

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	25
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-UFQFN Exposed Pad
Supplier Device Package	36-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev256gm003-i-m5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "CPU" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for digital signal processing. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

3.1 Registers

The dsPIC33EVXXXGM00X/10X family devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can act as a Data, Address or Address Offset register. The sixteenth Working register (W15) operates as a Software Stack Pointer for interrupts and calls.

In addition, the dsPIC33EVXXXGM00X/10X devices include two alternate Working register sets, which consist of W0 through W14. The alternate registers can be made persistent to help reduce the saving and restoring of register content during Interrupt Service Routines (ISRs). The alternate Working registers can be assigned to a specific Interrupt Priority Level (IPL1 through IPL6) by configuring the CTXTx<2:0> bits in the FALTREG Configuration register.

The alternate Working registers can also be accessed manually by using the CTXTSWP instruction.

The CCTXI<2:0> and MCTXI<2:0> bits in the CTXTSTAT register can be used to identify the current, and most recent, manually selected Working register sets.

3.2 Instruction Set

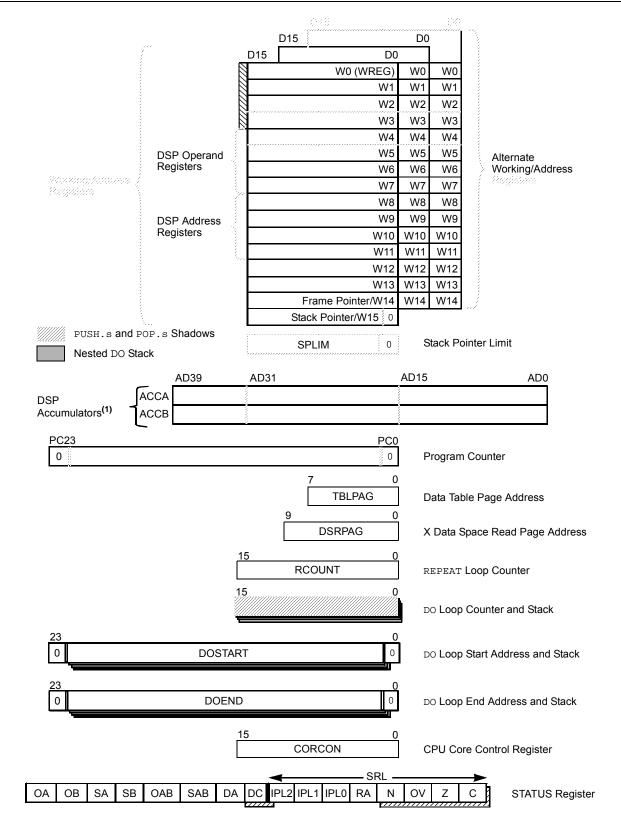
The device instruction set has two classes of instructions: the MCU class of instructions and the DSP class of instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

3.3 Data Space Addressing

The Base Data Space can be addressed as 4K words or 8 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. On dsPIC33EV devices, certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Space boundary is device-specific.

The upper 32 Kbytes of the Data Space (DS) memory map can optionally be mapped into Program Space (PS) at any 16K program word boundary. The Program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Moreover, the Base Data Space address is used in conjunction with a Data Space Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can be addressed as 8M words or 16 Mbytes. For more information on EDS, PSV and table accesses, refer to "Data Memory" (DS70595) and "dsPIC33E/PIC24E Program Memory" (DS70000613) in the "dsPIC33/ PIC24 Family Reference Manual".

On dsPIC33EV devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms. Figure 3-1 illustrates the block diagram of the dsPIC33EVXXXGM00X/10X family devices.


3.4 Addressing Modes

The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

FIGURE 3-2: PROGRAMMER'S MODEL

Informent Course	Vector	tor IRQ		Interrupt Bit Location			
Interrupt Source	No. No.		IVT Address	Flag	Enable	Priority	
UART1 Error Interrupt (U1E)	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>	
UART2 Error Interrupt (U2E)	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>	
Reserved	76-77	68–69	0x00009C-0x00009E	_	—	_	
CAN1 TX Data Request (C1TX) ⁽¹⁾	78	70	0x0000A0	IFS4<6>	IEC4<6>	IPC17<10:8>	
Reserved	80	72	0x0000A4	_	—	_	
Reserved	82	74	0x0000A8	_	_	_	
Reserved	84	76	0x0000AC	_	_	_	
CTMU Interrupt (CTMU)	85	77	0x0000AE	IFS4<13>	IEC4<13>	IPC19<6:4>	
Reserved	86-88	78-80	0x0000B0-0x0000B4	_	—	—	
Reserved	92-94	84-86	0x0000BC-0x0000C0	_	—	—	
Reserved	100-101	92-93	0x0000CC-0x0000CE	_	_		
PWM Generator 1 (PWM1)	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>	
PWM Generator 2 (PWM2)	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>	
PWM Generator 3 (PWM3)	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>	
Reserved	108-149	100-141	0x0000DC-0x00012E	_	—	_	
ICD Application (ICD)	150	142	0x000142	IFS8<14>	IEC8<14>	IPC35<10:8>	
Reserved	152	144	0x000134	_	—	—	
Bus Collision (I2C1)	—	173	0x00016E	IFS10<13>	IEC10<13>	IPC43<4:6>	
SENT1 Error (SENT1ERR)	_	182	0x000180	IFS11<6>	IEC11<6>	IPC45<10:8>	
SENT1 TX/RX (SENT1)	_	183	0x000182	IFS11<7>	IEC11<7>	IPC45<14:12>	
SENT2 Error (SENT2ERR)	_	184	0x000184	IFS11<8>	IEC11<8>	IPC46<2:0>	
SENT2 TX/RX (SENT2)	_	185	0x000186	IFS11<9>	IEC11<9>	IPC46<6:4>	
ECC Single-Bit Error (ECCSBE)	—	186	0x000188	IFS11<10>	IEC11<10>	IPC45<10:8>	
Reserved	159-245	187-245	0x000142-0x0001FE	_	_	—	
		Lowest	Natural Order Priority				

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTIN

Note 1: This interrupt source is available on dsPIC33EVXXXGM10X devices only.

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾ (CONTINUED)

- **Note 1:** This bit is cleared when the ROI bit is set and an interrupt occurs.
 - 2: This register resets only on a Power-on Reset (POR).
 - **3:** DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - 4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this may not be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation. For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps, based on this device operating speed. If the device is placed in Doze mode, with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled, using the appropriate PMDx control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have any effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMDx register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMDx register by default.

Note: If a PMDx bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMDx bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			T2CK	R<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **T2CKR<7:0>:** Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 10110101 = Input tied to RPI181 •

• 00000001 = Input tied to CMP1 00000000 = Input tied to Vss

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾	
bit 15			Diocon	DICCDO	MODEIO	Olin	bit	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SSEN ⁽²⁾	CKP	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾	
bit 7				1			bit	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
			_ 1					
bit 15-13	-	ted: Read as '						
bit 12	DISSCK: Disable SCKx Pin bit (SPI Master modes only) 1 = Internal SPI clock is disabled, pin functions as I/O							
		PI clock is disa PI clock is ena		ao 1/U				
bit 11	DISSDO: Disable SDOx Pin bit							
	1 = SDOx pin is not used by the module; pin functions as I/O							
		is controlled b						
bit 10	MODE16: Wo	ord/Byte Comm	unication Sele	ect bit				
	1 = Communication is word-wide (16 bits)							
		0 = Communication is byte-wide (8 bits)						
bit 9		ata Input Samp	ole Phase bit					
	Master mode:	: a is sampled at	the end of da	ta output time				
				data output time	ie			
	Slave mode:	-		n Slave mode.				
bit 8	CKE: Clock E	dge Select bit	1)					
					clock state to Id			
bit 7	SSEN: Slave	Select Enable	bit (Slave mo	de) ⁽²⁾				
		s used for Slav						
	0 = SSx pin is	s not used by the	ne module; pir	n is controlled b	y port function			
bit 6		olarity Select I						
				ve state is a low e state is a high				
bit 5	MSTEN: Mas	ter Mode Enab	le bit					
	1 = Master m 0 = Slave mo							
	he CKE bit is not FRMEN = 1).	used in Frame	d SPI modes.	Program this b	oit to '0' for Frai	med SPI modes	S	
-	his bit must be cl	eared when FF	RMEN = 1.					
	o not set both pri			ers to the value	e of 1:1.			

REGISTER 18-2: SPIxCON1: SPIx CONTROL REGISTER 1

3: Do not set both primary and secondary prescalers to the value of 1:1.

REGISTER 22-14: CxBUFPNT3: CANx FILTERS 8-11 BUFFER POINTER REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F11BP3	F11BP2	F11BP1	F11BP0	F10BP3	F10BP2	F10BP1	F10BP0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F9BP3	F9BP2	F9BP1	F9BP0	F8BP3	F8BP2	F8BP1	F8BP0	
bit 7						•	bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-12	F11BP<3:0>:	RX Buffer Mas	sk for Filter 11	bits				
		hits received in						
	1110 = Filter	hits received in	RX Buffer 14	ł				
	•							
	•							
	0001 = Filter	hits received in	RX Buffer 1					
	0000 = Filter	hits received in	NRX Buffer 0					
bit 11-8	F10BP<3:0>	RX Buffer Ma	sk for Filter 10) bits (same va	lues as bits 15- [,]	12)		
bit 7-4	F9BP<3:0>:	RX Buffer Masl	c for Filter 9 b	its (same value	es as bits 15-12))		
bit 3-0	F8BP<3:0>:	F8BP<3:0>: RX Buffer Mask for Filter 8 bits (same values as bits 15-12)						

REGISTER 22-22: CxRXFUL1: CANx RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
			RXFU	L<15:8>				
bit 15							bit 8	
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
			RXFL	JL<7:0>				
bit 7							bit 0	
Legend: C = Writable bit, but only			oit, but only '(ly '0' can be written to clear the bit				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

bit 15-0 RXFUL<15:0>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 22-23: CxRXFUL2: CANx RECEIVE BUFFER FULL REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	_<31:24>			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	_<23:16>			
bit 7							bit 0
Legend: C = Writable bit, but onl			it, but only '()' can be written	to clear the b	bit	
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'			
-n = Value at F	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown	

bit 15-0 RXFUL<31:16>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS	<7:0>			
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared		ared	x = Bit is unk	nown			

bit 15-0 CSS<15:0>: ADCx Input Scan Selection bits

1 = Selects ANx for input scan

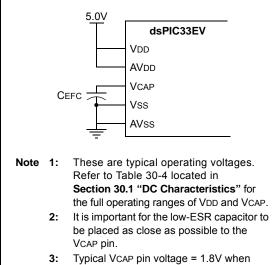
0 = Skips ANx for input scan

Note 1: On devices with less than 16 analog inputs, all bits in this register can be selected by the user application. However, inputs selected for scan without a corresponding input on the device convert VREFL.

2: CSSx = ANx, where 'x' = 0-5.

27.2 User OTP Memory

Locations, 800F80h-800FFEh, are a One-Time-Programmable (OTP) memory area. The user OTP words can be used for storing product information, such as serial numbers, system manufacturing dates, manufacturing lot numbers and other application-specific information.


27.3 On-Chip Voltage Regulator

All of the dsPIC33EVXXXGM00X/10X family devices power their core digital logic at a nominal 1.8V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 5.0V. To simplify system design, all devices in the dsPIC33EVXXXGM00X/10X family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohm) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (see Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 30-5, located in **Section 30.0 "Electrical Characteristics"**.

Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin.

FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

Typical VCAP pin voltage = 1.8V when VDD ≥ VDDMIN.

27.4 Brown-out Reset (BOR)

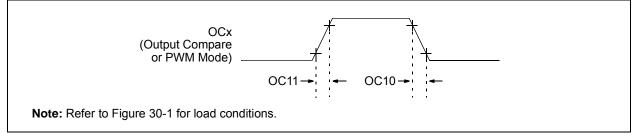
The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the Power-up Timer (PWRT) Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to Parameter SY35 in Table 30-22 of **Section 30.0 "Electrical Characteristics"** for specific TFSCM values.

The BOR status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle mode and resets the device should VDD fall below the BOR threshold voltage.


TABLE 30-10:	DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS
--------------	--

DC CHARACTERISTICS			Standard Ope (unless other Operating tem	onditions: 4.5V to 5.5V ed) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
	VIL	Input Low Voltage					
DI10		I/O Pins	Vss		0.2 Vdd	V	
	Vih	Input High Voltage					
DI20		I/O Pins	0.75 VDD		5.5	V	
DI30	ICNPU	Change Notification Pull-up Current	200	375	600	μA	VDD = 5.0V, VPIN = VSS
DI31	ICNPD	Change Notification Pull-Down Current ⁽⁷⁾	175	400	625	μA	VDD = 5.0V, VPIN = VDD
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Pins	-100	-	100	nA	$Vss \le VPIN \le VDD,$ pin at high-impedance
DI55		MCLR	-700		700	nA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSC1	-200	_	200	nA	$\label{eq:VSS} \begin{split} &VSS \leq V PIN \leq V DD, \\ &XT \text{ and } HS \text{ modes} \end{split}$
Dl60a	licl	Input Low Injection Current	0	_	₋₅ (4,6)		All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP and RB7
DI60b	ІІСН	Input High Injection Current	0	—	+5 ^(5,6)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB7 and all 5V tolerant pins ⁽⁵⁾
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	₋₂₀ (7)	_	+20(7)		Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.
- **3:** Negative current is defined as current sourced by the pin.
- 4: VIL source < (VSS 0.3). Characterized but not tested.
- 5: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 6: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.
- 7: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

FIGURE 30-8: OUTPUT COMPARE x (OCx) TIMING CHARACTERISTICS

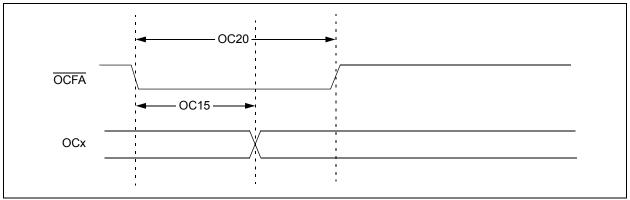


TABLE 30-27: OUTPUT COMPARE x (OCx) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
OC10	TccF	OCx Output Fall Time	_	_		ns	See Parameter DO32	
OC11	TccR	OCx Output Rise Time	_	_	—	ns	See Parameter DO31	

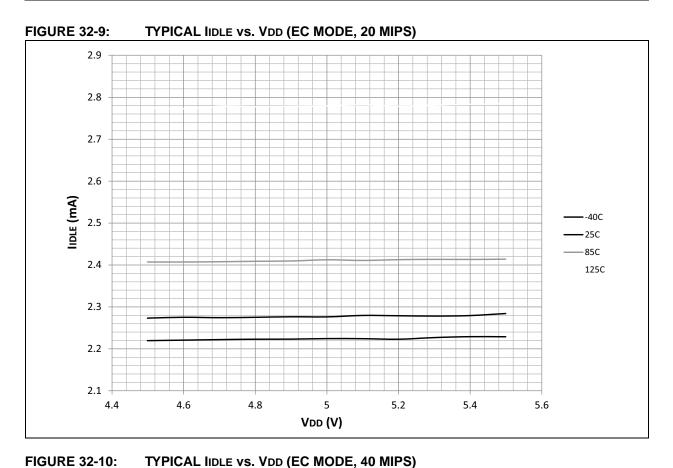
Note 1: These parameters are characterized but not tested in manufacturing.

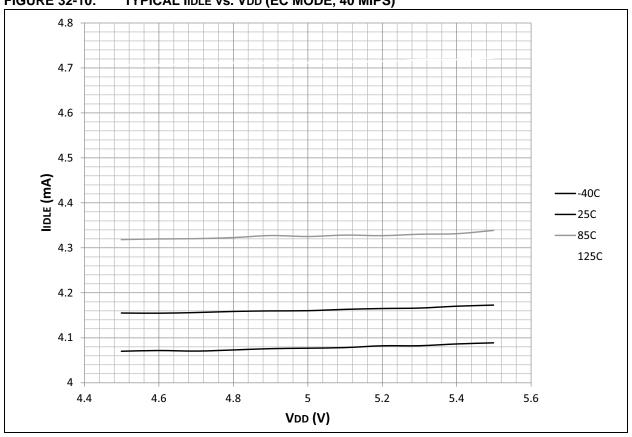
FIGURE 30-9: OCx/PWMx MODULE TIMING CHARACTERISTICS

TABLE 30-28: OCx/PWMx MODE TIMING REQUIREMENTS

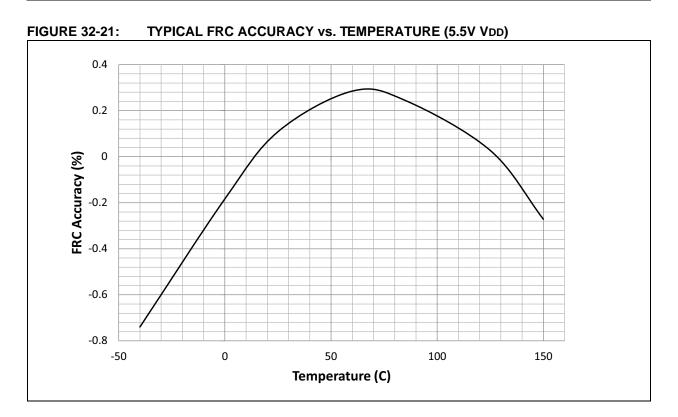
AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
OC15	Tfd	Fault Input to PWMx I/O Change	_	_	Tcy + 20	ns	
OC20	TFLT	Fault Input Pulse Width	Tcy + 20		—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

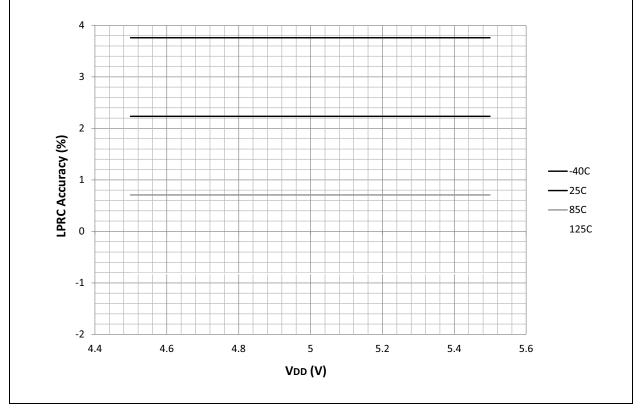

TABLE 30-50: OP AMP/COMPARATOR x SPECIFICATIONS

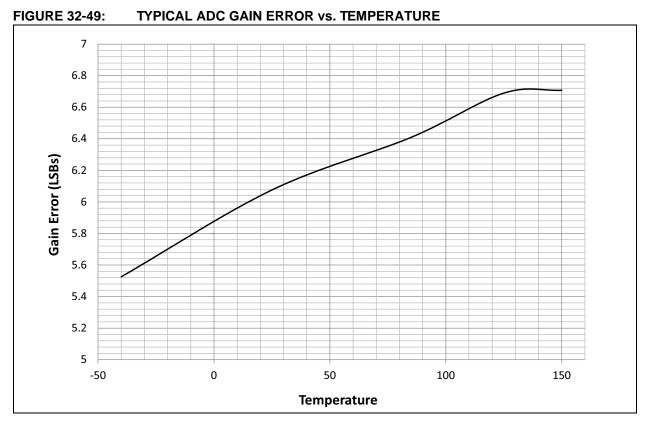

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
		Con	parator AC C	haracte	ristics			
CM10	Tresp	Response Time	_	19	80	ns	V+ input step of 100 mV, V- input held at VDD/2	
CM11	TMC2OV	Comparator Mode Change to Output Valid	—	_	10	μs		
		Con	nparator DC C	haracte	ristics			
CM30	VOFFSET	Comparator Offset Voltage	-80	±60	80	mV		
CM31	VHYST	Input Hysteresis Voltage		30	—	mV		
CM32	Trise/ Tfall	Comparator Output Rise/Fall Time	—	20	—	ns	1 pF load capacitance on input	
CM33	Vgain	Open-Loop Voltage Gain	—	90	—	db		
CM34	VICM	Input Common-Mode Voltage	AVss	—	AVDD	V		
		Or	o Amp AC Cha	aracteris	stics			
CM20	SR	Slew Rate	_	9	_	V/µs	10 pF load	
CM21	Рм	Phase Margin	—	35	—	°C	G = 100V/V, 10 pF load	
CM22	Gм	Gain Margin	—	20	—	db	G = 100V/V, 10 pF load	
CM23	GBW	Gain Bandwidth	—	10	—	MHz	10 pF load	
		Op	o Amp DC Cha	aracteris	stics			
CM40	VCMR	Common-Mode Input Voltage Range	AVss	—	AVDD	V		
CM41	CMRR	Common-Mode Rejection Ratio	—	45	—	db	Vcm = AVdd/2	
CM42	VOFFSET	Op Amp Offset Voltage	-50	±6	50	mV		
CM43	Vgain	Open-Loop Voltage Gain	_	90	—	db		
CM44	los	Input Offset Current	—	—	—	_	See pad leakage currents in Table 30-10	
CM45	lв	Input Bias Current	_		—	_	See pad leakage currents in Table 30-10	
CM46	Ιουτ	Output Current	—	_	420	μA	With minimum value of RFEEDBACK (CM48)	
CM48	RFEEDBACK	Feedback Resistance Value	8		—	kΩ	Note 2	
CM49a	Vout	Output Voltage	AVss + 0.075	_	AVDD - 0.075	V	Ιουτ = 420 μΑ	

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

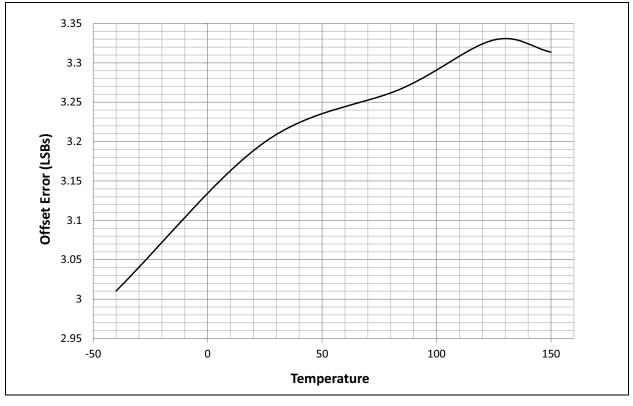

2: Resistances can vary by ±10% between op amps.

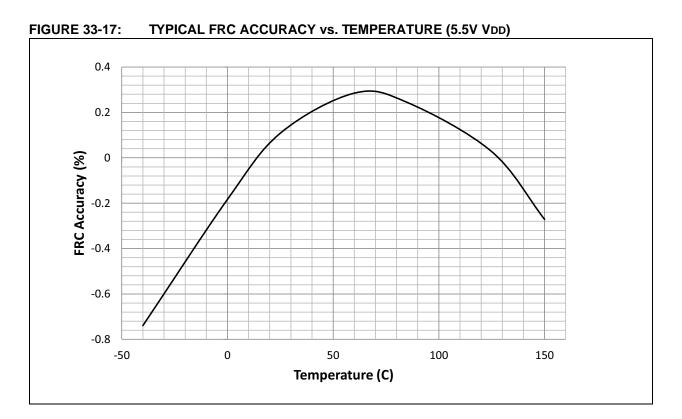
3: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.



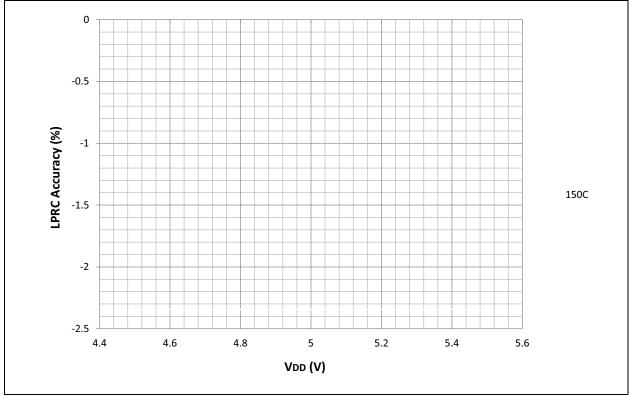

© 2013-2016 Microchip Technology Inc.

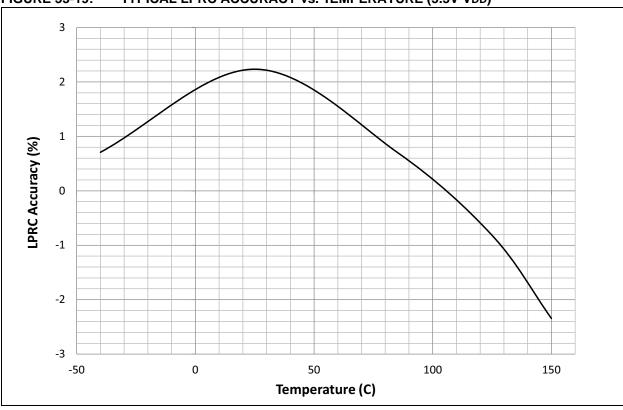
32.6 LPRC





32.19 ADC Gain Offset Error




© 2013-2016 Microchip Technology Inc.

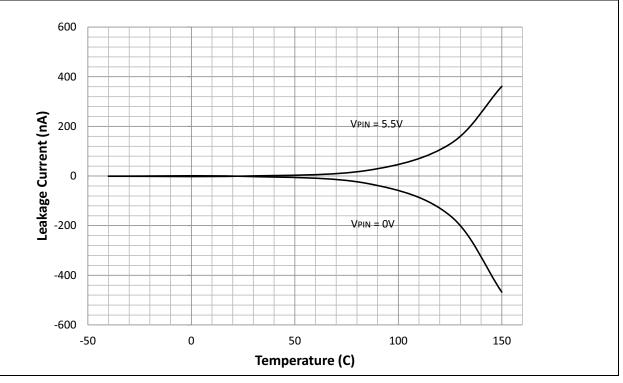
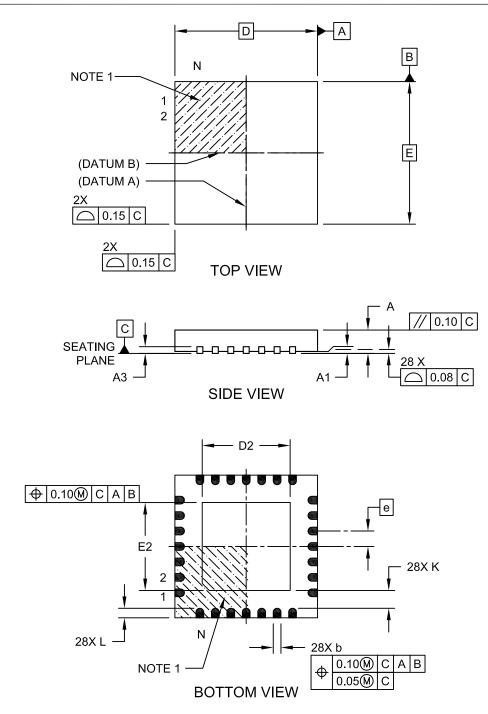


FIGURE 33-19: TYPICAL LPRC ACCURACY vs. TEMPERATURE (5.5V VDD)


33.7 Leakage Current

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-124C Sheet 1 of 2