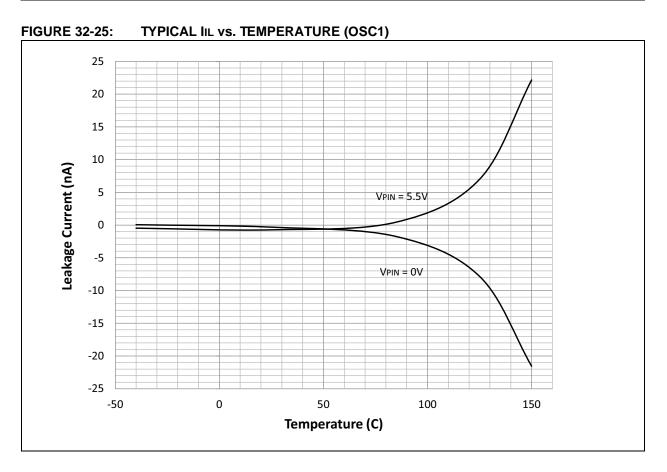
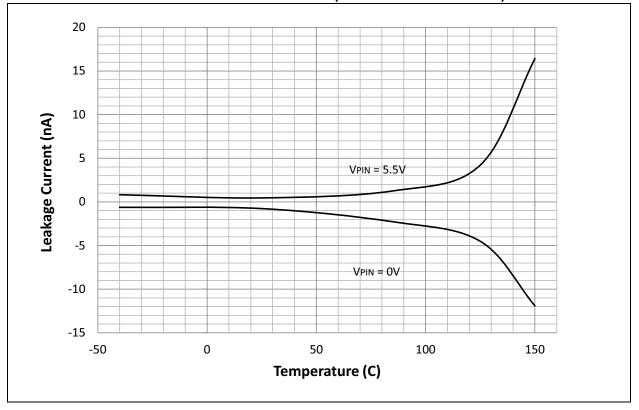
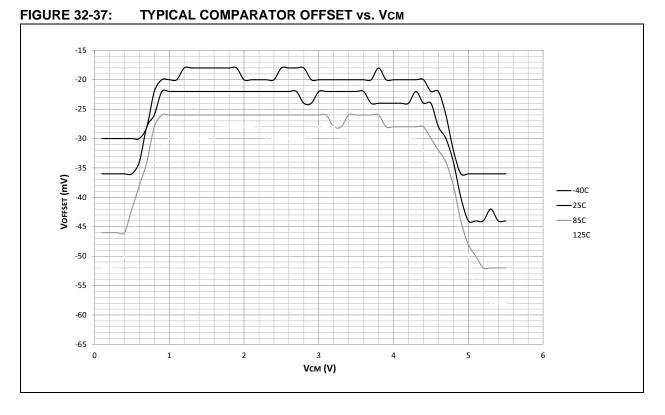
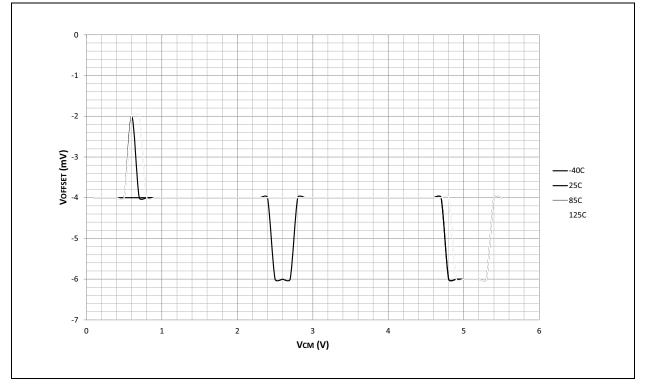
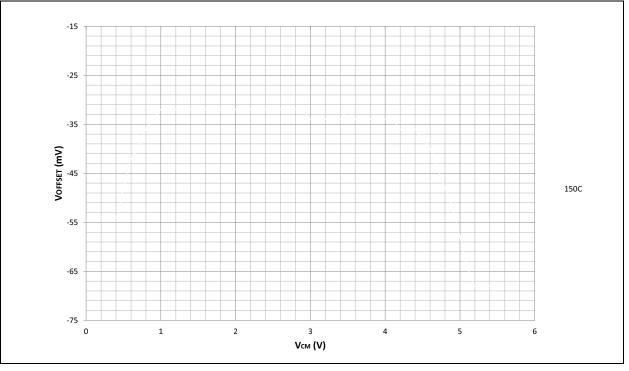
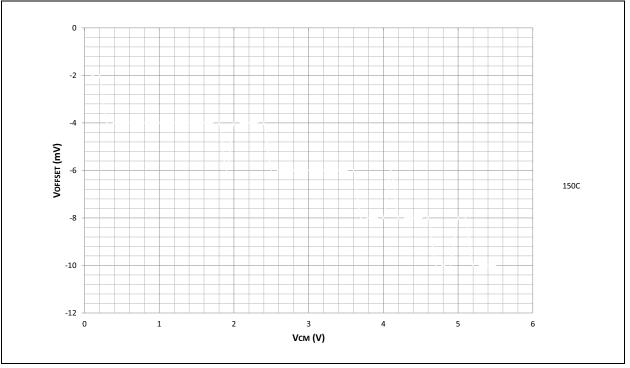




FIGURE 32-26: TYPICAL IIL vs. TEMPERATURE (GENERAL PURPOSE I/Os)



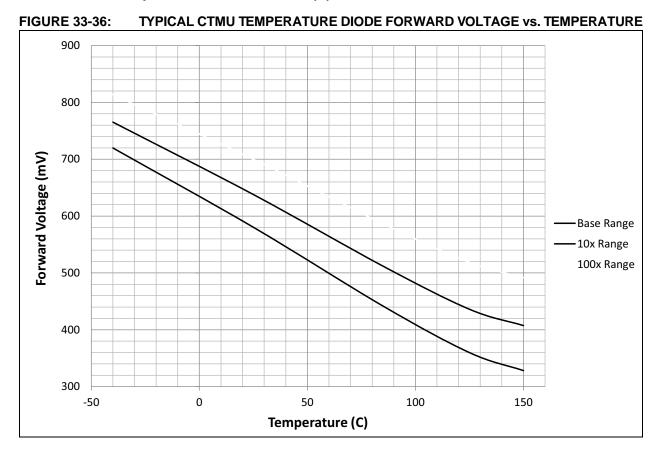
© 2013-2016 Microchip Technology Inc.


32.14 Comparator Op Amp Offset



33.14 Comparator Op Amp Offset

FIGURE 33-33: TYPICAL COMPARATOR OFFSET vs. Vcm



33.15 CTMU Current V/S Temperature

33.16 CTMU Temperature Forward Diode (V)

