

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

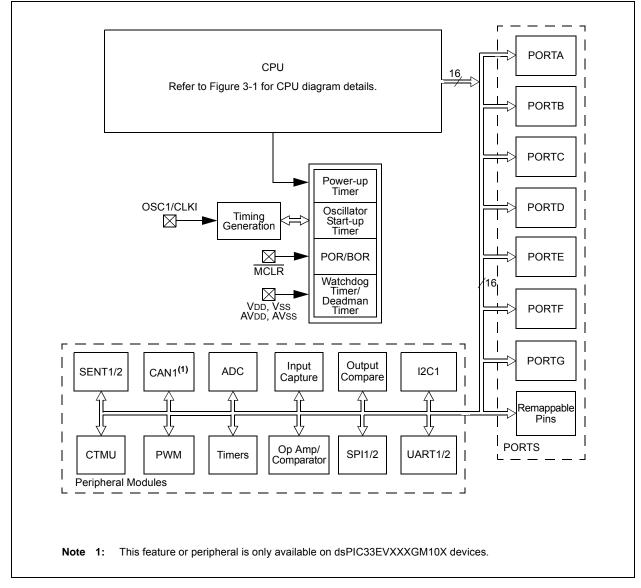
·>>F

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev256gm002-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW


- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EVXXXGM00X/10X family Digital Signal Controller (DSC) devices.

dsPIC33EVXXXGM00X/10X family devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EVXXXGM00X/10X FAMILY BLOCK DIAGRAM

R/W-0	U-0	R/W-0	R/W-0	EGISTER	R-0	R-0	R-0
VAR	0-0	US1	US0	EDT ⁽¹⁾	DL2	DL1	R-0 DL0
pit 15	_	031	030	EDI	DL2		bLU
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7	SAID	SAIDW	ACCOAL	IF LOV /	SFA	RIND	bit
Legend:		C = Clearable	- bit				
R = Readable	bit	W = Writable		U = Unimplem	onted hit rea	d as '0'	
-n = Value at F		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	
	-						
bit 15	1 = Variable e	exception proce	ocessing Later essing latency	is enabled			
L:4 4 4			sing latency is	enabled			
bit 14 bit 13-12	•	ted: Read as '	0 igned/Signed (Control hito			
	01 = DSP eng 00 = DSP eng	gine multiplies gine multiplies gine multiplies	are signed				
bit 11			ation Control bi e DO loop at th	e end of the cu	rrent loop iter	ation	
bit 10-8	111 = 7 DO lo	ops are active		ts			
bit 7		Saturation En					
		ator A saturatio ator A saturatio					
bit 6	1 = Accumula	Saturation En ator B saturatio ator B saturatio	n is enabled				
bit 5	1 = Data Space	ce write satura	from DSP Engi tion is enabled tion is disabled		Enable bit		
bit 4	-	cumulator Satu	ration Mode S				

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

3.7 Arithmetic Logic Unit (ALU)

The dsPIC33EVXXXGM00X/10X family ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. The data for the ALU operation can come from the W register array or from the data memory, depending on the addressing mode of the instruction. Similarly, the output data from the ALU can be written to the W register array or a data memory location.

For information on the SR bits affected by each instruction, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157).

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.7.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.7.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes the single-cycle per bit of the divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.8 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulatorto-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON) as follows:

- Fractional or Integer DSP Multiply (IF)
- Signed, Unsigned or Mixed-Sign DSP Multiply (US)
- Conventional or Convergent Rounding (RND)
- · Automatic Saturation On/Off for ACCA (SATA)
- Automatic Saturation On/Off for ACCB (SATB)
- Automatic Saturation On/Off for Writes to Data Memory (SATDW)
- Accumulator Saturation mode Selection (ACCSAT)

TABLE 3-2:DSP INSTRUCTIONSSUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
MPY	$A = x^2$	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

TABLE 4-1: CPU CORE REGISTER MAP (CONTINUED)

							-											T
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset s
DOENDH	0040	_	—	_	—	—	—	—	—	—	—			DOEND	H<5:0>			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	VAR	_	US1	US0	EDT	DL2	DL1	DL0	SATA	SATB	SATDW	ACCSAT	IPL3	SFA	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	—	BWM3	BWM2	BWM1	BWM0	YWM3	YWM2	YWM1	YWM0	XWM3	XWM2	XWM1	XWM0	0000
XMODSRT	0048	XMODSRT<15:1>									0	xxxx						
XMODEND	004A				XMODEND<15:1>								1	xxxx				
YMODSRT	004C							YMC	DSRT<15:	1>							0	xxxx
YMODEND	004E							YMC	DEND<15:	1>							1	xxxx
XBREV	0050	BREN	XBREV14	XBREV13	XBREV12	XBREV11	XBREV10	XBREV9	XBREV8	XBREV7	XBREV6	XBREV5	XBREV4	XBREV3	XBREV2	XBREV1	XBREV0	8xxx
DISICNT	0052	_	_		DISICNT<13:0> x						xxxx							
TBLPAG	0054	_	— — — — — — — TBLPAG<7:0>									0000						
MSTRPR	0058		MSTRPR<15:0>								0000							
CTXTSTAT	005A	_	—	_	—	—	CCTXI2	CCTXI1	CCTXI0	—	—	_	_	—	MCTXI2	MCTXI1	MCTXI0	0000

dsPIC33EVXXXGM00X/10X FAMILY

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4	-9:	CAN1	I REGIS	STER M	AP WHE	N WIN (C1CTR	L<0>) =	0 OR 1	FOR ds	PIC33E	VXXXGN	110X DE	VICES				
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	_	—	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0	OPMODE2	OPMODE1	OPMODE0	—	CANCAP	—	-	WIN	0480
C1CTRL2	0402	_	—	—	—	_	—	—	—	—	—	_		l	DNCNT<4:0>			0000
C1VEC	0404	—	_	—	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	_	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0	0000
C1FCTRL	0406	DMABS2	DMABS1	DMABS0	_	_	—	—	—	_	—	FSA5	FSA4	FSA3	FSA2	FSA1	FSA0	0000
C1FIFO	0408	-	—	FBP5	FBP4	FBP3	FBP2	FBP1	FBP0	—	—	FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0	0000
C1INTF	040A	-	—	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	—	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C		—	—	-	—	—	—	—	IVRIE	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E	TERRCNT7	TERRCNT6	TERRCNT5	TERRCNT4	TERRCNT3	TERRCNT2	TERRCNT1	TERRCNT0	RERRCNT7	RERRCNT6	RERRCNT5	RERRCNT4	RERRCNT3	RERRCNT2	RERRCNT1	RERRCNT0	0000
C1CFG1	0410		—	—	-	—	—	—	—	SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	0000
C1CFG2	0412		WAKFIL	—	-	—	SEG2PH2	SEG2PH1	SEG2PH0	SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0	0000
C1FEN1	0414								FLTE	N<15:0>								FFFF
C1FMSKSEL1	0418	F7MSK1	F7MSK0	F6MSK1	F6MSK0	F5MSK1	F5MSK0	F4MSK1	F4MSK0	F3MSK1	F3MSK0	F2MSK1	F2MSK0	F1MSK1	F1MSK0	F0MSK1	F0MSK0	0000
C1FMSKSEL2	041A	F15MSK1	F15MSK0	F14MSK1	F14MSK0	F13MSK1	F13MSK0	F12MSK1	F12MSK0	F11MSK1	F11MSK0	F10MSK1	F10MSK0	F9MSK1	F9MSK0	F8MSK1	F8MSK0	0000

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4-10: CAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 FOR dsPIC33EVXXXGM10X DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E		See definition when WIN = x															
C1RXFUL1	0420		RXFUL<15:0> 00										0000					
C1RXFUL2	0422		RXFUL<31:16> 00										0000					
C1RXOVF1	0428		RXOVF<15:0> 00										0000					
C1RXOVF2	042A								RXOVF	<31:16>								0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PRI1	TX1PRI0	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PRI1	TX0PRI0	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PRI1	TX3PRI0	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PRI1	TX2PRI0	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PRI1	TX5PRI0	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PRI1	TX4PRI0	0000
C1TR67CON	0436	TXEN7	TXABT7 TXLARB7 TXERR7 TXREQ7 RTREN7 TX7PRI1 TX7PRI0 TXEN6 TXABAT6 TXLARB6 TXER6 TXREQ6 RTREN6 TX6PRI1 TX6PRI0 XXXX										xxxx					
C1RXD	0440		CAN1 Receive Data Word Register										xxxx					
C1TXD	0442	CAN1 Transmit Data Word Register xx								xxxx								

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-24: OUTPUT COMPARE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	—	ENFLTA	_	—	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0902	FLTMD	TMD FLTOUT FLTTRIEN OCINV — — — OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000										000C					
OC1RS	0904		Output Compare 1 Secondary Register										xxxx					
OC1R	0906								Outpu	ut Compare	e 1 Register							xxxx
OC1TMR	0908							Out	put Com	pare 1 Tin	ner Value Re	gister						xxxx
OC2CON1	090A	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_		ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	090E							Ou	tput Con	npare 2 Se	condary Re	gister						xxxx
OC2R	0910		Output Compare 2 Register									xxxx						
OC2TMR	0912							Out	put Com	pare 2 Tin	ner Value Re	gister						xxxx
OC3CON1	0914	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_		ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN	OCINV	_		-	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	0918							Ou	tput Con	npare 3 Se	condary Re	gister						xxxx
OC3R	091A								Outpu	ut Compare	e 3 Register							xxxx
OC3TMR	091C							Out	put Com	pare 3 Tin	ner Value Re	gister						xxxx
OC4CON1	091E	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_		ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC4RS	0922							Ou	tput Con	npare 4 Se	condary Reg	gister						xxxx
OC4R	0924	Output Compare 4 Register x2									xxxx							
OC4TMR	0926	Output Compare 4 Timer Value Register xxx								xxxx								
Logondu											<i>.</i>							

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.5.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

The address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note:	The modulo corrected Effective Address
	is written back to the register only when
	Pre-Modify or Post-Modify Addressing
	mode is used to compute the Effective
	Address. When an address offset, such as
	[W7 + W2] is used, Modulo Addressing
	correction is performed, but the contents
	of the register remain unchanged.

4.6 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.6.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when all of these conditions are met:

- BWM<3:0> bits (W register selection) in the MODCON register are any value other than '1111' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Addressing modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word-sized data (LSb of every EA is
	always clear). The XB value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed
	Addressing can be enabled simultaneously
	using the same W register, but Bit-
	Reversed Addressing operation will always
	take precedence for data writes when
	enabled.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

The operation of Bit-Reversed Addressing is shown in Figure 4-16 and Table 4-46.

REGISTER 5-2: NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—	_	—	—		—
bit 15		· · ·					bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMADF	RU<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit	ł	W = Writable bit		U = Unimplem	ented bit, read	as '0'	

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADRU<23:16>:** NVM Memory Upper Write Address bits Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

REGISTER 5-3: NVMADR: NONVOLATILE MEMORY LOWER ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
		NVMAD	R<15:8>			
						bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
		NVMAD)R<7:0>			
						bit 0
			NVMAD R/W-x R/W-x R/W-x	NVMADR<15:8>	NVMADR<15:8> R/W-x R/W-x R/W-x R/W-x	NVMADR<15:8> R/W-x R/W-x R/W-x R/W-x R/W-x

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 NVMADR<15:0>: NVM Memory Lower Write Address bits

Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred
	0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
T5MD	T4MD	T3MD	T2MD	T1MD	—	PWMMD	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
I2C1MD					0-0	C1MD ⁽¹⁾	
bit 7	U2MD	U1MD	SPI2MD	SPI1MD	—	CTMD	AD1MD bit
Legend:							
R = Readable		W = Writable		•	mented bit, re	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	T5MD: Timer	5 Module Disal	ole bit				
		odule is disable odule is enable					
bit 14	T4MD: Timer	4 Module Disal	ole bit				
	1 = Timer4 m	odule is disable	ed				
bit 13		3 Module Disal					
	1 = Timer3 module is disabled 0 = Timer3 module is enabled						
bit 12	T2MD: Timer2 Module Disable bit						
	1 = Timer2 module is disabled 0 = Timer2 module is enabled						
bit 11	T1MD: Timer1 Module Disable bit						
	-	odule is disable odule is enable					
bit 10	Unimplemen	ted: Read as '	0'				
bit 9	PWMMD: PW	/M Module Dis	able bit				
		dule is disabled dule is enabled					
bit 8	Unimplemen	ted: Read as '	0'				
bit 7	12C1MD: 12C	1 Module Disal	ole bit				
		lule is disabled lule is enabled					
bit 6	U2MD: UART2 Module Disable bit						
	1 = UART2 module is disabled 0 = UART2 module is enabled						
bit 5	U1MD: UART1 Module Disable bit						
	1 = UART1 module is disabled 0 = UART1 module is enabled						
bit 4	SPI2MD: SPI	2 Module Disa	ole bit				
		lule is disabled lule is enabled					
bit 3	SPI1MD: SPI	1 Module Disa	ole bit				
		dule is disabled dule is enabled					

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: This bit is available on dsPIC33EVXXXGM10X devices only.

REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			T2CK	R<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **T2CKR<7:0>:** Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 •

• 00000001 = Input tied to CMP1 00000000 = Input tied to Vss

13.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

These modules are 32-bit timers, which can also be configured as four independent, 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3 and Timer4/5 operate in the following three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules
- ADC1 Event Trigger (Timer2/3 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1. The T3CON and T5CON registers are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw). Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, the T3CON and T5CON control bits are ignored. Only the T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

Block diagrams for the Type B and Type C timers are shown in Figure 13-1 and Figure 13-2, respectively.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-3.

Note: Only Timer2, Timer3, Timer4 and Timer5 can trigger a DMA data transfer.

REGISTER 17-13: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾ (CONTINUED)

- bit 1
 SWAP: SWAP PWMxH and PWMxL Pins bit

 1 = PWMxH output signal is connected to the PWMxL pin; PWMxL output signal is connected to the PWMxH pin

 0 = PWMxH and PWMxL pins are mapped to their respective pins

 bit 0
 OSYNC: Output Override Synchronization bit

 1 = Output overrides through the OVRDAT<1:0> bits are synchronized to the PWMx time base

 0 = Output overrides through the OVRDAT<1:0> bits occur on the next CPU clock boundary
- Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1).
 - 2: If the PWMLOCK Configuration bit (FDEVOPT<0>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

REGISTER 17-14: TRIGX: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGCI	MP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit	t	U = Unimpler	mented bit, read	d as '0'	

bit 15-0 TRGCMP<15:0>: Trigger Control Value bits

'1' = Bit is set

When the primary PWMx functions in the local time base, this register contains the compare values that can trigger the ADC module.

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
DMABS2	DMABS1	DMABS0	_	—	_	_	—
pit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		FSA5	FSA4	FSA3	FSA2	FSA1	FSA0
oit 7							bit (
Legend:							
R = Readable	e bit	W = Writable t	oit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 12-6	<pre>101 = 24 buffers in RAM 100 = 16 buffers in RAM 011 = 12 buffers in RAM 010 = 8 buffers in RAM 001 = 6 buffers in RAM 000 = 4 buffers in RAM</pre>						
bit 5-0	-	ited: Read as '0 IFO Area Starts		oits			
	11111 = Rec	eive Buffer RB3 eive Buffer RB3	31 30				

REGISTER 22-4: CxFCTRL: CANx FIFO CONTROL REGISTER

REGISTER 22-20: CxRXMnSID: CANx ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER REGISTER (n = 0-2)

		•	•					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	
bit 15					•		bit 8	
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x	
SID2	SID1	SID0	_	MIDE	_	EID17	EID16	
bit 7							bit C	
Legend:								
R = Readable bit W = Writable bit				U = Unimple	mented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set	et '0' = Bit is cleared x = Bit is u				Iown	
bit 15-5 bit 4	1 = Includes 0 = Bit, SIDx,	SID<10:0>: Standard Identifier bits 1 = Includes bit, SIDx, in filter comparison 0 = Bit, SIDx, is a don't care in filter comparison Unimplemented: Read as '0'						
bit 3	1 = Matches the filter 0 = Matches	either standard	types (standa	address messa	address) that c ge if filters match /lessage SID/EII	n, i.e., if:	e EXIDE bit ir	
bit 2	Unimplemer	nted: Read as	0'					
bit 1-0	1 = Includes	EID<17:16>: Extended Identifier bits 1 = Includes bit, EIDx, in filter comparison 0 = Bit, EIDx, is a don't care in filter comparison						

REGISTER 22-21: CxRXMnEID: CANx ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER REGISTER (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	nented bit, rea	d as '0'		
-n = Value at P	Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit		x = Bit is unkr	nown			

bit 15-0

- EID<15:0>: Extended Identifier bits
- 1 = Includes bit, EIDx, in filter comparison
- 0 = Bit, EIDx, is a don't care in filter comparison

dsPIC33EVXXXGM00X/10X FAMILY

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1	
bit 15							bit 8	
			D////		D///	D///		
U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_		—	RB0	DLC3	DLC2	DLC1	DLC0	
bit 7							bit (
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			t	'0' = Bit is cle		x = Bit is unkr	nown	
bit 15-10	EID<5:0>: E>	EID<5:0>: Extended Identifier bits						
bit 9	RTR: Remote	e Transmission	Request bit					
	When IDE =							
	-	will request re	mote transmi	ssion				
	0 = Normal m	0						
	When IDE =							
	The RTR bit i	-						
bit 8	RB1: Reserved Bit 1							
		et this bit to '0' p	-	ocol.				
bit 7-5	Unimplemer	nted: Read as '	0'					
bit 4	RB0: Reserv	ed Bit 0						
	User must se	et this bit to '0' p	per CAN proto	ocol.				

BUFFER 22-3: CANx MESSAGE BUFFER WORD 2

bit 3-0	DLC<3:0>: Data Length Code bits

BUFFER 22-4: CANx MESSAGE BUFFER WORD 3

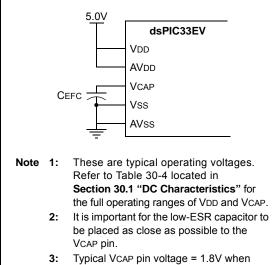
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
Byte 1<15:8>											
bit 15							bit 8				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
Byte 0<7:0>											
bit 7							bit 0				
Legend:											
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'							
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown					

bit 15-8 Byte 1<15:8>: CANx Message Byte 1 bits

bit 7-0 Byte 0<7:0>: CANx Message Byte 0 bits

27.2 User OTP Memory

Locations, 800F80h-800FFEh, are a One-Time-Programmable (OTP) memory area. The user OTP words can be used for storing product information, such as serial numbers, system manufacturing dates, manufacturing lot numbers and other application-specific information.


27.3 On-Chip Voltage Regulator

All of the dsPIC33EVXXXGM00X/10X family devices power their core digital logic at a nominal 1.8V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 5.0V. To simplify system design, all devices in the dsPIC33EVXXXGM00X/10X family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohm) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (see Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 30-5, located in **Section 30.0 "Electrical Characteristics"**.

Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin.

FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

3: Typical VCAP pin voltage = 1.8V when VDD ≥ VDDMIN.

27.4 Brown-out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

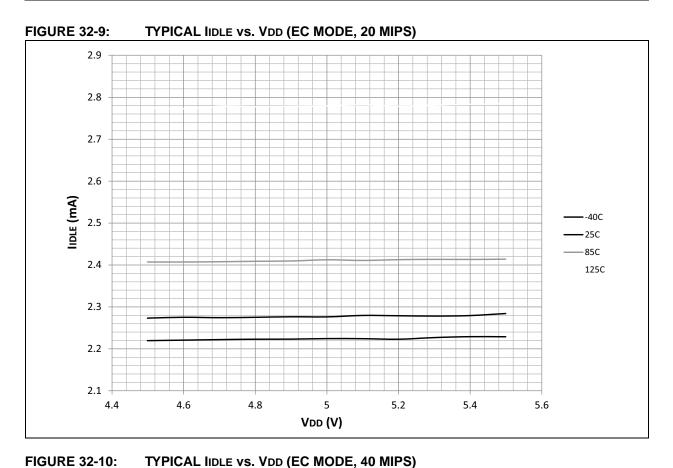
A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

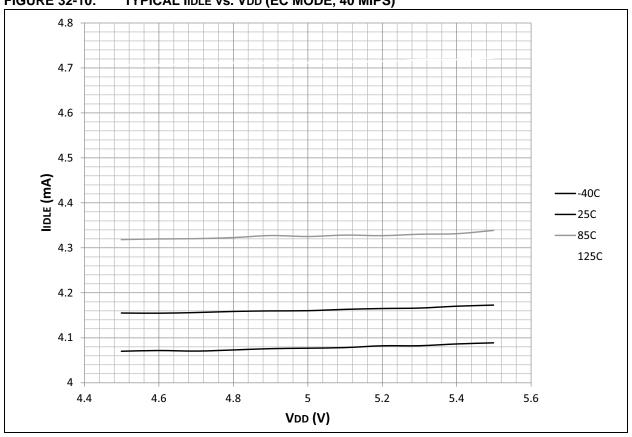
If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the Power-up Timer (PWRT) Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to Parameter SY35 in Table 30-22 of **Section 30.0 "Electrical Characteristics"** for specific TFSCM values.

The BOR status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle mode and resets the device should VDD fall below the BOR threshold voltage.

TABLE 30-36:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

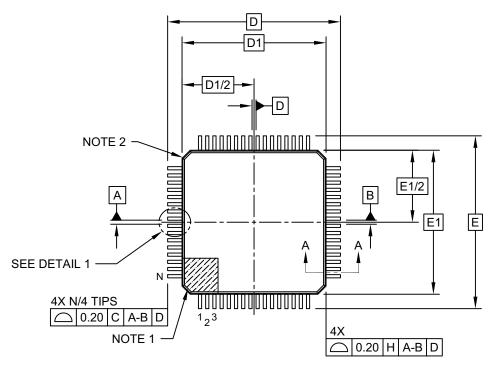

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK2 Input Frequency	—		15	MHz	See Note 3	
SP72	TscF	SCK2 Input Fall Time	—	_		ns	See Parameter DO32 and Note 4	
SP73	TscR	SCK2 Input Rise Time		_		ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDO2 Data Output Fall Time	_	_	-	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDO2 Data Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	_		ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SS2} \downarrow$ to SCK2 \uparrow or SCK2 \downarrow Input	120	—	—	ns		
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	_	50	ns	See Note 4	
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 Tcy + 40	—	_	ns	See Note 4	

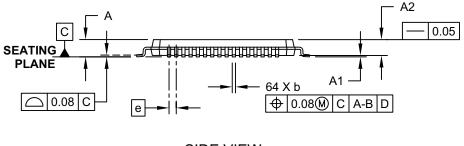

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.




© 2013-2016 Microchip Technology Inc.

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

SIDE VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2