

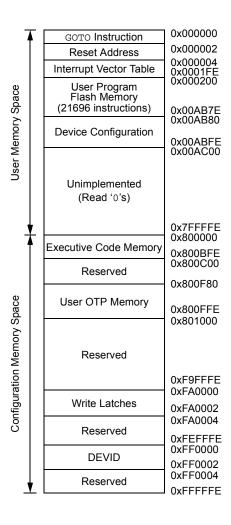
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 36x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev128gm106-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note 1: Memory areas are not shown to scale.

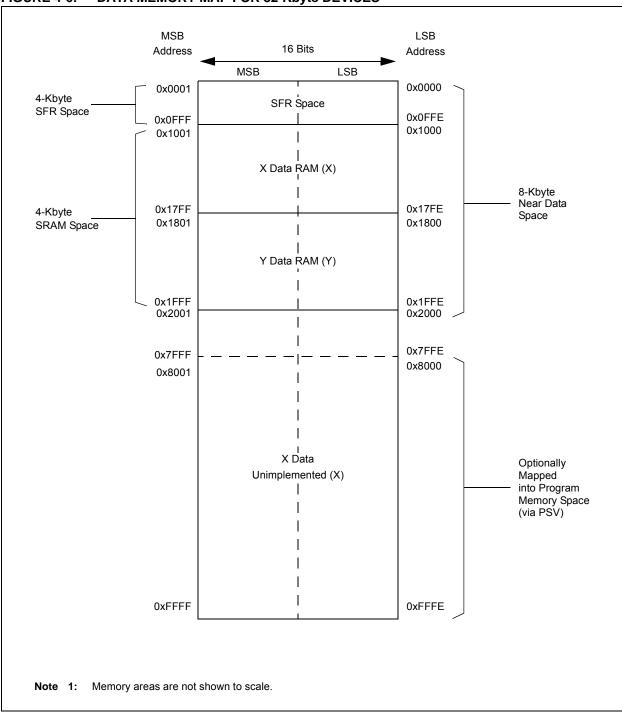


FIGURE 4-6: DATA MEMORY MAP FOR 32-Kbyte DEVICES⁽¹⁾

TABLE 4-5: UART1 AND UART2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	_	_				UART1	Transmit Re	egister				xxxx
U1RXREG	0226	_	_	_	_	_	_	_				UART1	Receive Re	egister				0000
U1BRG	0228						U	ART1 Bau	id Rate G	enerator Pres	caler Registe	r						0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	_	_				UART2	Transmit Re	egister				xxxx
U2RXREG	0236	_	_	_	_	—	_	—				UART2	Receive Re	egister				0000
U2BRG	0238						U	ART2 Bau	id Rate G	enerator Pres	caler Registe	r						0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-6: SPI1 AND SPI2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	-	SPISIDL		_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI1CON1	0242	_		_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	—	_	_	_	_	—	—	_	_	_	FRMDLY	SPIBEN	0000
SPI1BUF	0248							SPI1 Tra	ansmit and R	eceive Buf	fer Registe	r						0000
SPI2STAT	0260	SPIEN	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI2CON1	0262	_		_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	—	_	—	_	_	—	—	_	_	_	FRMDLY	SPIBEN	0000
SPI2BUF	0268							SPI2 Tra	ansmit and R	eceive Buf	fer Registe	r						0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

	••																	
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC1 Da	ta Buffer	0							xxxx
ADC1BUF1	0302								ADC1 Da	ta Buffer	1							xxxx
ADC1BUF2	0304								ADC1 Da	ta Buffer	2							xxxx
ADC1BUF3	0306								ADC1 Da	ta Buffer	3							xxxx
ADC1BUF4	0308								ADC1 Da	ta Buffer	4							xxxx
ADC1BUF5	030A								ADC1 Da	ta Buffer	5							xxxx
ADC1BUF6	030C								ADC1 Da	ta Buffer	6							xxxx
ADC1BUF7	030E								ADC1 Da	ta Buffer	7							xxxx
ADC1BUF8	0310								ADC1 Da	ta Buffer	8							xxxx
ADC1BUF9	0312								ADC1 Da	ta Buffer	9							xxxx
ADC1BUFA	0314								ADC1 Dat	ta Buffer 1	0							xxxx
ADC1BUFB	0316								ADC1 Dat	ta Buffer 1	1							xxxx
ADC1BUFC	0318								ADC1 Dat	ta Buffer 1	2							xxxx
ADC1BUFD	031A								ADC1 Dat	ta Buffer 1	3							xxxx
ADC1BUFE	031C								ADC1 Dat	ta Buffer 1	4							xxxx
ADC1BUFF	031E								ADC1 Dat	ta Buffer 1	5							xxxx
AD1CON1	0320	ADON	I	ADSIDL	ADDMABM	—	AD12B	FORM1	FORM0	SSRC2	SSRC1	SSRC0	SSRCG	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	—	—	CSCNA	CHPS1	CHPS0	BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	I		SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS123	0326	_	I		CH123SB2	CH123SB1	CH123NB1	CH123NB0	CH123SB0	—			CH123SA2	CH123SA1	CH123NA1	CH123NA0	CH123SA0	0000
AD1CHS0	0328	CH0NB		CH0SB5	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA	-	CH0SA5	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1CSSH	032E					CSS<31:24>				_	_	_	—		CSS<	<19:16>		0000
AD1CSSL	0330								CSS	<15:0>								0000
AD1CON4	0332	-	_	_	—	—	_	_	ADDMAEN	_	_	_	_	-	DMABL2	DMABL1	DMABL0	0000
							D											

TABLE 4-7: ADC1 REGISTER MAP

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: CTMU REGISTER MAP

	SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset s
Ī	CTMUCON1	033A	CTMUEN	-	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	_	—		_	_	_	_		0000
Ī	CTMUCON2	033C	EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	_	_	0000
	CTMUICON	033E	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0	-	_		_	_	_	_	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: DMAC REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0B00	CHEN	SIZE	DIR	HALF	NULLW		_	_	—	_	AMODE1	AMODE0	—	—	MODE1	MODE0	0000
DMA0REQ	0B02	FORCE	_	_	_	_	_	-	_	IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0	OOFF
DMA0STAL	0B04									STA<	15:0>							0000
DMA0STAH	0B06	_	_	_	_	_							STA<	23:16>				0000
DMA0STBL	0B08									STB<	15:0>							0000
DMA0STBH	0B0A	_	_	—	_	_		_					STB<	23:16>				0000
DMA0PAD	0B0C									PAD<	15:0>							0000
DMA0CNT	0B0E	_	_								CNT<13:0)>						0000
DMA1CON	0B10	CHEN	SIZE	DIR	HALF	NULLW	-	—	_	_	—	AMODE1	AMODE0	_	_	MODE1	MODE0	0000
DMA1REQ	0B12	FORCE	—	—	_		-	—	_	IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0	OOFF
DMA1STAL	0B14									STA<	15:0>							0000
DMA1STAH	0B16	—	—	—	_		-	—	_				STA<	23:16>				0000
DMA1STBL	0B18									STB<	15:0>							0000
DMA1STBH	0B1A	—	—	—	_		-	—	_				STB<	23:16>				0000
DMA1PAD	0B1C									PAD<	15:0>							0000
DMA1CNT	0B1E	—	—								CNT<13:0)>						0000
DMA2CON	0B20	CHEN	SIZE	DIR	HALF	NULLW	-	—	_	_	—	AMODE1	AMODE0	_	_	MODE1	MODE0	0000
DMA2REQ	0B22	FORCE	—	_	—	—	—	_	_	IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0	00FF
DMA2STAL	0B24				-					STA<	15:0>							0000
DMA2STAH	0B26	—	—		_		—	—	—				STA<	23:16>				0000
DMA2STBL	0B28									STB<	15:0>							0000
DMA2STBH	0B2A	—	—	—	_		-	—	_				STB<	23:16>				0000
DMA2PAD	0B2C									PAD<	15:0>							0000
DMA2CNT	0B2E	—	—								CNT<13:0)>						0000
DMA3CON	0B30	CHEN	SIZE	DIR	HALF	NULLW	-	—	_	_	—	AMODE1	AMODE0	_	_	MODE1	MODE0	0000
DMA3REQ	0B32	FORCE	—	—	_		-	—	_	IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0	OOFF
DMA3STAL	0B34									STA<	15:0>							0000
DMA3STAH	0B36	—	—	—	_		-	—	_				STA<	23:16>				0000
DMA3STBL	0B38									STB<	15:0>							0000
DMA3STBH	0B3A	—	—	_			_	—					STB<	23:16>				0000
DMA3PAD	0B3C									PAD<	15:0>							0000
DMA3CNT	0B3E	_	_								CNT<13:0)>						0000
DMAPWC	0BF0		_	_	_		_	_	_	_	_	_			PWCC)L<3:0>		0000
DMARQC	0BF2		_	_	_		_	_	_	_	_	_	_		RQCC)L<3:0>		0000
DMAPPS	0BF4	_	—	_	_	_	_	_	_	_	_	_	_		PPS	Г<3:0>		0000

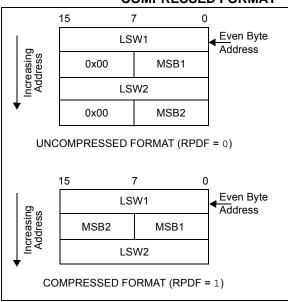
dsPIC33EVXXXGM00X/10X FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.2 RTSP Operation

RTSP allows the user application to erase a single page of memory, program a row and to program two instruction words at a time. See Table 1 in the "dsPIC33EVXXXGM00X/10X Product Families" section for the page sizes of each device.memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to era

The Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of program memory, which consists of eight rows (512 instructions) at a time, and to program one row or two adjacent words at a time. The 8-row erase pages and single row write rows are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively. Table 30-13 in **Section 30.0 "Electrical Characteristics"** lists the typical erase and programming times.


The basic sequence for RTSP word programming is to use the TBLWTL and TBLWTH instructions to load two of the 24-bit instructions into the write latches found in configuration memory space. See Figure 4-1 to Figure 4-5 for write latch addresses. Programming is performed by unlocking and setting the control bits in the NVMCON register.

Row programming is performed by loading 192 bytes into data memory and then loading the address of the first byte in that row into the NVMSRCADR register. Once the write has been initiated, the device will automatically load the write latches and increment the NVMSRCADR and the NVMADR(U) registers until all bytes have been programmed. The RPDF bit (NVMCON<9>) selects the format of the stored data in RAM to be either compressed or uncompressed. See Figure 5-2 for data formatting. Compressed data helps to reduce the amount of required RAM by using the upper byte of the second word for the MSB of the second instruction.

For more information on erasing and programming the Flash memory, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual".

- Note 1: Before reprogramming either of the two words in a double-word pair, the user must erase the Flash memory page in which it is located.
 - 2: Before reprogramming any word in a row, the user must erase the Flash memory page in which it is located.

FIGURE 5-2: UNCOMPRESSED/ COMPRESSED FORMAT

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, erase the page that contains the desired address of the location the user wants to change. For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Refer to **"Flash Programming"** (DS70609) in the *"dsPIC33/PIC24 Family Reference Manual"* for details and code examples on programming using RTSP.

REGISTER 5-5: NVMSRCADRH: NVM DATA MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	_	_	—	_	—	—
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMSRCAD)R<23:16>			
bit 7							bit 0
Legend:							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMSRCADRH<23:16>: Data Memory Upper Address bits

REGISTER 5-6: NVMSRCADRL: NVM DATA MEMORY LOWER ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMSRC	CADR<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	r-0
		NV	MSRCADR<	7:1>			—
bit 7							bit C
Legend:		r = Reserved	bit				
R = Readable b	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-1 NVMSRCADRL<15:1>: Data Memory Lower Address bits

bit 0 Reserved: Maintain as '0'

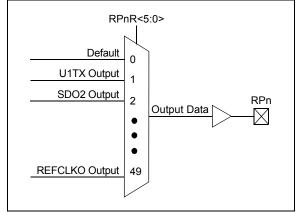
R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
TRAPF	R IOPUWR		—	VREGSF		CM	VREGS
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit (
Legend:							
R = Reada		W = Writable	oit	•	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
6:4 <i>4 C</i>		Deast Flag bit					
bit 15		o Reset Flag bit onflict Reset ha	e occurrod				
		onflict Reset ha		ed			
bit 14	•	egal Opcode or			ess Reset Flag	a bit	
		al Opcode detec		•	-		ter used as ar
		Pointer caused		· · · · · · · · · · · ·			
		I Opcode Rese		zed W Register	Reset has not	occurred	
bit 13-12	-	nted: Read as '					
bit 11		ash Voltage Reg			o bit		
		Itage regulator i		•	ing Sleep mode	2	
bit 10		nted: Read as '	-		ing cleep mout		
bit 9	-	ration Mismatch					
	•	uration Mismatc	•	occurred.			
		uration Mismato					
bit 8	VREGS: Volt	age Regulator S	Standby Durii	ng Sleep bit			
		regulator is activ					
	•	regulator goes i		mode during Sle	еер		
bit 7		nal Reset (MCL	,				
		Clear (pin) Res Clear (pin) Res					
bit 6		are RESET (Instr					
		instruction has					
	0 = A reset	instruction has	not been exe	ecuted			
bit 5	SWDTEN: So	oftware Enable/	Disable of W	DT bit ⁽²⁾			
	1 = WDT is e						
	0 = WDT is d						
bit 4		hdog Timer Tim	-	it			
		e-out has occur e-out has not oc					
Note 1:	All of the Reset sta cause a device Re		set or cleare	a in software. S	etting one of th	ese bits in soft	ware does not
2:	If the FWDTEN<1		n hits are '1 1	' (unprogramm	ed) the WDT is	always enable	od rogardlaar

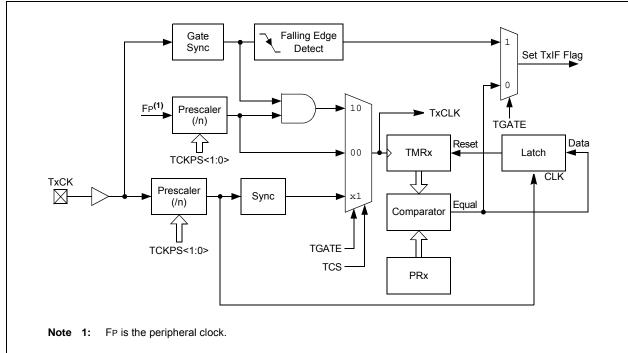
REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

If the FWDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment		Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignmen
011 0001	I/O	RP49		101 1110	I	RPI94
110 0000	I	RPI96		101 1111	Ι	RPI95
110 0001	I/O	RP97		111 0011		
110 0010	—	_		111 0100		
110 0011	—	—		111 0101		
110 0100	_	_		111 0110	I/O	RP118
110 0101	_	—		111 0111	Ι	RPI119
110 0110	—	_		111 1000	I/O	RP120
110 0111	—	_		111 1001	I	RPI121
110 1000	—	_		111 1010	—	_
110 1001	—	_		111 1011	_	
110 1010	—	—		111 1100	Ι	RPI124
110 1011	—	—		111 1101	I/O	RP125
101 0101	—	_		111 1110	I/O	RP126
101 0110		_		111 1111	I/O	RP127
101 0111	_	_		10110000	I/O	RP176 ⁽¹⁾
110 1100	—	_		10110001	I/O	RP177 ⁽¹⁾
110 1101	—		[10110010	I/O	RP178 ⁽¹⁾
110 1110	_	_		10110011	I/O	RP179 ⁽¹⁾
110 1111	_	_		10110100	I/O	RP180 ⁽¹⁾
111 0010	_	_		10110101	I/O	RP181 ⁽¹⁾

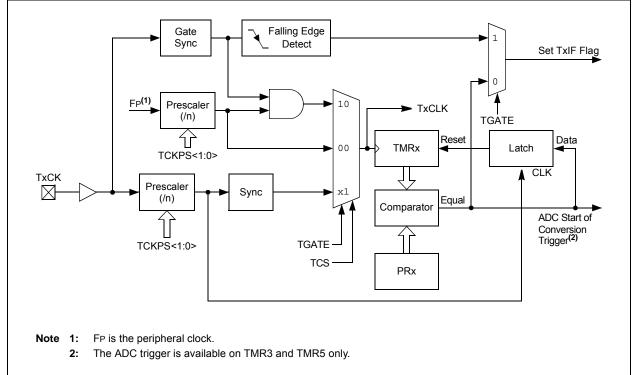
Legend: Shaded rows indicate the PPS Input register values that are unimplemented.


Note 1: These are virtual pins. See Section 11.5.4.1 "Virtual Connections" for more information on selecting this pin assignment.


11.5.5 OUTPUT MAPPING

In contrast to inputs, the outputs of the PPS options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 11-18 to Register 11-31). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-3 and Figure 11-3).

A null output is associated with the Output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.


FIGURE 11-3: MULTIPLEXING REMAPPABLE OUTPUT FOR RPn

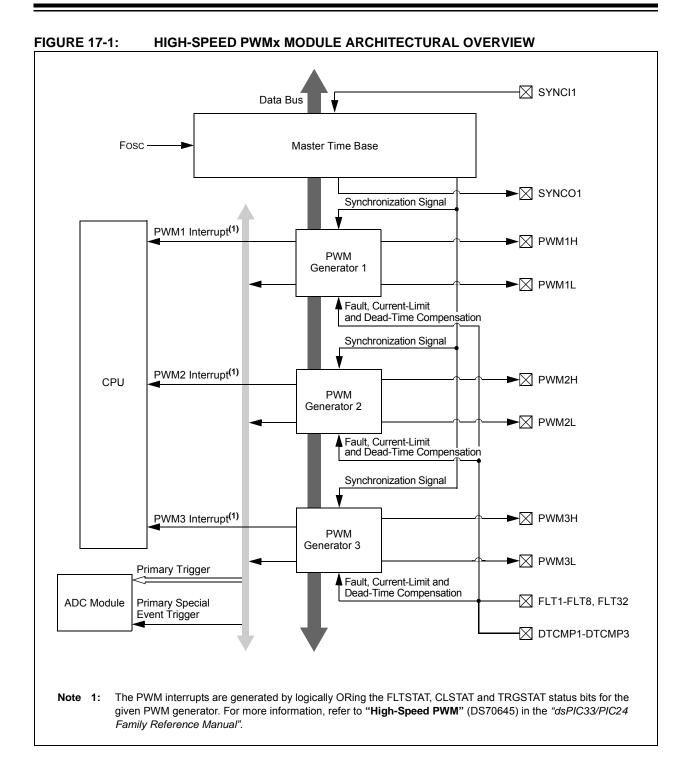


FIGURE 13-1: TYPE B TIMER BLOCK DIAGRAM (x = 2 AND 4)

17.3 PWMx Control Registers

REGISTER 17-1: PTCON: PWMx TIME BASE CONTROL REGISTER

R/W-0	U-0	R/W-0	HS-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	SYNCSRC2 ⁽¹⁾	SYNCSRC1 ⁽¹⁾	SYNCSRC0 ⁽¹⁾	SEVTPS3 ⁽¹⁾	SEVTPS2 ⁽¹⁾	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾
bit 7	•						bit 0

Legend:	HC = Hardware Clearable bit	arable bit HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	PTEN: PWMx Module Enable bit
	1 = PWMx module is enabled
	0 = PWMx module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	PTSIDL: PWMx Time Base Stop in Idle Mode bit
	1 = PWMx time base halts in CPU Idle mode 0 = PWMx time base runs in CPU Idle mode
bit 12	SESTAT: Special Event Interrupt Status bit
	1 = Special event interrupt is pending0 = Special event interrupt is not pending
bit 11	SEIEN: Special Event Interrupt Enable bit
	1 = Special event interrupt is enabled
	0 = Special event interrupt is disabled
bit 10	EIPU: Enable Immediate Period Updates bit ⁽¹⁾
	1 = Active Period register is updated immediately
	0 = Active Period register updates occur on PWMx cycle boundaries
bit 9	SYNCPOL: Synchronize Input and Output Polarity bit ⁽¹⁾
	1 = SYNCI1/SYNCO1 polarity is inverted (active-low)
1.11.0	0 = SYNCI1/SYNCO1 is active-high
bit 8	SYNCOEN: Primary Time Base Sync Enable bit ⁽¹⁾
	1 = SYNCO1 output is enabled 0 = SYNCO1 output is disabled
bit 7	SYNCEN: External Time Base Synchronization Enable bit ⁽¹⁾
	 1 = External synchronization of primary time base is enabled 0 = External synchronization of primary time base is disabled
Note 1	: These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the us

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

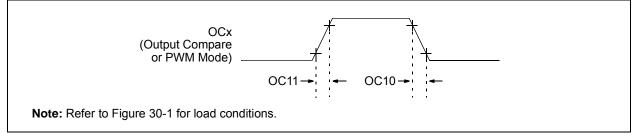
HS-0, HC		HS-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
FLTSTAT ⁽¹) CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽²⁾	MDCS ⁽²⁾			
bit 15		•		•			bit 8			
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
DTC1	DTC0	DTCP ⁽³⁾		_	CAM ^(2,4)	XPRES ⁽⁵⁾	IUE ⁽²⁾			
bit 7		•			·		bit (
Legend:		HC = Hardware	Clearable bit	HS = Hardwa	are Settable bit					
R = Readab	le bit	W = Writable bi	t	U = Unimple	mented bit, rea	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15		ult Interrupt Statu	us bit ⁽¹⁾							
		rupt is pending								
		rrupt is not pendi ared by setting F								
bit 14		rent-Limit Interru								
	1 = Current-limit interrupt is pending									
0 = Current-limit interrupt is not pending										
		ared by setting C								
bit 13		igger Interrupt St								
		terrupt is pending								
		terrupt is not per ared by setting T								
bit 12		t Interrupt Enable								
		rupt is enabled								
	0 = Fault inter	rupt is disabled	and the FLTST	AT bit is cleare	ed					
bit 11	CLIEN: Curre	nt-Limit Interrup	t Enable bit							
		mit interrupt is er		0.0747						
L:1 4 0		mit interrupt is di		CLSTAT bit is	cleared					
bit 10	•	ger Interrupt Ena ent generates a		loot						
		ent interrupts ar			bit is cleared					
bit 9	00	dent Time Base I								
	-	register provides		iod for this PW	/M generator					
		egister provides t								
bit 8	MDCS: Maste	er Duty Cycle Re	gister Select b	it ⁽²⁾						
	•	ster provides dut ister provides du			•					
Note 1: S	oftware must clea	ar the interrupt st	atus here and	in the correspo	onding IFSx bit	in the interrupt	controller.			
	hese bits should	•		•	•	Į.				
	DTC<1:0> = 11 for DTCP to be effective; else, DTCP is ignored.									
	he Independent T AM bit is ignored	ne Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the AM bit is ignored.								
5: T	o operate in Exter egister must be '0	rnal Period Rese	t mode, the IT	B bit must be '	1' and the CLM	OD bit in the F	CLCONx			

REGISTER 17-7: PWMCONx: PWMx CONTROL REGISTER

NOTES:

DC CHARACTERISTICS			Standard Operating Co (unless otherwise state Operating temperature			ed)		
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions	
		Program Flash Memory						
D130	Eр	Cell Endurance	10,000	—	_	E/W	-40°C to +125°C	
D131	Vpr	VDD for Read	4.5	—	5.5	V		
D132b	VPEW	VDD for Self-Timed Write	4.5	—	5.5	V		
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated, -40°C to +125°C	
D135	IDDP	Supply Current During Programming	_	10	—	mA		
D136a	Trw	Row Write Cycle Time	0.657	—	0.691	ms	Trw = 4965 FRC cycles, Ta = +85°C (see Note 2)	
D136b	Trw	Row Write Cycle Time	0.651	_	0.698	ms	Trw = 4965 FRC cycles, Ta = +125°C (see Note 2)	
D137a	TPE	Page Erase Time	19.44	_	20.44	ms	TPE = 146893 FRC cycles, TA = +85°C (see Note 2)	
D137b	TPE	Page Erase Time	19.24	—	20.65	ms	TPE = 146893 FRC cycles, TA = +125°C (see Note 2)	
D138a	Tww	Word Write Cycle Time	45.78	—	48.15	μs	Tww = 346 FRC cycles, TA = +85°C (see Note 2)	
D138b	Tww	Word Write Cycle Time	45.33	_	48.64	μs	Tww = 346 FRC cycles, TA = +125°C (see Note 2)	

TABLE 30-13: DC CHARACTERISTICS: PROGRAM MEMORY


Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

2: Other conditions: FRC = 7.3728 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 30-20) and the value of the FRC Oscillator Tuning register.

TABLE 30-14: ELECTRICAL CHARACTERISTICS: INTERNAL BAND GAP REFERENCE VOLTAGE

DC CHAR	DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
DVR10	Vbg	Internal Band Gap Reference Voltage	1.14	1.2	1.26	V			

FIGURE 30-8: OUTPUT COMPARE x (OCx) TIMING CHARACTERISTICS

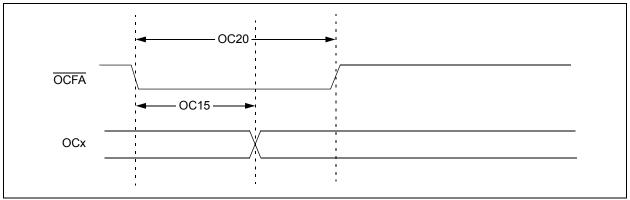


TABLE 30-27: OUTPUT COMPARE x (OCx) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions		
OC10	TccF	OCx Output Fall Time	_	_		ns	See Parameter DO32		
OC11	TccR	OCx Output Rise Time	_	_	—	ns	See Parameter DO31		

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-9: OCx/PWMx MODULE TIMING CHARACTERISTICS

TABLE 30-28: OCx/PWMx MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
OC15	Tfd	Fault Input to PWMx I/O Change	—	_	Tcy + 20	ns		
OC20	TFLT	Fault Input Pulse Width	Tcy + 20		—	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min. ⁽¹⁾	Тур.	Max.	Units	Conditions	
HDO16	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾			0.4	V	Iol = 8.8 mA, VDD = 5.0V	
HDO10	Vol	Output Low Voltage 8x Sink Driver Pins ⁽³⁾	_		0.4	V	IOL = 10.8 mA, VDD = 5.0V	
HDO26	Vон	Output High Voltage 4x Sink Driver Pins ⁽²⁾	Vdd - 0.6		_	V	Іон = -8.3 mA, Vdd = 5.0V	
HDO20	Vон	Output High Voltage 8x Sink Driver Pins	Vdd - 0.6	_	_	V	Іон = -12.3 mA, Vdd = 5.0V	

TABLE 31-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized but not tested.

2: Includes all I/O pins that are not 8x sink driver pins (see below).

3: Includes the pins, such as RA3, RA4 and RB<15:10> for 28-pin devices, RA3, RA4, RA9 and RB<15:10> for 44-pin devices, and RA4, RA7, RA9, RB<15:10> and RC15 for 64-pin devices.

TABLE 31-10: ELECTRICAL CHARACTERISTICS: BOR

DC CHA	DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min. ⁽¹⁾	Тур.	Max.	Units	Conditions	
HBO10	VBOR	BOR Event on VDD Transition High-to-Low	4.15	4.285	4.4	V	VDD (see Note 2, Note 3 and Note 4)	

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

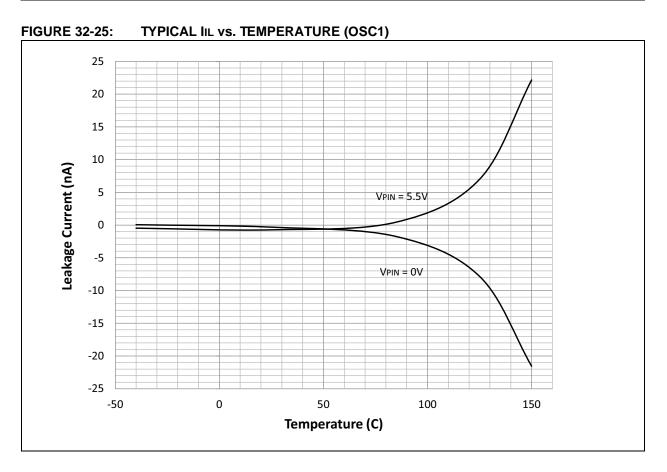
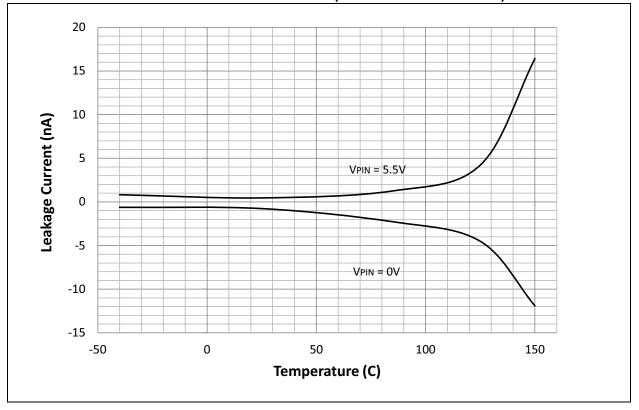
- **2:** The VBOR specification is relative to the VDD.
- **3:** The device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, op amp/comparator and comparator voltage reference will have degraded performance. Device functionality is tested but is not characterized.
- 4: The start-up VDD must rise above 4.6V.

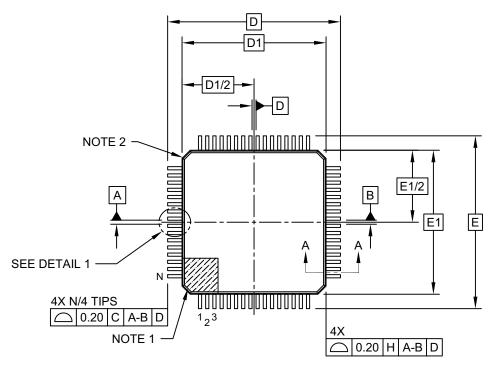
TABLE 31-11: DC CHARACTERISTICS: PROGRAM MEMORY

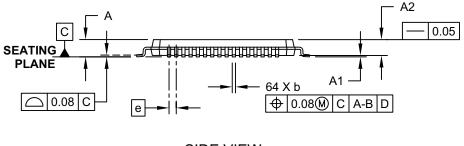
DC CHA	RACTERI	STICS	Standard Operating Conditions: 4.5V to 5.5V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
		Program Flash Memory					
HD130	Eр	Cell Endurance	10,000	—	—	E/W	-40°C to +150°C ⁽²⁾
HD134	Tretd	Characteristic Retention	20		—	Year	1000 E/W cycles or less and no other specifications are violated

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is allowed up to +150°C.


FIGURE 32-26: TYPICAL IIL vs. TEMPERATURE (GENERAL PURPOSE I/Os)


© 2013-2016 Microchip Technology Inc.

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

SIDE VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2

APPENDIX A: REVISION HISTORY

Revision A (December 2013)

This is the initial version of this document.

Revision B (June 2014)

This revision incorporates the following updates:

- Sections:
 - Added Section 31.0 "High-Temperature Electrical Characteristics"
 - Updated the "Power Management" section, the "Input/Output" section, Section 3.3
 "Data Space Addressing", Section 4.2
 "Data Address Space", Section 4.3.2
 "Extended X Data Space", Section 4.6.1
 "Bit-Reversed Addressing Implementation", Section 7.4.1 "INTCON1 through INTCON4", Section 11.7 "I/O Helpful Tips"
 - Updated note in Section 17.0 "High-Speed PWM Module", Section 18.0 "Serial Peripheral Interface (SPI)", Section 27.8 "Code Protection and CodeGuard™ Security"
 - Updated title of Section 20.0 "Single-Edge Nibble Transmission (SENT)"
 - Updated Section 34.0 "Packaging Information". Deleted e3, Pb-free and Industrial (I) temperature range indication throughout the section, and updated the packaging diagrams
 - Updated the "Product Identification System" section
- Registers:
 - Updated Register 3-2, Register 7-2, Register 7-6, Register 9-2, Register 11-3, Register 14-1, Register 14-3, Register 14-11, Register 15-1, Register 22-4
- Figures:
 - Added Figure 4-6, Figure 4-8, Figure 4-14, Figure 4-15, Figure 14-1, Figure 16-1, Figure 17-2, Figure 23-1, Figure 24-1
- Tables:
 - Updated Table 1, Table 27-1, Table 27-2, Table 30-6, Table 30-7, Table 30-8, Table 30-9, Table 30-10, Table 30-11, Table 30-12, Table 30-38, Table 30-50, Table 30-53 and added Table 31-11,
- Changes to text and formatting were incorporated throughout the document

Revision C (November 2014)

This revision incorporates the following updates:

- · Sections:
 - Added note in Section 5.2 "RTSP Operation"
 - Updated "Section 5.4 "Error Correcting Code (ECC)"
 - Deleted 44-Terminal Very Thin Leadless Array Package (TL) - 6x6x0.9 mm Body With Exposed Pad (VTLA).
- Registers
 - Updated Register 7-6
- Figures:
 - Updated Figure 4-1, Figure 4-3, Figure 4-4
- · Tables:
 - Updated Table 27-2, Table 31-13, Table 31-14, Table 31-15
 - Added Table 31-16, Table 31-17

Revision D (April 2015)

This revision incorporates the following updates:

- Sections:
 - Updated the Clock Management, Timers/ Output Compare/Input Capture, Communication Interfaces and Input/Output sections at the beginning of the data sheet (Page 1 and Page 2).
 - Updated all pin diagrams at the beginning of the data sheet (Page 4 through Page 9).
 - Added Section 11.6 "High-Voltage Detect (HVD)"
 - Updated Section 13.0 "Timer2/3 and Timer4/5"
 - Corrects all Buffer heading numbers in Section 22.4 "CAN Message Buffers"
- Registers
 - Updated Register 3-2, Register 25-2, Register 26-2
- Figures
 - Updated Figure 26-1, Figure 30-5, Figure 30-32
- Tables
 - Updated Table 1, Table 4-25, Table 30-10, Table 30-22, Table 30-53 and Table 31-8
- Changes to text and formatting were incorporated throughout the document