

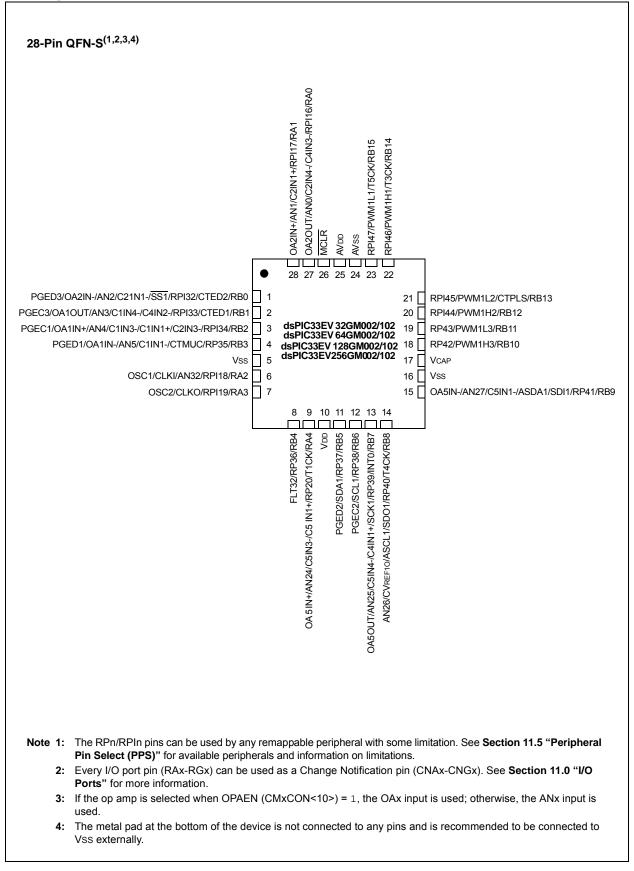
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


 \sim

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev256gm002-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

-	GOTO Instruction	0x000000	
	Reset Address	0x000002	
	Interrupt Vector Table	0x000004 0x0001FE 0x000200	
Space	User Program Flash Memory (44736 instructions)	0x000200 0x01577E 0x015780	
User Memory Space	Device Configuration	0x015780 0x0157FE 0x015800	
C	Unimplemented (Read '0's)		
	Executive Code Memory	0x7FFFE 0x800000 0x800BFE	
	Reserved	0x800C00 0x800F80	
ø	User OTP Memory	0x800FFE	
ory Spac	Reserved	0x801000	
on Mem	Write Latches	0xF9FFFE 0xFA0000 0xFA0002	
Configuration Memory Space	Reserved	0xFA0004	
	DEVID	0xFEFFFE 0xFF0000 0xFF0002	
,	Reserved	0xFF0004 0xFFFFFE	

IABLE	4-3:	INP	UICA	APIUR	EIH	ROUGI		CAP	IURE 4	REGIS		,						
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	0140	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	—	—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC1CON2	0142	_	_	_	_	_	_	-	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC1BUF	0144								Inp	ut Capture	1 Buffer Regi	ster						xxxx
IC1TMR	0146								Inp	ut Capture	1 Timer Regis	ster						0000
IC2CON1	0148	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	-	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC2CON2	014A	_	_	_	_	_	_	-	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC2BUF	014C								Inp	ut Capture	2 Buffer Regi	ster						xxxx
IC2TMR	014E								Inp	ut Capture	2 Timer Regi	ster						0000
IC3CON1	0150	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	-	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC3CON2	0152	_	_	_	_	_	_	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC3BUF	0154								Inp	ut Capture	3 Buffer Regi	ster						xxxx
IC3TMR	0156								Inp	ut Capture	3 Timer Regi	ster						0000
IC4CON1	0158			ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC4CON2	015A			—	—	_	_	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC4BUF	015C								Inp	ut Capture	4 Buffer Regi	ster						xxxx
IC4TMR	015E		Input Capture 4 Timer Register 00								0000							
Lamandi				aati -	unimanlama	optod road	Loo '0' Boo	at value	ara ahawa	in hovedor	simal							

TABLE 4-3: INDUT CARTINE 1 THROUGH INDUT CARTINE A REGISTER MAD

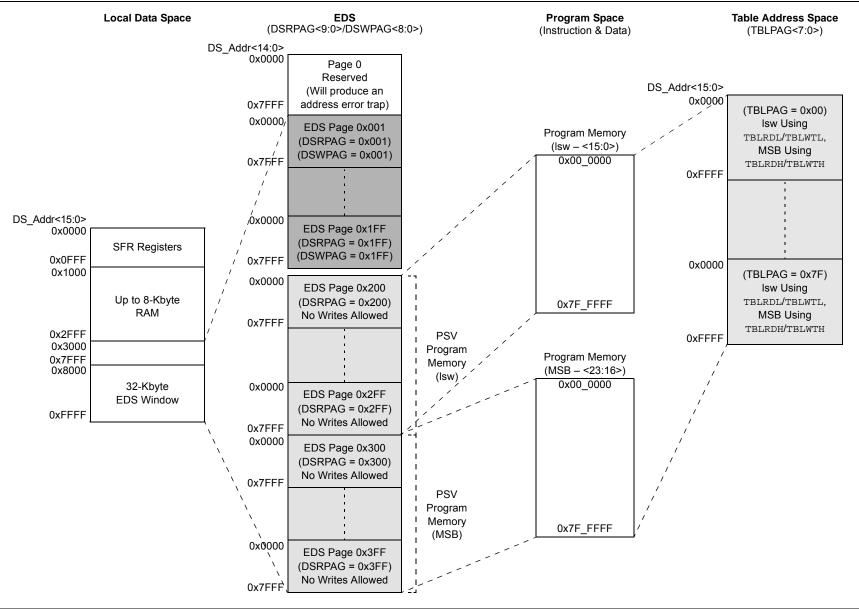

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-4: **I2C1 REGISTER MAP**

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1CON1	0200	I2CEN	—	I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1CON2	0202	_	_	_	_	_	_	_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	1000
I2C1STAT	0204	ACKSTAT	TRSTAT	ACKTIM		_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	0206					_						I2C1 Addr	ess Register					0000
I2C1MSK	0208					_					12	2C1 Address	Mask Regis	ster				0000
I2C1BRG	020A							E	Baud Rate	Generator F	Register							0000
I2C1TRN	020C					_		I2C1 Transmit Register						OOFF				
I2C1RCV	020E					_		— — I2C1 Receive Register							0000			

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

FIGURE 4-11: PAGED DATA MEMORY SPACE

DS70005144E-page 70

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
ROI	DOZE2 ⁽³⁾	DOZE1 ⁽³⁾	DOZE0 ⁽³⁾	DOZEN ^(1,4)	FRCDIV2	FRCDIV1	FRCDIV0
bit 15		•	-	-		•	bit 8
			DAMO			R/W-0	DAMA
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		R/W-0
PLLPOST1	PLLPOST0	—	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15		on Interrupt b	i+				
		will clear the E					
		have no effect		N bit			
bit 14-12	•	Processor Clo					
	111 = FCY div						
	110 = FCY div						
	101 = FCY div						
	100 = FCY div 011 = FCY div						
	010 = FCY div						
	001 = Fcy div						
		vided by 1 (def					
bit 11		e Mode Enable					
				tween the peri atio are forced		nd the process	or clocks
bit 10-8	FRCDIV<2:0>	-: Internal Fast	RC Oscillator	Postscaler bit	S		
	111 = FRC d i	vided by 256					
	110 = FRC di						
	101 = FRC di	•					
	100 = FRC di 011 = FRC di						
	010 = FRC di						
		vided by 2 (de	fault)				
	000 = FRC di	•					
bit 7-6	PLLPOST<1:	0>: PLL VCO	Output Divide	r Select bits (al	so denoted as	'N2', PLL posts	caler)
	11 = Output d						
	10 = Reserve 01 = Output d						
	00 = Output d						
bit 5		ted: Read as '	0'				
Note 1: Th	is bit is cleared v	when the ROI	bit is set and a	an interrupt occ	urs.		
2: Th	is register resets	s only on a Pov	wer-on Reset	(POR).			
)ZE<2:0> bits ca)ZE<2:0> are igi		en to when th	e DOZEN bit is	clear. If DOZE	N = 1, any wri	tes to
	o DOZEN bit cou		075-2.05 -		$2 \cdot 0 > - 0 = 0 = 0$	attempt by up	or ooftwara to

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	—	—	_	—	—	—	PLLDIV8
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLD	IV<7:0>			
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15-9	Unimplemer	nted: Read as '	0'				
bit 8-0	PLLDIV<8:0	>: PLL Feedba	ck Divisor bits	s (also denoted	as 'M', PLL mul	tiplier)	
	111111111	= 513					
	•						
	•						
	000110000	= 50 (default)					
	•						
	•						
	•						
	000000010						
	000000000	-					

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER⁽¹⁾

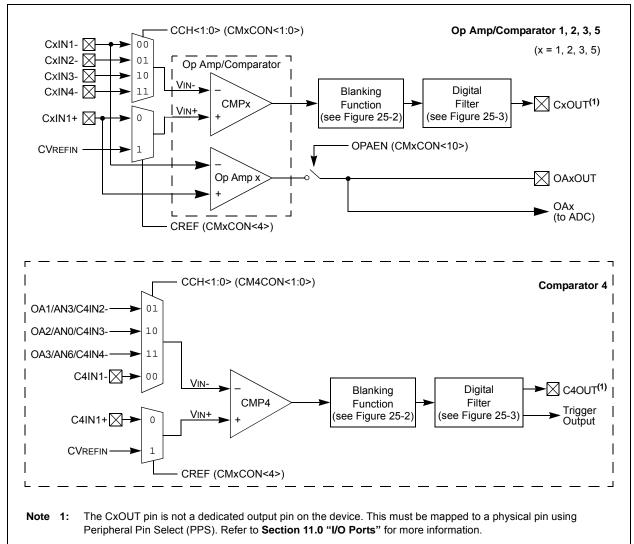
Note 1: This register is reset only on a Power-on Reset (POR).

REGISTER 22-26: CxTRmnCON: CANx TX/RX BUFFER mn CONTROL REGISTER

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPRI1	TXnPRI0
bit 15							bit 8
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPRI1	TXmPRI0
bit 7	170 DTH	TXDARDIN	TALKAII	IXILQIII			bit (
Logondy							
Legend: R = Readable	hit	W = Writable	hit	II – Unimplor	monted bit read		
				-	nented bit, read		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	lown
bit 15-8	See Definition	n for bits 7-0, co	ontrols Buffer n	1			
bit 7		RX Buffer Selec					
		RBm, is a transi					
		RBm, is a receiv					
bit 6	TXABTm: Me	essage Abortec	l bit ⁽¹⁾				
	1 = Message 0 = Message	was aborted completed trar	smission succ	essfully			
bit 5	TXLARBm: N	/lessage Lost A	vrbitration bit ⁽¹⁾				
		lost arbitration					
	0 = Message	did not lose arl	pitration while I	being sent			
bit 4	TXERRm: Er	ror Detected D	uring Transmis	sion bit ⁽¹⁾			
		or occurred whi					
bit 3	TXREQm: Me	essage Send R	equest bit				
	1 = Requests sent	s that a messag	je be sent; the	bit automatica	ally clears when	the message	is successfull
	0 = Clearing	the bit to '0' wh	ile set request	s a message	abort		
bit 2	RTRENm: Au	ito-Remote Tra	nsmit Enable b	oit			
		emote transmit emote transmit					
bit 1-0	TXmPRI<1:0	>: Message Tra	ansmission Pri	ority bits			
	11 = Highest 10 = High inte	message priori					

Note: The buffers, SID, EID, DLC, Data Field and Receive Status registers, are located in DMA RAM.

25.0 OP AMP/COMPARATOR MODULE


- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "**Op Amp/Comparator**" (DS70000357) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X family devices contain up to five comparators that can be configured in various ways. CMP1, CMP2, CMP3 and CMP5 also have the option to be configured as op amps, with the output being brought to an external pin for gain/filtering connections. As shown in Figure 25-1, individual comparator options are specified by the comparator module's Special Function Register (SFR) control bits.

The following options allow users to:

- Select the Edge for Trigger and Interrupt Generation
- Configure the Comparator Voltage Reference
- Configure Output Blanking and Masking
- Configure as a Comparator or Op Amp (CMP1, CMP2, CMP3 and CMP5 only)

Note: Not all op amp/comparator input/output connections are available on all devices. See the "Pin Diagrams" section for available connections.

FIGURE 25-1: OP AMP/COMPARATOR x MODULE BLOCK DIAGRAM

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R-0
CON	COE	CPOL	_		OPAEN ⁽²⁾	CEVT	COUT
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EVPOL1 ⁽³⁾	EVPOL0 ⁽³⁾	_	CREF ⁽¹⁾			CCH1 ⁽¹⁾	CCH0 ⁽¹⁾
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	CON: Op Am	p/Comparator	x Enable bit				
		Comparator x is					
		Comparator x is					
bit 14		rator x Output					
		tor output is pro tor output is int		xout pin			
bit 13		arator x Outpu	•	ct bit			
	•	tor output is inv					
	0 = Comparat	tor output is no	t inverted				
bit 12-11	Unimplemen	ted: Read as '	0'				
bit 10	OPAEN: Op A	Amp x Enable I	oit ⁽²⁾				
	1 = Op Amp > 0 = Op Amp >						
bit 9	CEVT: Compa	arator x Event	bit				
	interrupts	s until the bit is	cleared	POL<1:0> sett	ings, occurred;	disables future	e triggers and
	•	ator event did n					
bit 8		arator x Outpu					
	$\frac{\text{When CPOL}}{1 = \text{Vin} + > \text{Vin}}$	= 0 (non-invert	ed polarity):				
	1 = VIN + > VII $0 = VIN + < VII$	-					
	When CPOL	= 1 (inverted p	olarity):				
	1 = VIN + < VII		<u> </u>				
	0 = VIN + > VII	-					

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2, 3 OR 5)

- **Note 1:** Inputs that are selected and not available will be tied to Vss. See the "**Pin Diagrams**" section for available inputs for each package.
 - **2:** The op amp and the comparator can be used simultaneously in these devices. The OPAEN bit only enables the op amp while the comparator is still functional.
 - **3:** After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the Comparator x Event bit, CEVT (CMxCON<9>), and the Comparator Interrupt Flag, CMPIF (IFS1<2>), must be cleared before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

Bit Field	Register	Description
OSCIOFNC	FOSC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is the clock output 0 = OSC2 is the general purpose digital I/O pin
IOL1WAY	FOSC	Peripheral Pin Select Configuration bit 1 = Allows only one reconfiguration 0 = Allows multiple reconfigurations
FCKSM<1:0>	FOSC	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
PLLKEN	FOSC	PLL Lock Wait Enable bit 1 = Clock switches to the PLL source; will wait until the PLL lock signal is valid 0 = Clock switch will not wait for PLL lock
WDTPS<3:0>	FWDT	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • • • • • • • • • • •
WDTPRE	FWDT	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32
FWDTEN<1:0>	FWDT	 Watchdog Timer Enable bits 11 = WDT is enabled in hardware 10 = WDT is controlled through the SWDTEN bit 01 = WDT is enabled only while device is active and disabled in Sleep; the SWDTEN bit is disabled 00 = WDT and the SWDTEN bit are disabled
WINDIS	FWDT	Watchdog Timer Window Enable bit 1 = Watchdog Timer is in Non-Window mode 0 = Watchdog Timer is in Window mode
WDTWIN<1:0>	FWDT	Watchdog Timer Window Select bits 11 = WDT window is 25% of WDT period 10 = WDT window is 37.5% of WDT period 01 = WDT window is 50% of WDT period 00 = WDT window is 75% of WDT period
BOREN	FPOR	Brown-out Reset (BOR) Detection Enable bit 1 = BOR is enabled 0 = BOR is disabled
ICS<1:0>	FICD	ICD Communication Channel Select bits 11 = Communicates on PGEC1 and PGED1 10 = Communicates on PGEC2 and PGED2 01 = Communicates on PGEC3 and PGED3 00 = Reserved, do not use
DMTIVT<15:0>	FDMTINTVL	Lower 16 Bits of 32-Bit Field that Configures the DMT Window Interval bits
DMTIVT<31:16>	FDMTINTVH	Upper 16 Bits of 32-Bit Field that Configures the DMT Window Interval bits
DMTCNT<15:0>	FDMTCNTL	Lower 16 Bits of 32-Bit Field that Configures the DMT Instruction Count Time-out Value bits

TABLE 27-2:	dsPIC33EVXXXGM00X/10X CONFIGURATION BITS DESCRIPTION (CONTINUED)
-------------	--

28.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EV instruction set is almost identical to that of the dsPIC30F and dsPIC33F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into following five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- Control operations

Table 28-1 lists the general symbols used in describing the instructions.

The dsPIC33E instruction set summary in Table 28-2 lists all the instructions, along with the Status Flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have the following three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

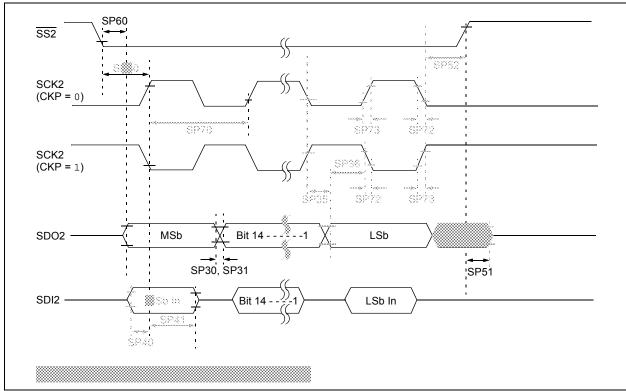
The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

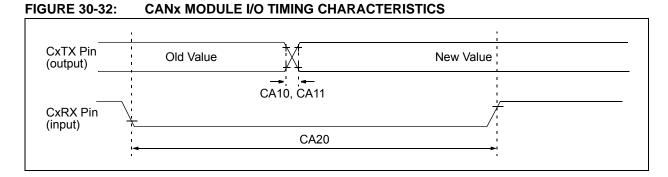
However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:


- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write-back destination

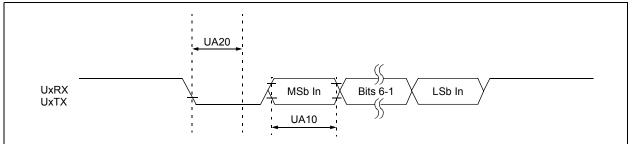
The other DSP instructions do not involve any multiplication and can include:


- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the Table Read and Table Write instructions

FIGURE 30-17: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

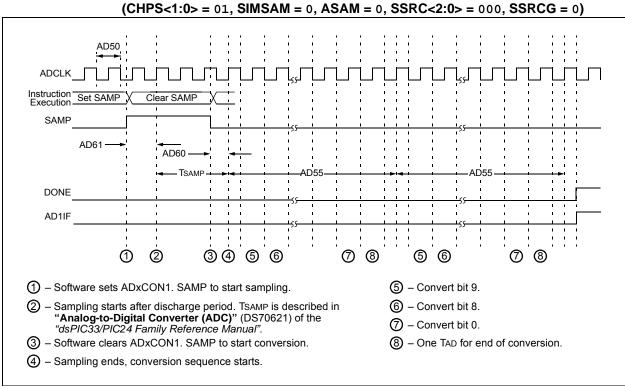

TABLE 30-48: CANx MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions		
CA10	TIOF	Port Output Fall Time	—	_		ns	See Parameter DO32		
CA11	TIOR	Port Output Rise Time	—	—	_	ns	See Parameter DO31		
CA20	CA20 TCWF Pulse Width to Trigger CAN Wake-up Filter		120			ns			

Note 1: These parameters are characterized but not tested in manufacturing.

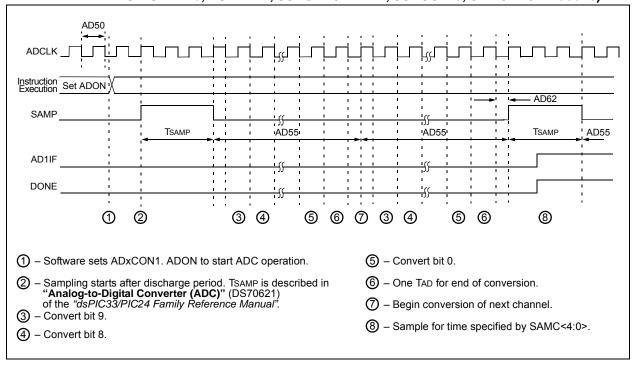
2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 30-33: UARTX MODULE I/O TIMING CHARACTERISTICS


TABLE 30-49: UARTx MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 4.5V to 5.5V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Symbol Characteristic ⁽¹⁾		Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
UA10	TUABAUD	UARTx Baud Time	66.67	—	_	ns		
UA11	FBAUD	UARTx Baud Frequency	—	—	15	Mbps		
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500	_		ns		

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 30-35: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS

FIGURE 30-36: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SSRCG = 0, SAMC<4:0> = 00010)

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур. ⁽⁴⁾	Max.	Units	Conditions
		Cloc	k Parame	eters			
AD50	TAD	ADC Clock Period	75	_	_	ns	
AD51	tRC	ADC Internal RC Oscillator Period	—	250		ns	
		Con	version F	Rate			
AD55	tCONV	Conversion Time	—	12	_	TAD	
AD56	FCNV	Throughput Rate	—	—	1.1	Msps	Using simultaneous sampling
AD57a	TSAMP	Sample Time When Sampling Any ANx Input	2	—	_	Tad	
AD57b	TSAMP	Sample Time When Sampling the Op Amp Outputs	4	—	_	TAD	
		Timin	ng Param	eters			
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2	—	3	TAD	Auto-convert trigger is not selected
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2	—	3	TAD	
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5	—	TAD	
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽²⁾	—	—	20	μS	See Note 3

TABLE 30-58: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

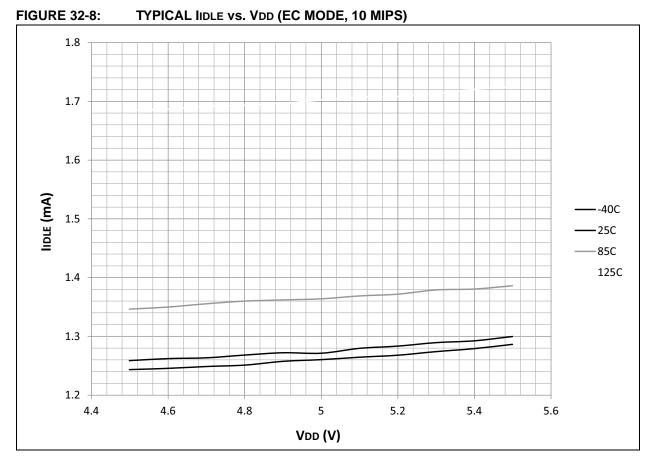
Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

- **2:** Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
- **3:** The parameter, tDPU, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (ADxCON1<15>) = 1). During this time, the ADC result is indeterminate.
- 4: These parameters are characterized but not tested in manufacturing.

TABLE 30-59: DMA MODULE TIMING REQUIREMENTS

		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
DM1	DMA Byte/Word Transfer Latency	1 Tcy (2)	—	—	ns	

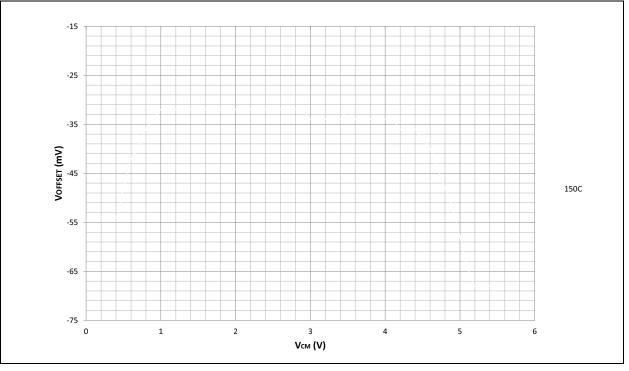
Note 1: These parameters are characterized but not tested in manufacturing.

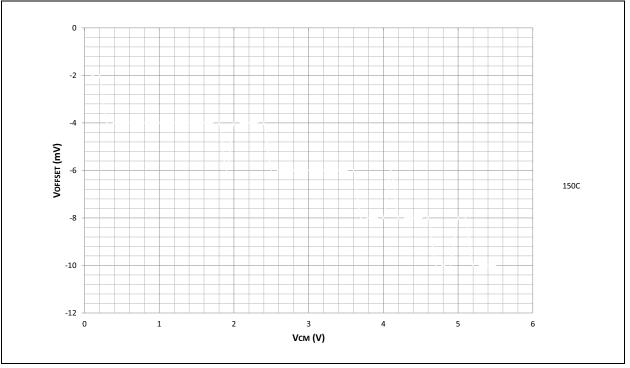

2: Because DMA transfers use the CPU data bus, this time is dependent on other functions on the bus.

dsPIC33EVXXXGM00X/10X FAMILY

32.2 IIDLE

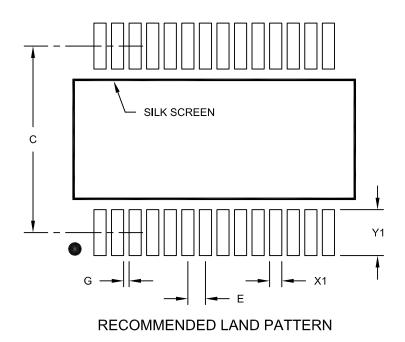
FIGURE 32-7: TYPICAL/MAXIMUM lidle vs. Fosc (EC MODE 10 MHz TO 70 MHz, 5.5V MAX)




DS70005144E-page 416

33.14 Comparator Op Amp Offset

FIGURE 33-33: TYPICAL COMPARATOR OFFSET vs. Vcm



28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

Е

Electrical Characteristics	
AC	351, 408
Equations	
BRG Formula	229
Device Operating Frequency	124
Fosc Calculation	
Frame Time Calculations	
FSCL Frequency	229
Fvco Calculation	
SYNCMIN and SYNCMAX Calculations	
Tick Period Calculation	239
Errata	11

F

Flash Program Memory	83
Control Registers	85
Error Correcting Code (ECC)	
Operations	
Resources	
RTSP Operation	84
Table Instructions	
Flexible Configuration	
-	

G

Catting Started with 16 Dit DCCa	17
Getting Started with 16-Bit DSCs	
Connection Requirements	17
CPU Logic Filter Capacitor Connection (VCAP)	18
Decoupling Capacitors	17
External Oscillator Pins	19
ICSP Pins	19
Master Clear (MCLR) Pin	18
Oscillator Value Conditions on Device Start-up	19
Unused I/Os	19

Н

High Temperature	
Thermal Operating Conditions	404
High-Speed PWM	199
Control Registers	204
Faults	199
Resources	203
High-Temperature Electrical Characteristics	403
Absolute Maximum Ratings	403

I

I/O Ports	143
Configuring Analog/Digital Port Pins	144
Helpful Tips	151
High-Voltage Detect (HVD)	151
Open-Drain Configuration	144
Parallel I/O (PIO)	143
Peripheral Pin Select (PPS)	145
Slew Rate Selection	145
Write/Read Timing	144
In-Circuit Debugger	326
MPLAB ICD 3	339
PICkit 3 Programmer	339
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	. 317, 326
Input Capture	
Control Registers	190
Input Change Notification (ICN)	144

Instruction Addressing Modes	74
File Register Instructions	74
Fundamental Modes Supported	75
MAC Instructions	
MCU Instructions	74
Move and Accumulator Instructions	75
Other Instructions	75
Instruction Set	
Overview	330
Summary	327
Symbols Used in Opcode	
Interfacing Program and Data Memory Spaces	79
Inter-Integrated Circuit (I ² C)	
Baud Rate Generator	229
Control Registers	231
Inter-Integrated Circuit. See I ² C.	
Internal LPRC Oscillator	
Use with WDT	
Internet Address	493
Interrupt Controller	
Control and Status Registers	
IECx	
IFSx	
INTCON1	
INTCON2	
INTCON3	
INTCON4	
INTTREG	
IPCx	
Reset Sequence	
Interrupt Vector Table (IVT)	
Details	98

Μ

Memory Maps	
EDS	72
Memory Organization	31
Microchip Internet Web Site	
Modulo Addressing	76
Applicability	
Operation Example	76
Start and End Address	
W Address Register Selection	
MPLAB PM3 Device Programmer	339
MPLAB REAL ICE In-Circuit Emulator System	339
MPLAB X Integrated Development	
Environment Software	337
MPLINK Object Linker/MPLIB Object Librarian	338
0	
Op Amp/Comparator	301
Control Registers	303
Oscillator Configuration	400

e en le el le egieter e ninnen internet e el e	
Oscillator Configuration	123
Bit Values for Clock Selection	125
CPU Clocking System	124
Output Compare	193
Control Registers	194
Р	

Packaging	
Details	
Marking	461, 462
Peripheral Module Disable (PMD)	135

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2013-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0975-5