

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Detuns	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 36x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev128gm106t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

R/SO-0		R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
WR ⁽¹⁾	WREN ⁽¹⁾	WRERR ⁽¹⁾	NVMSIDL ⁽²⁾			RPDF	URERR
bit 15						•	bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	NVMOP3 ^(1,3,4)	NVMOP2 ^(1,3,4)	NVMOP1 ^(1,3,4)	NVMOP0 ^{(1,3,4}
bit 7							bit (
Legend:		SO = Settable	e Onlv bit				
R = Reada	able bit	W = Writable	3	U = Unimplem	ented bit, read a	as '0'	
-n = Value	at POR	'1' = Bit is set	t	'0' = Bit is clea		x = Bit is unkn	own
bit 15	WR: Write C	Control bit ⁽¹⁾					
						ion is self-time	d and the bit is
				tion is complete			
bit 14	-	e Enable bit ⁽¹⁾	ation is comp	lete and inactive	J		
011 14		ogram or erase	operations a	re enabled			
		ogram or erase					
bit 13	=	rite Sequence I					
				nce attempt, or t	termination has	occurred (bit is s	et automaticall
		set attempt of th					
L:1 10	-	-	-	npleted normally	/		
bit 12		NVM Stop in Idl			ce enters Idle m		
					enters Idle mod		
bit 11-10	-	nted: Read as					
bit 9	RPDF: Row	Programming	Data Format (Control bit			
				compressed fo	rmat		
	0 = Row data	a to be stored i	in RAM is in a	n uncompresse	d format		
bit 8		-	-	run Error Flag b			
		gramming ope underrun has o		en terminated du	ue to a data unc	lerrun error	
bit 7-4	Unimpleme	nted: Read as	' 0'				
Note 1:	These bits can c	only be reset or	n a POR				
	If this bit is set, t	-		avings (lidle). a	and upon exiting	ldle mode, the	re is a delav
	(TVREG) before I					,,	· · · j
٥.							

- 3: All other combinations of NVMOP<3:0> are unimplemented.
- 4: Execution of the PWRSAV instruction is ignored while any of the NVM operations are in progress.
- **5:** Two adjacent words on a 4-word boundary are programmed during execution of this operation.

9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Oscillator" (DS70580) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

OSCILLATOR SYSTEM DIAGRAM

FIGURE 9-1:

The dsPIC33EVXXXGM00X/10X family oscillator system provides:

- On-Chip Phase-Locked Loop (PLL) to Boost Internal Operating Frequency on Select Internal and External Oscillator Sources
- On-the-Fly Clock Switching between Various Clock Sources
- · Doze mode for System Power Savings
- Fail-Safe Clock Monitor (FSCM) that Detects Clock Failure and Permits Safe Application Recovery or Shutdown.
- Backup FRC (BFRC) Function that Provides a System Clock when there is a Failure in the FRC Clock
- Configuration bits for Clock Source Selection
- A simplified diagram of the oscillator system is shown in Figure 9-1.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0		
T5MD	T4MD	T3MD	T2MD	T1MD	—	PWMMD	—		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
I2C1MD					0-0	C1MD ⁽¹⁾			
bit 7	U2MD	U1MD	SPI2MD	SPI1MD	—	CTMD	AD1MD bit		
Legend:									
R = Readable		W = Writable		•	mented bit, re	ad as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own		
bit 15	T5MD: Timer	5 Module Disal	ole bit						
		odule is disable odule is enable							
bit 14	T4MD: Timer	4 Module Disal	ole bit						
	1 = Timer4 m	odule is disable	ed						
bit 13) = Timer4 module is enabled T3MD: Timer3 Module Disable bit							
		odule is disable odule is enable							
bit 12	T2MD: Timer	er2 Module Disable bit							
	-	odule is disable odule is enable							
bit 11	T1MD: Timer	: Timer1 Module Disable bit							
	-	odule is disable odule is enable							
bit 10	Unimplemen	ted: Read as '	0'						
bit 9	PWMMD: PW	/M Module Dis	able bit						
		dule is disabled dule is enabled							
bit 8	Unimplemen	ted: Read as '	0'						
bit 7	12C1MD: 12C	1 Module Disal	ole bit						
		lule is disabled lule is enabled							
bit 6	U2MD: UART	2 Module Disa	ble bit						
	-	nodule is disabl nodule is enable							
bit 5	U1MD: UART1 Module Disable bit								
		nodule is disabl nodule is enable							
bit 4	SPI2MD: SPI	2 Module Disa	ole bit						
		lule is disabled lule is enabled							
bit 3	SPI1MD: SPI	1 Module Disa	ole bit						
		dule is disabled dule is enabled							

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: This bit is available on dsPIC33EVXXXGM10X devices only.

17.3 PWMx Control Registers

REGISTER 17-1: PTCON: PWMx TIME BASE CONTROL REGISTER

R/W-0	U-0	R/W-0	HS-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	SYNCSRC2 ⁽¹⁾	SYNCSRC1 ⁽¹⁾	SYNCSRC0 ⁽¹⁾	SEVTPS3 ⁽¹⁾	SEVTPS2 ⁽¹⁾	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	PTEN: PWMx Module Enable bit
	1 = PWMx module is enabled
	0 = PWMx module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	PTSIDL: PWMx Time Base Stop in Idle Mode bit
	1 = PWMx time base halts in CPU Idle mode 0 = PWMx time base runs in CPU Idle mode
bit 12	SESTAT: Special Event Interrupt Status bit
	1 = Special event interrupt is pending0 = Special event interrupt is not pending
bit 11	SEIEN: Special Event Interrupt Enable bit
	1 = Special event interrupt is enabled
	0 = Special event interrupt is disabled
bit 10	EIPU: Enable Immediate Period Updates bit ⁽¹⁾
	1 = Active Period register is updated immediately
	0 = Active Period register updates occur on PWMx cycle boundaries
bit 9	SYNCPOL: Synchronize Input and Output Polarity bit ⁽¹⁾
	1 = SYNCI1/SYNCO1 polarity is inverted (active-low)
1.11.0	0 = SYNCI1/SYNCO1 is active-high
bit 8	SYNCOEN: Primary Time Base Sync Enable bit ⁽¹⁾
	1 = SYNCO1 output is enabled 0 = SYNCO1 output is disabled
bit 7	SYNCEN: External Time Base Synchronization Enable bit ⁽¹⁾
	 1 = External synchronization of primary time base is enabled 0 = External synchronization of primary time base is disabled
Note 1	: These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the us

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

dsPIC33EVXXXGM00X/10X FAMILY

REGISTER 17-18: AUXCONx: PWMx AUXILIARY CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—		—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN
bit 7							bit 0

Legend:										
R = Readab	ole bit	W = Writable bit	U = Unimplemented bit,	read as '0'						
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 15-12	Unimple	mented: Read as '0'								
bit 11-8	BLANKS	SEL<3:0>: PWMx State Bla	nk Source Select bits							
	the BCH 1001 = F • • 0100 = F	and BCL bits in the LEBCO Reserved	Nx register).	ult input signals (if enabled through						
	0001 = F	0010 = PWM2H is selected as the state blank source 0001 = PWM1H is selected as the state blank source 0000 = No state blanking								
bit 7-6	Unimple	mented: Read as '0'								
bit 5-2	CHOPSEL<3:0>: PWMx Chop Clock Source Select bits									
	The sele 1001 = F •		lisable (Chop) the selected PW	/Mx outputs.						
	• 0100 = Reserved 0011 = PWM3H is selected as the chop clock source 0010 = PWM2H is selected as the chop clock source 0001 = PWM1H is selected as the chop clock source 0000 = Chop clock generator is selected as the chop clock source									
bit 1	1 = PWN	EN: PWMxH Output Choppi IxH chopping function is en IxH chopping function is dis	abled							
bit 0	L = PWN	EN: PWMxL Output Choppin IxL chopping function is ena IxL chopping function is disa	ng Enable bit abled							

18.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on $\frac{1}{SSx}$.

Note: This insures that the first frame transmission after initialization is not shifted or corrupted.

- 2. In Non-Framed 3-Wire mode (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = <u>0</u>, always place a pull-down resistor on SSx.
- **Note:** This will insure that during power-up and initialization, the master/slave will not lose sync due to an errant SCKx transition that would cause the slave to accumulate data shift errors, for both transmit and receive, appearing as corrupted data.

- 3. FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame Sync pulse is active on the SSx pin, which indicates the start of a data frame.
- Note: Not all third-party devices support Frame mode timing. For more information, refer to the SPI specifications in Section 30.0 "Electrical Characteristics".
- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPI data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.

To avoid invalid slave read data to the master, the user's master software must ensure enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF Transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPIx Shift register and is empty once the data transmission begins.

20.2 Transmit Mode

By default, the SENTx module is configured for transmit operation. The module can be configured for continuous asynchronous message frame transmission, or alternatively, for Synchronous mode triggered by software. When enabled, the transmitter will send a Sync followed by the appropriate number of data nibbles, an optional CRC and optional pause pulse. The tick period used by the SENTx transmitter is set by writing a value to the TICKTIME<15:0> (SENTxCON2<15:0>) bits. The tick period calculations are shown in Equation 20-1.

EQUATION 20-1: TICK PERIOD CALCULATION

 $TICKTIME < 15:0 > = \frac{TTICK}{TCLK} - 1$

An optional pause pulse can be used in Asynchronous mode to provide a fixed message frame time period. The frame period used by the SENTx transmitter is set by writing a value to the FRAMETIME<15:0> (SENTxCON3<15:0>) bits. The formulas used to calculate the value of frame time are shown in Equation 20-2.

EQUATION 20-2: FRAME TIME CALCULATIONS

FRAMETIME<15:0> = TTICK/TFRAME

FRAMETIME<15:0> \geq 122 + 27*N*

 $FRAMETIME < 15:0 \ge 848 + 12N$

Where:

 T_{FRAME} = Total time of the message from ms N = The number of data nibbles in message, 1-6

Note: The module will not produce a pause period with less than 12 ticks, regardless of the FRAMETIME<15:0> value. FRAMETIME<15:0> values beyond 2047 will have no effect on the length of a data frame.

20.2.1 TRANSMIT MODE CONFIGURATION

20.2.1.1 Initializing the SENTx Module:

Perform the following steps to initialize the module:

- 1. Write RCVEN (SENTxCON1<11>) = 0 for Transmit mode.
- Write TXM (SENTxCON1<10>) = 0 for Asynchronous Transmit mode or TXM = 1 for Synchronous mode.
- 3. Write NIBCNT<2:0> (SENTxCON1<2:0>) for the desired data frame length.
- 4. Write CRCEN (SENTxCON1<8>) for hardware or software CRC calculation.
- 5. Write PPP (SENTxCON1<7>) for optional pause pulse.
- 6. If PPP = 1, write TFRAME to SENTxCON3.
- 7. Write SENTxCON2 with the appropriate value for desired tick period.
- 8. Enable interrupts and set interrupt priority.
- 9. Write initial status and data values to SENTxDATH/L.
- 10. If CRCEN = 0, calculate CRC and write the value to CRC<3:0> (SENTxDATL<3:0>).
- 11. Set the SNTEN (SENTxCON1<15>) bit to enable the module.

User software updates to SENTxDATH/L must be performed after the completion of the CRC and before the next message frame's status nibble. The recommended method is to use the message frame completion interrupt to trigger data writes.

REGISTER 21-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 5	ABAUD: Auto-Baud Enable bit
	 1 = Baud rate measurement on the next character is enabled – requires reception of a Sync field (55h) before other data; cleared in hardware upon completion 0 = Baud rate measurement is disabled or has completed
bit 4	URXINV: UARTx Receive Polarity Inversion bit
	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits 0 = One Stop bit
Note 1:	Refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the

- "dsPIC33/PIC24 Family Reference Manual" for information on enabling the UART module for receive or transmit operation.
- 2: This feature is only available for the 16x BRG mode (BRGH = 0).
- **3:** This feature is only available on 44-pin and 64-pin devices.
- **4:** This feature is only available on 64-pin devices.

REGISTER 22-14: CxBUFPNT3: CANx FILTERS 8-11 BUFFER POINTER REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F11BP3	F11BP2	F11BP1	F11BP0	F10BP3	F10BP2	F10BP1	F10BP0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F9BP3	F9BP2	F9BP1	F9BP0	F8BP3	F8BP2	F8BP1	F8BP0	
bit 7						•	bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'		as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-12	F11BP<3:0>:	RX Buffer Mas	sk for Filter 11	bits				
		hits received in						
	1110 = Filter	hits received in	RX Buffer 14	ł				
	•							
	•							
	0001 = Filter	hits received in	RX Buffer 1					
	0000 = Filter	hits received in	RX Buffer 0					
bit 11-8	F10BP<3:0>	RX Buffer Ma	sk for Filter 10) bits (same va	lues as bits 15- [,]	12)		
bit 7-4	F9BP<3:0>:	RX Buffer Masl	c for Filter 9 b	its (same value	es as bits 15-12))		
bit 3-0	F8BP<3:0>:	RX Buffer Masl	c for Filter 8 bi	its (same value	es as bits 15-12))		

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
HLMS	0-0	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN				
		OCEN	OCINEIN	OBEN	OBINEIN	UAEN					
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN				
bit 7							bit				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'					
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unk	nown				
bit 15	1 = The mask	ing (blanking)		event any asse	erted ('0') compa erted ('1') compa						
bit 14	Unimplemen	ted: Read as	·0'	-		-					
bit 13	OCEN: OR G	ate C Input E	nable bit								
		nnected to OF	0								
bit 12	 0 = MCI is not connected to OR gate OCNEN: OR Gate C Input Inverted Enable bit 										
	1 = Inverted I	1 = Inverted MCI is connected to OR gate									
		0 = Inverted MCI is not connected to OR gate									
bit 11		OBEN: OR Gate B Input Enable bit									
	1 = MBI is connected to OR gate 0 = MBI is not connected to OR gate										
bit 10	OBNEN: OR Gate B Input Inverted Enable bit										
		MBI is connected to OR gate									
bit 9		OAEN: OR Gate A Input Enable bit									
		1 = MAI is connected to OR gate									
		t connected to	-								
bit 8		•	Inverted Enable	e bit							
			ted to OR gate nected to OR g	ate							
bit 7	NAGS: AND Gate Output Inverted Enable bit										
			cted to OR gate nnected to OR								
bit 6	PAGS: AND Gate Output Enable bit										
	1 = ANDI is connected to OR gate 0 = ANDI is not connected to OR gate										
bit 5		Gate C Input I	-								
	1 = MCI is co	nnected to AN	ID gate								
		t connected to	•								
bit 4		-	t Inverted Enab								
			ted to AND gate nected to AND								

28.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EV instruction set is almost identical to that of the dsPIC30F and dsPIC33F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into following five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- Control operations

Table 28-1 lists the general symbols used in describing the instructions.

The dsPIC33E instruction set summary in Table 28-2 lists all the instructions, along with the Status Flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have the following three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write-back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the Table Read and Table Write instructions

30.1 DC Characteristics

Characteristic	VDD Range	Temperature Range	Maximum MIPS		
Characteristic	(in Volts)	(in °C)	dsPIC33EVXXXGM00X/10X Family		
I-Temp	4.5V to 5.5V ^(1,2)	-40°C to +85°C	70		
E-Temp	4.5V to 5.5V ^(1,2)	-40°C to +125°C	60		

TABLE 30-1: OPERATING MIPS vs. VOLTAGE

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, op amp/comparator and comparator voltage reference will have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

2: When BOR is enabled, the device will work from 4.7V to 5.5V.

Note 1: Customer operating voltage range is specified as: 4.5V to 5.5V.

TABLE 30-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Тур.	Max.	Unit
Industrial Temperature Devices:					
Operating Junction Temperature Range	TJ	-40	_	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices:					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD \times (IDD - \Sigma IOH)$	PD	PINT + PI/O			W
I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W

TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 64-Pin QFN, 9x9x0.9 mm	θJA	28.0		°C/W	1
Package Thermal Resistance, 64-Pin TQFP, 10x10x1 mm	θJA	48.3	—	°C/W	1
Package Thermal Resistance, 44-Pin QFN, 8x8 mm	θJA	29.0	—	°C/W	1
Package Thermal Resistance, 44-Pin TQFP, 10x10x1 mm	θJA	49.8	_	°C/W	1
Package Thermal Resistance, 28-Pin QFN-S, 6x6x0.9 mm	θJA	30.0	—	°C/W	1
Package Thermal Resistance, 28-Pin SOIC, 7.50 mm	θJA	69.7	_	°C/W	1
Package Thermal Resistance, 28-Pin SSOP, 5.30 mm	θJA	71.0		°C/W	1
Package Thermal Resistance, 28-Pin SPDIP, 300 mil	θJA	60.0	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 30-50: OP AMP/COMPARATOR x SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 3): 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
		Con	parator AC C	haracte	ristics			
CM10	Tresp	Response Time	_	19	80	ns	V+ input step of 100 mV, V- input held at VDD/2	
CM11	TMC2OV	Comparator Mode Change to Output Valid	—	_	10	μs		
		Con	nparator DC C	haracte	ristics			
CM30	VOFFSET	Comparator Offset Voltage	-80	±60	80	mV		
CM31	VHYST	Input Hysteresis Voltage		30	—	mV		
CM32	Trise/ Tfall	Comparator Output Rise/Fall Time	—	20	—	ns	1 pF load capacitance on input	
CM33	Vgain	Open-Loop Voltage Gain	—	90	—	db		
CM34	VICM	Input Common-Mode Voltage	AVss	—	AVDD	V		
		Or	o Amp AC Cha	aracteris	stics			
CM20	SR	Slew Rate	_	9	_	V/µs	10 pF load	
CM21	Рм	Phase Margin	—	35	—	°C	G = 100V/V, 10 pF load	
CM22	Gм	Gain Margin	—	20	—	db	G = 100V/V, 10 pF load	
CM23	GBW	Gain Bandwidth	—	10	—	MHz	10 pF load	
		Op	o Amp DC Cha	aracteris	stics			
CM40	VCMR	Common-Mode Input Voltage Range	AVss	—	AVDD	V		
CM41	CMRR	Common-Mode Rejection Ratio	—	45	—	db	Vcm = AVdd/2	
CM42	VOFFSET	Op Amp Offset Voltage	-50	±6	50	mV		
CM43	Vgain	Open-Loop Voltage Gain	_	90	—	db		
CM44	los	Input Offset Current	—	—	—	_	See pad leakage currents in Table 30-10	
CM45	lв	Input Bias Current	_		—	_	See pad leakage currents in Table 30-10	
CM46	Ιουτ	Output Current	—	_	420	μA	With minimum value of RFEEDBACK (CM48)	
CM48	RFEEDBACK	Feedback Resistance Value	8		—	kΩ	Note 2	
CM49a	Vout	Output Voltage	AVss + 0.075	_	AVDD - 0.075	V	Ιουτ = 420 μΑ	

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

2: Resistances can vary by ±10% between op amps.

3: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

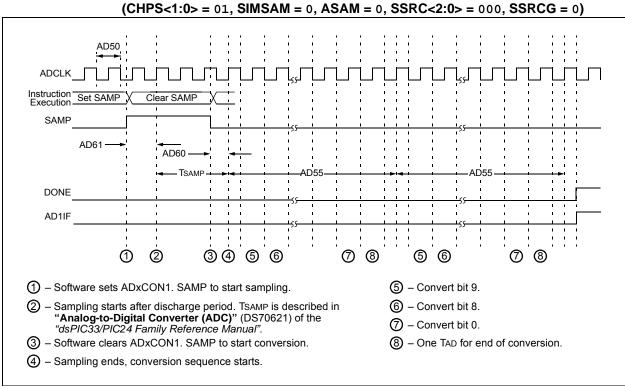
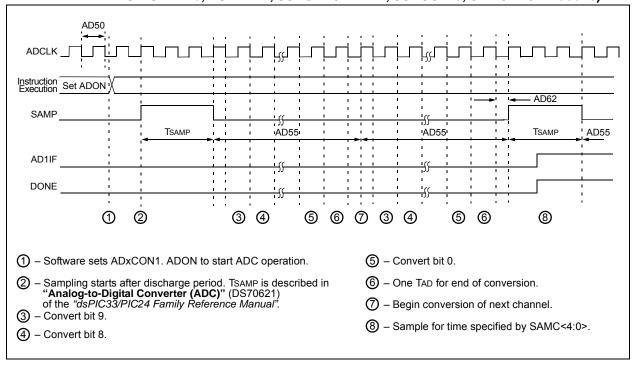

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min. Typ. Max. Units			Units	Conditions	
		ADC	Accurac	cy (12-Bi	t Mode)			
AD20a	Nr	Resolution	1:	2 data bi	ts	bits		
AD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V	
AD22a	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V	
AD23a	Gerr	Gain Error	-10	4	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V	
AD24a	EOFF	Offset Error	-10	1.75	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V	
AD25a	—	Monotonicity ⁽²⁾	_	_	_	—	Guaranteed	
		Dynamic	c Perforn	nance (1	2-Bit Mo	de)		
AD30a	THD	Total Harmonic Distortion	—	—	-75	dB		
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	_	dB		
AD32a	SFDR	Spurious Free Dynamic Range	80	_	—	dB		
AD33a	Fnyq	Input Signal Bandwidth		—	250	kHz		
AD34a	ENOB	Effective Number of Bits	11.09	11.3		bits		

TABLE 30-55: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.


2: The conversion result never decreases with an increase in the input voltage.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 30-35: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS

FIGURE 30-36: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SSRCG = 0, SAMC<4:0> = 00010)

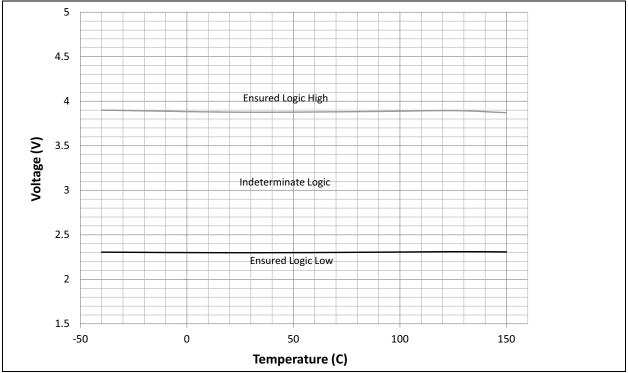
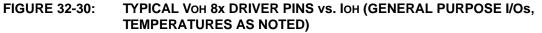
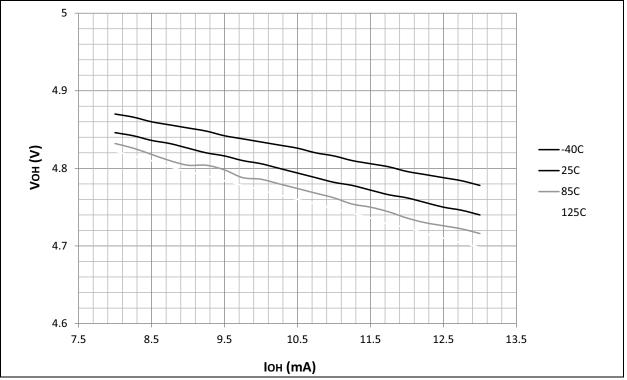
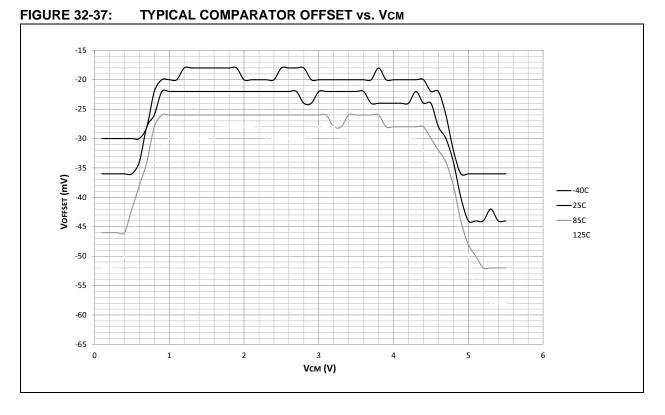

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No. Symbol Characteristic			Min.	Тур.	Max.	Units	Conditions	
		ADC A	Accuracy	(10-Bit	Mode)			
HAD20b	Nr	Resolution	1(10 data bits				
HAD21b	INL	Integral Nonlinearity	-1.5	-1.5 — +1.5		LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 5.5V	
HAD22b	DNL	Differential Nonlinearity	≥ 1	—	< 1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 5.5V	
HAD23b	Gerr	Gain Error	1	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V	
HAD24b	EOFF	Offset Error	1	2	4	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5.5V	

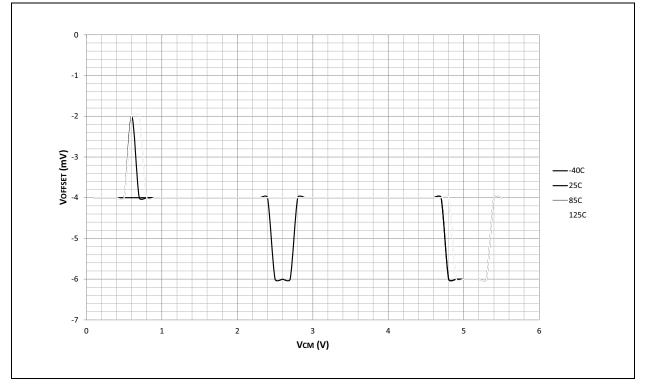
TABLE 31-19: ADC MODULE SPECIFICATIONS (10-BIT MODE)


Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter HBO10 in Table 31-10 for the minimum and maximum BOR values.




FIGURE 32-29: TYPICAL VIH/VIL vs. TEMPERATURE (GENERAL PURPOSE I/Os)

32.10 Voltage Output Low (VOL) – Voltage Output High (VOH)



32.14 Comparator Op Amp Offset

dsPIC33EVXXXGM00X/10X FAMILY

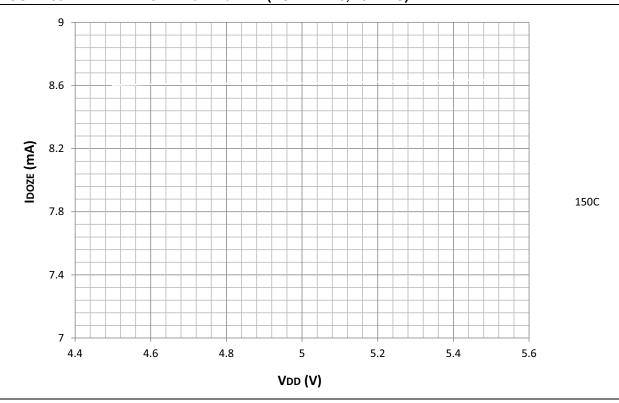


FIGURE 33-12: TYPICAL/MAXIMUM IDOZE vs. TEMPERATURE (DOZE 1:128, 70 MIPS)

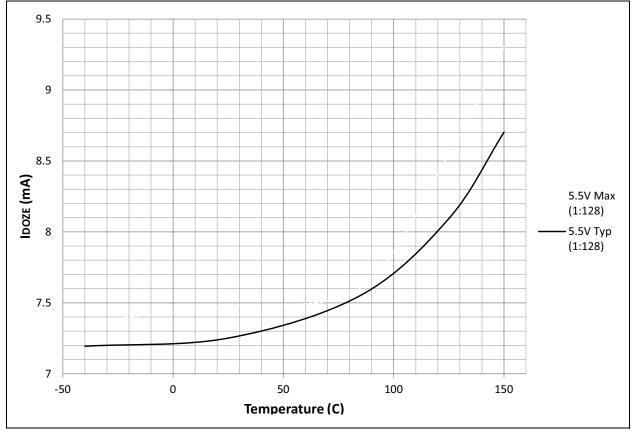


FIGURE 33-11: TYPICAL IDOZE vs. VDD (DOZE 1:128, 70 MIPS)

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support