

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	25
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	36-UFQFN Exposed Pad
Supplier Device Package	36-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev256gm003-e-m5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CPU Control Registers 3.6

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
0A	ОВ	SA ⁽³⁾	SB ⁽³⁾	OAB	SAB	DA	DC
bit 15	00	0,1	08	0,18	0,10	BA	bit 8
							bitt
R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ^(1,2)) IPL1 ^(1,2)	IPL0 ^(1,2)	RA	N	OV	Z	С
bit 7							bit (
Lonordi			- h:4				
Legend:		C = Clearable			nonted bit was		
R = Reada		W = Writable		-	mented bit, rea		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	OA: Accumu	lator A Overflo	w Status bit				
	1 = Accumul	ator A has over	flowed				
	0 = Accumul	ator A has not	overflowed				
bit 14	OB: Accumu	lator B Overflo	w Status bit				
		ator B has over					
		ator B has not o					
bit 13	SA: Accumu	lator A Saturati	on 'Sticky' Sta	atus bit ⁽³⁾			
		ator A is satura ator A is not sa		en saturated at	some time		
bit 12	SB: Accumu	lator B Saturati	on 'Sticky' Sta	atus bit ⁽³⁾			
		ator B is satura ator B is not sa		en saturated at	some time		
bit 11	0AB: OA (OB Combined A	Accumulator C	Overflow Status	bit		
		ator A or B has					
	0 = Accumul	ator A and B ha	ave not overflo	owed			
bit 10	SAB: SA S	B Combined A	ccumulator 'S	ticky' Status bit			
		ator A or B is s ator A and B ha			ed at some tim	ie	
bit 9	DA: DO Loop	Active bit					
		s in progress s not in progres	s				
bit 8	-	U Half Carry/B					
		•		(for byte-sized o	data) or 8 th Iow	order bit (for wo	ord-sized data
		sult occurred	11-		,		
				bit (for byte-siz	ed data) or 8 ^{ti}	^h low-order bit (1	for word-size
	data) of	the result occu	rred				
	The IPL<2:0> bits Level. The value i						
	The IPL<2:0> Sta	-					
	Δ data write to the		-		-	-	nd SB or by

3: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using the bit operations.

TABLE 4-39: PORTD REGISTER MAP FOR dsPIC33EVXXXGMX06 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	0E3C	—	—	_			—		TRISD8	_	TRISE	0<6:5>			_			0160
PORTD	0E3E	_	_	_			—		RD8	_	RD<	:6:5>			_	_		xxxx
LATD	0E40	_	_	_			—		LATD8	_	LATD	<6:5>			_	_		xxxx
ODCD	0E42		_	_			—		ODCD8	—	ODCE)<6:5>			_			0000
CNEND	0E44		_	_			—		CNIED8	—	CNIED	0<6:5>			_			0000
CNPUD	0E46		_	_			—		CNPUD8	—	CNPU	D<6:5>			_			0000
CNPDD	0E48	—	_	_			-		CNPDD8	_	CNPDI	D<6:5>						0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-40: PORTE REGISTER MAP FOR dsPIC33EVXXXGMX06 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	0E50		TRISE	<15:12>		—	—		—	—	—	_	-	-	-	—		F000
PORTE	0E52		RE<1	5:12>		_	_	_	_	_	_		_	_	_	_	_	xxxx
LATE	0E54		LATE<15:12>		_	_	_	_	_	_		_	_	_	_	_	xxxx	
ODCE	0E56	ODCE<15:12>		_	_	_	_	_	_		_	_	_	_	_	0000		
CNENE	0E58		CNIEE<15:12>		—	—		—	—	_	_				_	_	0000	
CNPUE	0E5A	CNPUE<15:12>		_	_	_	_	_	_		_	_	_	_	_	0000		
CNPDE	0E5C		CNPDE	<15:12>		—	—		—	—	_	_	_	_		_	_	0000
ANSELE	0E5E		ANSE<	<15:12>		_	—		_	—	_	_	-	-		_	_	F000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 8-3: DMAxSTAH: DMA CHANNEL x START ADDRESS REGISTER A (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	_	—	—	—	—			
bit 15	·						bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			STA<	23:16>						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown						

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STA<23:16>: DMA Primary Start Address bits (source or destination)

REGISTER 8-4: DMAxSTAL: DMA CHANNEL x START ADDRESS REGISTER A (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STA	<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STA	<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writabl			bit	U = Unimplen	nented bit, rea	bit, read as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
L								

bit 15-0 STA<15:0>: DMA Primary Start Address bits (source or destination)

11.5.5.1 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn pins is possible. This includes both many-to-one, and one-to-many mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

Function	RPnR<5:0>	Output Name
Default Port	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U2TX	000011	RPn tied to UART2 Transmit
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
C1TX	001110	RPn tied to CAN1 Transmit
OC1	010000	RPn tied to Output Compare 1 Output
OC2	010001	RPn tied to Output Compare 2 Output
OC3	010010	RPn tied to Output Compare 3 Output
OC4	010011	RPn tied to Output Compare 4 Output
C10UT	011000	RPn tied to Comparator Output 1
C2OUT	011001	RPn tied to Comparator Output 2
C3OUT	011010	RPn tied to Comparator Output 3
SYNCO1	101101	RPn tied to PWM Primary Time Base Sync Output
REFCLKO	110001	RPn tied to Reference Clock Output
C4OUT	110010	RPn tied to Comparator Output 4
C5OUT	110011	RPn tied to Comparator Output 5
SENT1	111001	RPn tied to SENT Out 1
SENT2	111010	RPn tied to SENT Out 2

|--|

REGISTER 11-11:	RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23
-----------------	---

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	—	—	—	—
bit 15							bit 8
				=			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SS2I	R<7:0>			
bit 7							bit C
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at POR		'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8	Unimpleme	nted: Read as	ʻ0'				
bit 7-0 SS2R<7:0>: Assign SPI2 Slave Select (SS2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)							
	10110101 =	Input tied to R	PI181				
	•						
	•						
	-	Input tied to C	MP1				
	0000001 -						

00000000 = Input tied to Vss

REGISTER 11-12: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—		—	—	—	—			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			C1RX	(R<7:0>						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'						
-n = Value at P	-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	x = Bit is unknown			

bit 15-8	Unimplemented: Read as '0'
bit 7-0	C1RXR<7:0>: Assign CAN1 RX Input (C1RX) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	10110101 = Input tied to RPI181
	•
	•
	•
	00000001 = Input tied to CMP1 00000000 = Input tied to Vss

13.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

These modules are 32-bit timers, which can also be configured as four independent, 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3 and Timer4/5 operate in the following three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules
- ADC1 Event Trigger (Timer2/3 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1. The T3CON and T5CON registers are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw). Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, the T3CON and T5CON control bits are ignored. Only the T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

Block diagrams for the Type B and Type C timers are shown in Figure 13-1 and Figure 13-2, respectively.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-3.

Note: Only Timer2, Timer3, Timer4 and Timer5 can trigger a DMA data transfer.

R-0, HSC	R-0, HSC	R-0, HSC	U-0	U-0	R/C-0, HSC	R-0, HSC	R-0, HSC		
ACKSTAT	TRSTAT	ACKTIM	—	_	BCL	GCSTAT	ADD10		
bit 15							bit 8		
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC		
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF		
bit 7							bit 0		
1		O Ola anali	I.a. Ia :4	LICO Llaratur		velete le it			
Legend: R = Readabl	a h:t	C = Clearab			are Settable/Clear				
		W = Writabl		0 = Unimpien	ented bit, read a	HS = Hardware	Cottoble bit		
-n = Value at	PUR	'1' = Bit is s	51		areu		Settable bit		
bit 15	ACKSTAT: A	Acknowledge	Status bit (up	dated in all Ma	ster and Slave m	iodes)			
		edge was not				,			
	0 = Acknowl	edge was rec	eived from sla	ave					
bit 14				-	naster; applicable	e to master trans	mit operation)		
		ransmit is in p ransmit is not		ts + ACK)					
bit 13	ACKTIM: Acknowledge Time Status bit (valid in I ² C Slave mode only)								
	1 = Indicates I^2C bus is in an Acknowledge sequence, set on 8 th falling edge of SCLx clock								
	0 = Not an Acknowledge sequence, cleared on 9 th rising edge of SCLx clock								
bit 12-11	Unimplemented: Read as '0'								
bit 10	BCL: Bus Collision Detect bit (Master/Slave mode; cleared when I^2C module is disabled, I2CEN = 0) 1 = A bus collision has been detected during a master or slave transmit operation								
		ision has not l			or slave transm	it operation			
bit 9				ed after Stop de	etection)				
		call address v		·	,				
bit 8				red after Stop o	detection)				
bit o		dress was m							
		dress was no							
bit 7	IWCOL: Wri	te Collision D	etect bit						
			the I2CxTRN	I register failed	because the I ² C	module is busy;	must be cleared		
	In softw	are n has not occi	irred						
bit 6		Receive Ove		ł					
bit o			-		s still holding the	previous byte; 12	2COV is a "don't		
	care" in	Transmit mod	de, must be c	leared in softwa	-				
		w has not occ							
bit 5				g as I ² C slave)					
		s that the last s that the last			was an address	i			
bit 4	P: I2Cx Stop				-				
	1 = Indicates	s that a Stop b		letected last	d when the I ² C r	nodule is disable	ed, I2CEN = 0.		

REGISTER 19-3: I2CxSTAT: I2Cx STATUS REGISTER

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	
_	_	FBP5	FBP4	FBP3	FBP2	FBP1	FBP0	
bit 15	·	·				·	bit	
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	
	—	FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0	
bit 7							bit	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	id as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 13-8 bit 7-6 bit 5-0	-	B30 buffer RB1 buffer RB0 buffer nted: Read as ' : FIFO Next Rea B31 buffer		ter bits				
	0000001 = TI 0000000 = TI							

REGISTER 22-5: CxFIFO: CANx FIFO STATUS REGISTER

REGISTER 2	24-2: ADx	CON2: ADCx C	CONTROL RI	EGISTER 2			
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
VCFG2 ⁽¹⁾	VCFG1 ⁽¹⁾	VCFG0 ⁽¹⁾		—	CSCNA	CHPS1	CHPS0
bit 15	·						bit
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS
bit 7				_			bit
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	VCFG<2:0>	: Converter Volta	ge Reference	Configuration I	bits ⁽¹⁾		
	Value	VREFH	VREFL				
	xxx	AVDD	AVss				
bit 12-11	Unimpleme	nted: Read as '0	,				
bit 10	CSCNA: Inp	out Scan Select b	it				
		nputs for CH0+ du ot scan inputs	uring Sample N	IUX A			
bit 9-8		: Channel Select	bits				
	In 12-Bit Mo	de (AD21B = 1),	CHPS<1:0> bi	ts are Unimple	emented and ar	e Read as '0':	
		rts CH0, CH1, CH	12 and CH3				
	01 = Conve 00 = Conve	rts CH0 and CH1					
bit 7		er Fill Status bit (o	nly valid when	RHEM = 1			
		s currently filling the	-	-	he user applicat	ion should acce	ess data in th
		f of the buffer		or the barron, t			
		s currently filling half of the buffer	the first half of	the buffer; the	e user application	on should acce	ss data in th
bit 6-2	SMPI<4:0>:	Increment Rate	bits				
	When ADD						
		enerates interrupt enerates interrupt					
	•						
	•						
		enerates interrupt					
		enerates interrupt	after completion	on of every sar	mple/conversion	operation	
	$\frac{\text{When ADD}}{11111} = \ln c$	VIAEN = 1: crements the DM/	A address after	completion of	every 32nd sa	mple/conversio	n operation
		crements the DM/					
	•						
	•				. <u>.</u> .		
		crements the DMA crements the DMA					
Note 1. Th		H Input is connec	ted to AV/DD ar	d the Vecci in	put is connecte	d to Alles	

REGISTER 24-2: ADxCON2: ADCx CONTROL REGISTER 2

Note 1: The ADCx VREFH Input is connected to AVDD and the VREFL input is connected to AVss.

27.6 In-Circuit Serial Programming

The dsPIC33EVXXXGM00X/10X family devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to "dsPIC33EVXXXGM00X/10X Families Flash Programming Specification" (DS70005137) for details about In-Circuit Serial Programming™ (ICSP™).

Any of the following three pairs of programming clock/ data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

27.7 In-Circuit Debugger

When MPLAB[®] ICD 3 or REAL ICETM is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB X IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the following three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx).

27.8 Code Protection and CodeGuard™ Security

The dsPIC33EVXXXGM00X/10X family devices offer Intermediate CodeGuard Security that supports General Segment (GS) security, Boot Segment (BS) security and Configuration Segment (CS) security. This feature helps protect individual Intellectual Properties.

Note:	Refer to "CodeGuard™ Intermediate
	Security" (DS70005182) in the "dsPIC33/
	PIC24 Family Reference Manual" for
	further information on usage, configuration
	and operation of CodeGuard Security.

29.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

29.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

29.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

29.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

DC CHARACTER	$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq T_A \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq T_A \leq +125^\circ C \mbox{ for Extended} \end{array}$							
Parameter No.	Тур. ⁽²⁾	Max.	Doze Ratio	Units	Conditions			
Doze Current (IDoze) ⁽¹⁾								
DC73a	16.0	18.25	1:2	mA	-40°C	5.0V	70 MIPS	
DC73g	7.1	8.0	1:128	mA	-40 C	5.00		
DC70a	16.25	18.5	1:2	mA	+25°C	5.0V	70 MIPS	
DC70g	7.3	8.2	1:128	mA	+25 C	5.0V	70 MIPS	
DC71a	17.0	19.0	1:2	mA	195%	E 0)/		
DC71g	7.5	8.9	1:128	mA	+85°C	5.0V	70 MIPS	
DC72a	17.75	19.95	1:2	mA	+125°C	5.0V		
DC72g	8.25	9.32	1:128	mA	+120 C	5.00	60 MIPS	

TABLE 30-9: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

• Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

• CLKO is configured as an I/O input pin in the Configuration Word

• All I/O pins are configured as outputs and driving low

• MCLR = VDD, WDT and FSCM are disabled

• CPU, SRAM, program memory and data memory are operational

• No peripheral modules are operating or being clocked (defined PMDx bits are all ones)

CPU executing

```
while(1)
{
NOP();
}
```

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

DC CHARACTERISTICS			Standard Operating Co (unless otherwise state Operating temperature			ed)		
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions	
		Program Flash Memory						
D130	Eр	Cell Endurance	10,000	—	_	E/W	-40°C to +125°C	
D131	Vpr	VDD for Read	4.5	—	5.5	V		
D132b	VPEW	VDD for Self-Timed Write	4.5	—	5.5	V		
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated, -40°C to +125°C	
D135	IDDP	Supply Current During Programming	_	10	—	mA		
D136a	Trw	Row Write Cycle Time	0.657	—	0.691	ms	Trw = 4965 FRC cycles, Ta = +85°C (see Note 2)	
D136b	Trw	Row Write Cycle Time	0.651	_	0.698	ms	Trw = 4965 FRC cycles, Ta = +125°C (see Note 2)	
D137a	TPE	Page Erase Time	19.44	_	20.44	ms	TPE = 146893 FRC cycles, TA = +85°C (see Note 2)	
D137b	TPE	Page Erase Time	19.24	—	20.65	ms	TPE = 146893 FRC cycles, TA = +125°C (see Note 2)	
D138a	Tww	Word Write Cycle Time	45.78	—	48.15	μs	Tww = 346 FRC cycles, TA = +85°C (see Note 2)	
D138b	Tww	Word Write Cycle Time	45.33	_	48.64	μs	Tww = 346 FRC cycles, TA = +125°C (see Note 2)	

TABLE 30-13: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

2: Other conditions: FRC = 7.3728 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 30-20) and the value of the FRC Oscillator Tuning register.

TABLE 30-14: ELECTRICAL CHARACTERISTICS: INTERNAL BAND GAP REFERENCE VOLTAGE

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
DVR10	Vbg	Internal Band Gap Reference Voltage	1.14	1.2	1.26	V		

TABLE 30-41:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK1 Frequency		—	25	MHz	-40°C to +125°C and see Note 3	
SP20	TscF	SCK1 Output Fall Time	—		—	ns	See Parameter DO32 and Note 4	
SP21	TscR	SCK1 Output Rise Time	—	—	—	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDO1 Data Output Fall Time	—	—	—	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDO1 Data Output Rise Time	—	—	—	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	—	—	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	—	—	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	20	—		ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

TABLE 30-42:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK1 Input Frequency	—	—	25	MHz	See Note 3	
SP72	TscF	SCK1 Input Fall Time	—	—	_	ns	See Parameter DO32 and Note 4	
SP73	TscR	SCK1 Input Rise Time	—	—	_	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDO1 Data Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCK1 Edge	20	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	—	_	ns		
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	—	ns		
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	See Note 4	
SP52	TscH2ssH TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	—	_	ns	See Note 4	
SP60	TssL2doV	SDO1 Data Output Valid after SS1 Edge	—	—	50	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 40 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Тур. ⁽⁴⁾	Max.	Units	Conditions	
		Cloc	k Parame	eters				
AD50	TAD	ADC Clock Period	75	_		ns		
AD51	tRC	ADC Internal RC Oscillator Period	—	250		ns		
		Con	version F	Rate				
AD55	tCONV	Conversion Time	—	12	_	TAD		
AD56	FCNV	Throughput Rate	—	—	1.1	Msps	Using simultaneous sampling	
AD57a	TSAMP	Sample Time When Sampling Any ANx Input	2	—	_	TAD		
AD57b	TSAMP	Sample Time When Sampling the Op Amp Outputs	4	—	_	TAD		
		Timin	ng Param	eters				
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2	—	3	TAD	Auto-convert trigger is not selected	
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2	—	3	TAD		
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5	—	TAD		
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽²⁾	—	—	20	μS	See Note 3	

TABLE 30-58: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

- **2:** Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
- **3:** The parameter, tDPU, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (ADxCON1<15>) = 1). During this time, the ADC result is indeterminate.
- 4: These parameters are characterized but not tested in manufacturing.

TABLE 30-59: DMA MODULE TIMING REQUIREMENTS

		$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions		
DM1	DMA Byte/Word Transfer Latency	1 Tcy (2)	—		ns			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because DMA transfers use the CPU data bus, this time is dependent on other functions on the bus.

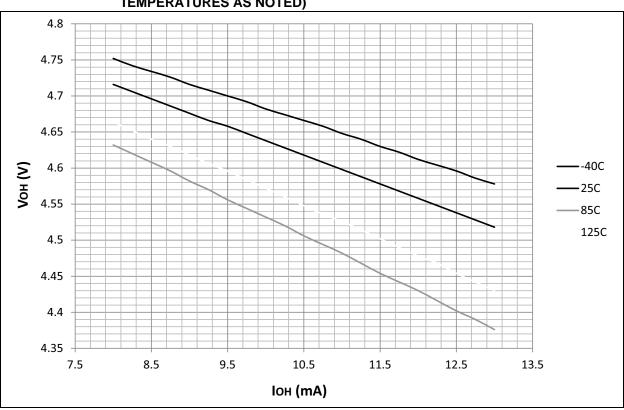
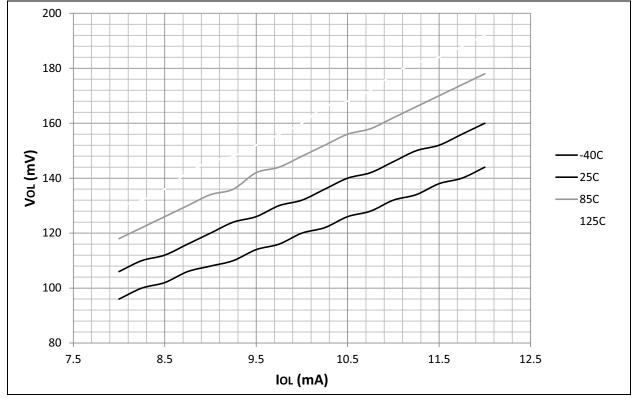
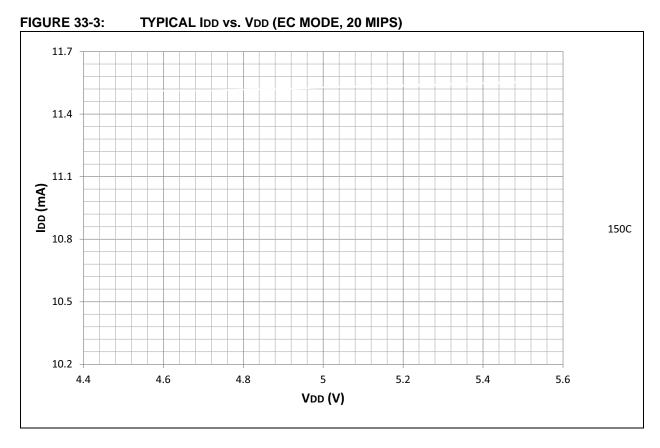




FIGURE 32-31: TYPICAL VOH 4x DRIVER PINS vs. IOH (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

FIGURE 32-32: TYPICAL Vol 8x DRIVER PINS vs. Iol (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

dsPIC33EVXXXGM00X/10X FAMILY

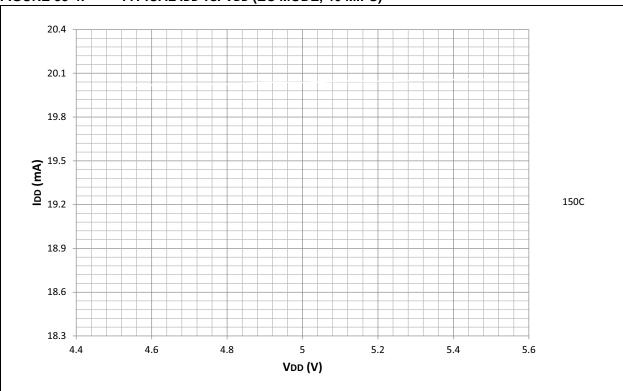
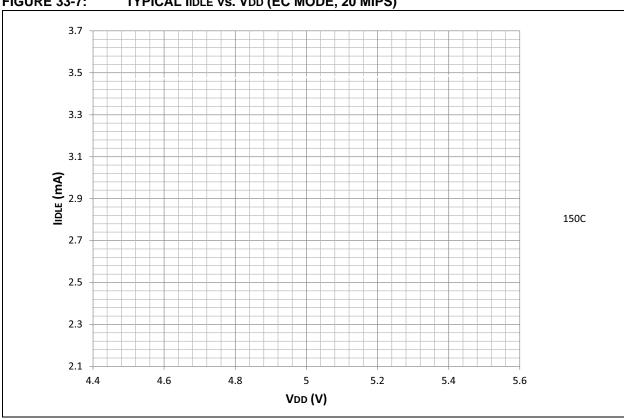



FIGURE 33-4: TYPICAL IDD vs. VDD (EC MODE, 40 MIPS)

dsPIC33EVXXXGM00X/10X FAMILY

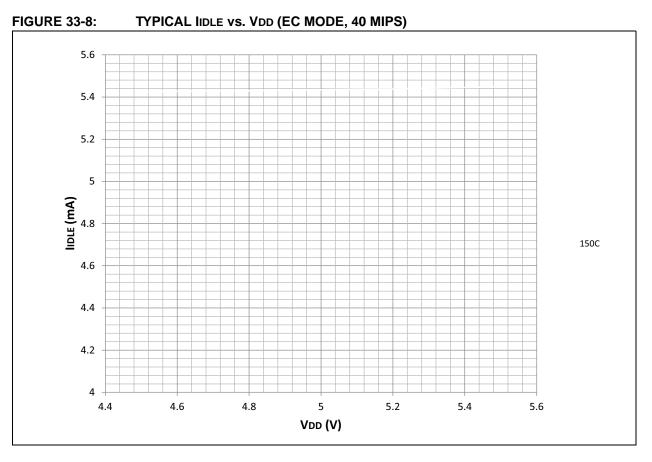


FIGURE 33-7: TYPICAL lidLe vs. Vdd (EC MODE, 20 MIPS)

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Product Group Pin Count Tape and Reel Fla Package		Example: dsPIC33EV256GM006-I/PT: dsPIC33, Enhanced Voltage, 256-Kbyte Program Memory, 64-Pin, Industrial Temperature, TQFP Package.
Architecture:	33 = 16-Bit Digital Signal Controller	
Family:	EV = Enhanced Voltage	
Product Group:	GM = General Purpose plus Motor Control Family	
Pin Count:	02 = 28-Pin 04 = 44-Pin 06 = 64-Pin	
Temperature Range	$ \begin{array}{rcl} & = & -40^{\circ} \text{C to } +85^{\circ} \text{C (Industrial)} \\ \text{E} & = & -40^{\circ} \text{C to } +125^{\circ} \text{C (Extended)} \\ \text{H} & = & -40^{\circ} \text{C to } +150^{\circ} \text{C (High)} \end{array} $	
Package:	MM =Plastic Quad Flat, No Lead Package – (28-pin) 6x6x0.9 mm body (QFN-S)SO =Plastic Small Outline – (28-pin) 7.50 mm body (SOIC)SS =Plastic Shrink Small Outline – (28-pin) 5.30 mm body (SSOP)SP =Skinny Plastic Dual In-Line – (28-pin) 300 mil body (SPDIP)ML =Plastic Quad Flat, No Lead Package – (44-pin) 8x8 mm body (QFN)MR =Plastic Quad Flat, No Lead Package – (64-pin) 9x9x0.9 mm body (QFN)PT =Plastic Thin Quad Flatpack – (44-pin) 10x10x1 mm body (TQFP)PT =Plastic Thin Quad Flatpack – (64-pin) 10x10x1 mm body (TQFP)	