

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	25
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-UFQFN Exposed Pad
Supplier Device Package	36-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev256gm003t-i-m5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not exceeding 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3 or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site (www.microchip.com).

- "Using MPLAB[®] ICD 3" (poster) (DS51765)
- *"MPLAB[®] ICD 3 Design Advisory"* (DS51764)
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" (DS51616)
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) (DS51749)

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. For more information, see **Section 9.0 "Oscillator Configuration"**.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed as shown in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 5 MHz < FIN < 13.6 MHz to comply with device PLL start-up conditions. This intends that, if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD, to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source.

Note: Clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

3.7 Arithmetic Logic Unit (ALU)

The dsPIC33EVXXXGM00X/10X family ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. The data for the ALU operation can come from the W register array or from the data memory, depending on the addressing mode of the instruction. Similarly, the output data from the ALU can be written to the W register array or a data memory location.

For information on the SR bits affected by each instruction, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157).

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.7.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.7.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes the single-cycle per bit of the divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.8 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulatorto-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON) as follows:

- Fractional or Integer DSP Multiply (IF)
- Signed, Unsigned or Mixed-Sign DSP Multiply (US)
- Conventional or Convergent Rounding (RND)
- · Automatic Saturation On/Off for ACCA (SATA)
- Automatic Saturation On/Off for ACCB (SATB)
- Automatic Saturation On/Off for Writes to Data Memory (SATDW)
- Accumulator Saturation mode Selection (ACCSAT)

TABLE 3-2:DSP INSTRUCTIONSSUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
MPY	$A = x^2$	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

TABLE 4-41: PORTF REGISTER MAP FOR dsPIC33EVXXXGMX06 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1 Bit (All Resets
TRISF	0E64	_	—	—	—	—	—	—	—	_	—	—	—	—	—	TRISF<1:0>	0003
PORTF	0E66	_	_	_	_	_	_	_	_	_	_	_	_	—	—	RF<1:0>	xxxx
LATF	0E68	_	_	_	_	_	_	_	_	_	_	_	_	—	—	LATF<1:0>	xxxx
ODCF	0E6A	_	_	_	_	_	_	_	_	_	_	_	_	—	—	ODCF<1:0>	0000
CNENF	0E6C	_	_	_	_	_	_	_	_	_	_	_	_	—	—	CNIEF<1:0>	0000
CNPUF	0E6E	_	_	_	_	—	_	_	_	—	_	—	_	_	_	CNPUF<1:0>	0000
CNPDF	0E70	_	_	_	_	—	_	_	_	_	_	—	_	_	_	CNPDF<1:0>	0000
Lawsurds			n Decet														

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-42: PORTG REGISTER MAP FOR dsPIC33EVXXXGMX06 DEVICES

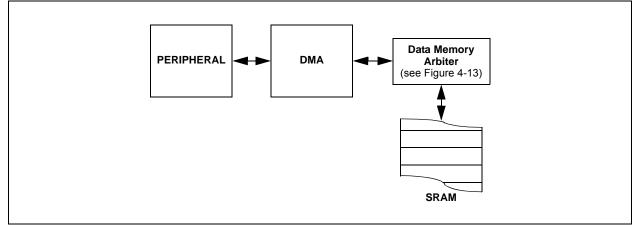
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	0E78	_	_		—		—		TRISC	6<9:6>		—	_		—	—	—	03C0
PORTG	0E7A		_	_	_	_	_		RG<	9:6>		_	_	_	_	_	_	xxxx
LATG	0E7C		_	_	_	_	_		LATG	<9:6>		_	_	_	_	_	_	xxxx
ODCG	0E7E		_	_	_	_	_		ODCO	i<9:6>		_	_	_	_	_	_	0000
CNENG	0E80		_	_	_	_	_		CNIEC	6<9:6>		_	_	_	_	_	_	0000
CNPUG	0E82		_	_	_	_	_		CNPU	G<9:6>		_	_	_	_	_	_	0000
CNPDG	0E84	_	_		—		—		CNPD	G<9:6>		—	-	_	_	—	_	0000
ANSELG	0E86	_	_		-		-		ANSG	<9:6>		-	_	_	—	_		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Direct Memory Access (DMA)" (DS70348) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The DMA Controller transfers data between Peripheral Data registers and Data Space SRAM. For the simplified DMA block diagram, refer to Figure 8-1.


In addition, DMA can access the entire data memory space. The data memory bus arbiter is utilized when either the CPU or DMA attempts to access SRAM, resulting in potential DMA or CPU stalls.

The DMA Controller supports 4 independent channels. Each channel can be configured for transfers to or from selected peripherals. The peripherals supported by the DMA Controller include:

- CAN
- Analog-to-Digital Converter (ADC)
- Serial Peripheral Interface (SPI)
- UART
- Input Capture
- Output Compare

Refer to Table 8-1 for a complete list of supported peripherals.

FIGURE 8-1: PERIPHERAL TO DMA CONTROLLER

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

- bit 2 Unimplemented: Read as '0'
- bit 1 C1MD: CAN1 Module Disable bit⁽¹⁾
 - 1 = CAN1 module is disabled0 = CAN1 module is enabled
- bit 0 AD1MD: ADC1 Module Disable bit
 - 1 = ADC1 module is disabled
 - 0 = ADC1 module is enabled
- Note 1: This bit is available on dsPIC33EVXXXGM10X devices only.

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	IC4MD	IC3MD	IC2MD	IC1MD
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	_	—	OC4MD	OC3MD	OC2MD	OC1MD
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	Unimplemented: Read as '0'
bit 11-8	IC4MD:IC1MD: Input Capture x (x = 1-4) Module Disable bits
	1 = Input Capture x module is disabled
	0 = Input Capture x module is enabled
bit 7-4	Unimplemented: Read as '0'
bit 3-0	OC4MD:OC1MD: Output Compare x (x = 1-4) Module Disable bits
	 1 = Output Compare x module is disabled 0 = Output Compare x module is enabled

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0			
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0			
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'						
-n = Value at P	-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown					

REGISTER 11-24: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6⁽¹⁾

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP55R<5:0>: Peripheral Output Function is Assigned to RP55 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP54R<5:0>: Peripheral Output Function is Assigned to RP54 Output Pin bits

(see Table 11-3 for peripheral function numbers)

Note 1: This register is present in dsPIC33EVXXXGM004/104/006/106 devices only

REGISTER 11-25: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP57R5	RP57R4	RP57R3	RP57R2	RP57R1	RP57R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP56R5	RP56R4	RP56R3	RP56R2	RP56R1	RP56R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP57R<5:0>:** Peripheral Output Function is Assigned to RP57 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP56R<5:0>:** Peripheral Output Function is Assigned to RP56 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: This register is present in dsPIC33EVXXXGM004/104/006/106 devices only.

15.1 Input Capture Control Registers

REGISTER 15-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

REGISTER	15-1: ICxCO	N1: INPUT C	CAPTURE x CO	ONTROL REG	ISTER 1			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	
_		ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	_	
bit 15		•					bit	
U-0	R/W-0	R/W-0	R-0, HC, HS	R-0, HC, HS	R/W-0	R/W-0	R/W-0	
_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	
bit 7							bit	
Legend:		HC = Hardwa	re Clearable bit	HS = Hardwar	re Settable bit			
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is un	known	
bit 15-14	Unimplemen	ted: Read as '	0'					
bit 13	-		p in Idle Mode C	control bit				
		-	t in CPU Idle mod					
			tinue to operate		de			
bit 12-10			e x Timer Select					
			is the clock sour	ce of the ICx				
	110 = Reserv							
	101 = Reserv		ource of the ICx (only the synchr	onous clock is	supported)		
			ource of the ICx	Unity the Synem		supported)		
			ource of the ICx					
			ource of the ICx					
bit 9-7		ted: Read as '						
bit 6-5	ICI<1:0>: Nur	mber of Captur	es per Interrupt S	Select bits (this fi	eld is not used	if ICM<2:0> =	001 or 111	
	11 = Interrupt	t on every four	th capture event					
			l capture event					
			ond capture ever	nt				
	-	t on every cap						
bit 4	-	-	flow Status Flag					
			overflow has occu					
bit 3		-	fer Not Empty St		nlv)			
	-	-	s not empty, at le	-	• •	an be read		
		pture x buffer i						
bit 2-0	ICM<2:0>: In	put Capture x	Mode Select bits					
		111 = Input Capture x functions as an interrupt pin only in CPU Sleep and Idle modes (rising e						
		detect only, all other control bits are not applicable) 110 = Unused (module is disabled)						
			,		nturo modo)			
			/ 16th rising edge					
			/ rising edge (Sir					
			/ falling edge (Si					
		re mode, every	edge, rising and			CI<1:0>) is not	t used in th	
	,		ule is turned off					

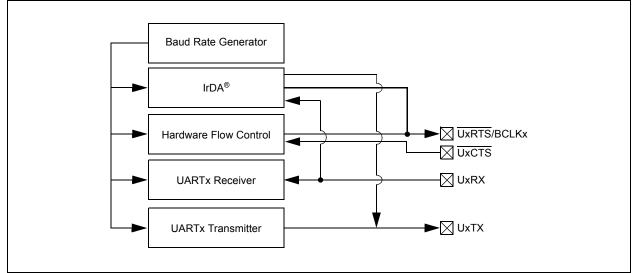
000 = Input Capture x module is turned off

21.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X family of devices contains two UART modules.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EVXXXGM00X/10X device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a


hardware flow control option with the $\overline{\text{UxCTS}}$ and $\overline{\text{UxRTS}}$ pins, and also includes an IrDA[®] encoder and decoder.

Note:	Hardware flow control using UxRTS and
	UxCTS is not available on all pin count
	devices. See the "Pin Diagrams" section
	for availability.

The primary features of the UARTx module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop Bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 4.375 Mbps to 67 bps at 16x mode at 70 MIPS
- Baud Rates Ranging from 17.5 Mbps to 267 bps at 4x mode at 70 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for All UART Error Conditions

FIGURE 21-1: UARTX SIMPLIFIED BLOCK DIAGRAM

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN
bit 15					1		bit 8
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
IVRIF	WAKIF	ERRIF	—	FIFOIF	RBOVIF	RBIF	TBIF
bit 7							bit (
		0	h:t ht a	V			
Legend: R = Readable	, hit	C = Writable W = Writable	-		n to clear the bit		
-n = Value at		'1' = Bit is set		0 = Onimple '0' = Bit is cle	mented bit, read		0.000
-n = value at	PUR	I = BILIS SE			eared	x = Bit is unkr	IOWN
bit 15-14	Unimplemer	nted: Read as '	0'				
bit 13	-	smitter in Error		bit			
	1 = Transmit	ter is in Bus Of ter is not in Bus	fstate				
bit 12	TXBP: Trans	smitter in Error	State Bus Pas	sive bit			
		ter is in Bus Pa ter is not in Bus		e			
bit 11	RXBP: Rece	eiver in Error Sta	ate Bus Passiv	ve bit			
		is in Bus Pass is not in Bus P					
bit 10	TXWAR: Tra	Insmitter in Erro	or State Warni	ng bit			
		ter is in Error W ter is not in Erro		ate			
bit 9	RXWAR: Re	ceiver in Error	State Warning	bit			
		is in Error War	•				
L H 0		is not in Error	•		. 1. 14		
bit 8		ansmitter or Reo ter or receiver i		•	DIT		
		ter or receiver i					
bit 7	IVRIF: Invalio	d Message Inte	rrupt Flag bit				
	•	request has oc request has no					
bit 6	WAKIF: Bus	Wake-up Activ	ity Interrupt Fl	lag bit			
	•	request has oc request has no					
bit 5	ERRIF: Error	r Interrupt Flag	bit (multiple s	ources in CxIN	TF<13:8> regist	er)	
		request has oc request has no					
bit 4	Unimplemer	nted: Read as '	0'				
bit 3	FIFOIF: FIFO	O Almost Full In	terrupt Flag b	it			
		request has oc request has no					
bit 2	RBOVIF: RX	Buffer Overflo	w Interrupt Fla	ag bit			
	1 – Interrunt	request has oc	ourrod				

REGISTER 22-6: CXINTF: CANX INTERRUPT FLAG REGISTER

1								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F7MSK1	F7MSK0	F6MSK1	F6MSK0	F5MSK1	F5MSK0	F4MSK1	F4MSK0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F3MSK1	F3MSK0	F2MSK1	F2MSK0	F1MSK1	F1MSK0	F0MSK1	F0MSK0	
bit 7							bit C	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, reac	l as '0'		
-n = Value at POR		'1' = Bit is set	ł	0' = Bit is cleared x = E		x = Rit is unkr	= Bit is unknown	
bit 15-14	F7MSK<1:0> 11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta	: Mask Source d nce Mask 2 re nce Mask 1 re nce Mask 0 re	e for Filter 7 bit gisters contain gisters contain gisters contain	the mask the mask the mask				
bit 13-12	F7MSK<1:0> 11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0>	: Mask Source d nce Mask 2 re nce Mask 1 re nce Mask 0 re : Mask Source	e for Filter 7 bit gisters contain gisters contain gisters contain e for Filter 6 bit	the mask the mask the mask (same values	as bits 15-14)			
bit 13-12 bit 11-10	F7MSK<1:0> 11 = Reserver 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0> F5MSK<1:0>	: Mask Source d nce Mask 2 re nce Mask 1 re nce Mask 0 re : Mask Source : Mask Source	e for Filter 7 bit gisters contain gisters contain gisters contain e for Filter 6 bit e for Filter 5 bit	the mask the mask the mask (same values (same values	as bits 15-14) as bits 15-14)			
bit 13-12 bit 11-10 bit 9-8	F7MSK<1:0> 11 = Reserver 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0> F5MSK<1:0>	: Mask Source d nce Mask 2 re nce Mask 1 re nce Mask 0 re : Mask Source : Mask Source	e for Filter 7 bit gisters contain gisters contain gisters contain e for Filter 6 bit e for Filter 5 bit	the mask the mask the mask (same values	as bits 15-14) as bits 15-14)			
bit 13-12 bit 11-10	F7MSK<1:0> 11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0> F5MSK<1:0>	: Mask Source d nce Mask 2 re nce Mask 1 re nce Mask 0 re : Mask Source : Mask Source : Mask Source	e for Filter 7 bit gisters contain gisters contain gisters contain e for Filter 6 bit e for Filter 5 bit e for Filter 4 bit	the mask the mask the mask (same values (same values	as bits 15-14) as bits 15-14) as bits 15-14)			
bit 13-12 bit 11-10 bit 9-8	F7MSK<1:0> 11 = Reserver 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0> F5MSK<1:0> F4MSK<1:0> F3MSK<1:0>	: Mask Source d nce Mask 2 re nce Mask 1 re nce Mask 0 re : Mask Source : Mask Source : Mask Source : Mask Source	e for Filter 7 bit gisters contain gisters contain gisters contain e for Filter 6 bit e for Filter 5 bit e for Filter 4 bit e for Filter 3 bit	the mask the mask the mask (same values (same values (same values	as bits 15-14) as bits 15-14) as bits 15-14) as bits 15-14)			
bit 13-12 bit 11-10 bit 9-8 bit 7-6	F7MSK<1:0> 11 = Reserver 10 = Accepta 01 = Accepta 00 = Accepta F6MSK<1:0> F5MSK<1:0> F4MSK<1:0> F3MSK<1:0> F3MSK<1:0>	: Mask Source d nce Mask 2 re nce Mask 1 re Mask Source Mask Source Mask Source Mask Source Mask Source	e for Filter 7 bit gisters contain gisters contain gisters contain e for Filter 6 bit e for Filter 5 bit e for Filter 4 bit e for Filter 3 bit e for Filter 2 bit	the mask the mask the mask (same values (same values (same values (same values	as bits 15-14) as bits 15-14) as bits 15-14) as bits 15-14) as bits 15-14)			

REGISTER 22-18: CxFMSKSEL1: CANx FILTERS 7-0 MASK SELECTION REGISTER 1

REGISTER 22-22: CxRXFUL1: CANx RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	L<15:8>			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFL	JL<7:0>			
bit 7							bit 0
Legend:		C = Writable b	oit, but only '()' can be written	to clear the b	it	
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 RXFUL<15:0>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 22-23: CxRXFUL2: CANx RECEIVE BUFFER FULL REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	_<31:24>			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	_<23:16>			
bit 7							bit 0
Legend:		C = Writable b	it, but only '()' can be written	to clear the b	bit	
R = Readable	bit	W = Writable b	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 RXFUL<31:16>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

Base Instr #Assembly Mnemonic25CTXTSWP		Assembly Syntax CTXTSWP #lit3		Description	# of Words 1	# of Cycles	Status Flags Affected None
				Switch CPU register context to context defined by lit3			
		CTXTSWP	Wn	Switch CPU register context to context defined by Wn	1	2	None
26	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
27	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
28	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
29	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None
30	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
31	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
32	DO	DO	#lit15,Expr	Do code to PC + Expr, lit15 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
33	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB SA,SB,SAB
34	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB SA,SB,SAB
35	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
36	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
37	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
38	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
39	GOTO	GOTO	Expr	Go to address	2	4	None
		GOTO	Wn	Go to indirect	1	4	None
		GOTO.L	Wn	Go to indirect (long address)	1	4	None
40	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
41	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
42	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
43	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
44	LNK	LNK	#lit14	Link Frame Pointer	1	1	SFA
45	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
53	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU Wb,Ws,Wnd {Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)		1	1	None	
		MUL.SU	Wb,Ws,Acc	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
54	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = $f + 1$	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
55	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
56	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
57	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
58	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
59	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
60	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
61	RESET	RESET		Software device Reset	1	1	None
62	RETFIE	RETFIE		Return from interrupt	1	6 (5)	SFA

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

DC CHARACTER	Standard C (unless oth Operating t	nerwise st	t ated) ē -40°C	≤ TA ≤ +8	o 5.5V 5°C for Industrial 25°C for Extended			
Parameter No.	Тур. ⁽²⁾	Max.	ax. Doze Units Conditions					
Doze Current (IDOZE) ⁽¹⁾								
DC73a	16.0	18.25	1:2	mA	-40°C	5.0V	70 MIPS	
DC73g	7.1	8.0	1:128	mA	-40 C	5.00	70 MIF3	
DC70a	16.25	18.5	1:2	mA	+25°C	5.0V		
DC70g	7.3	8.2	1:128	mA	720 C	5.00	70 MIPS	
DC71a	17.0	19.0	1:2	mA	195%	E 0)/		
DC71g	7.5	8.9	1:128	mA	+85°C	5.0V	70 MIPS	
DC72a	17.75	19.95	1:2	mA	+125°C	5.0V	60 MIPS	
DC72g	8.25	9.32	1:128	mA	+120 C	5.00		

TABLE 30-9: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

• Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

• CLKO is configured as an I/O input pin in the Configuration Word

• All I/O pins are configured as outputs and driving low

• MCLR = VDD, WDT and FSCM are disabled

• CPU, SRAM, program memory and data memory are operational

• No peripheral modules are operating or being clocked (defined PMDx bits are all ones)

CPU executing

```
while(1)
{
NOP();
}
```

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

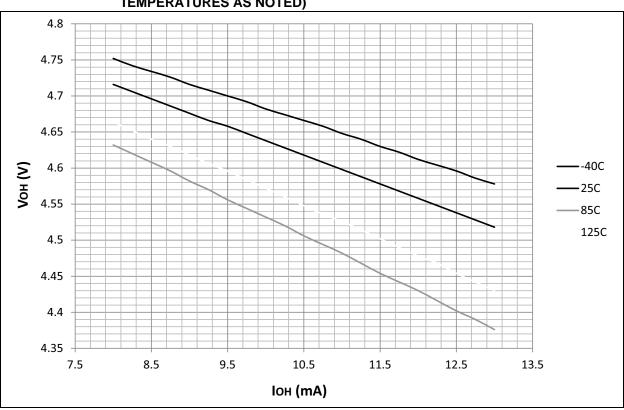
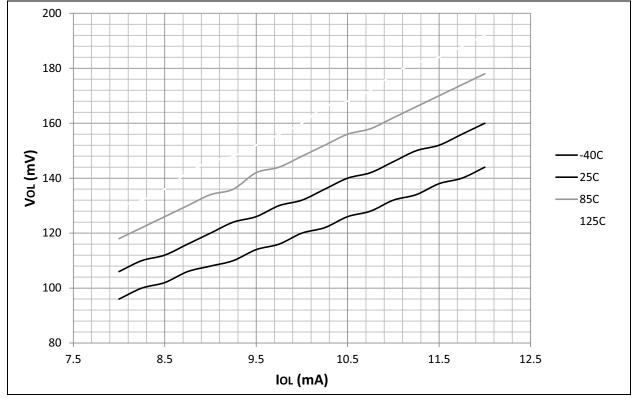
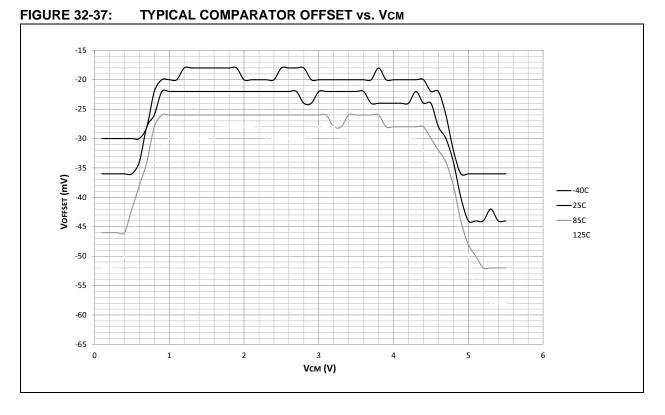
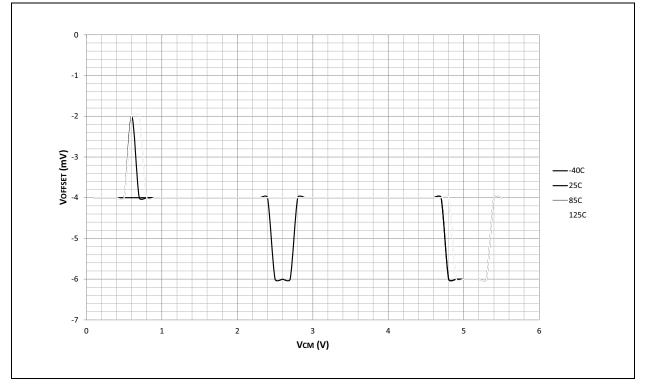
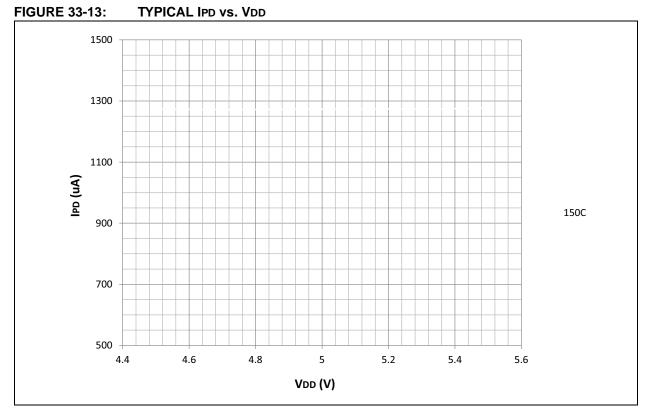
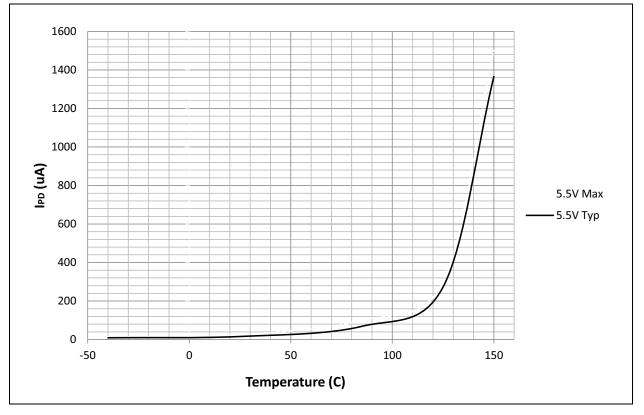




FIGURE 32-31: TYPICAL VOH 4x DRIVER PINS vs. IOH (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

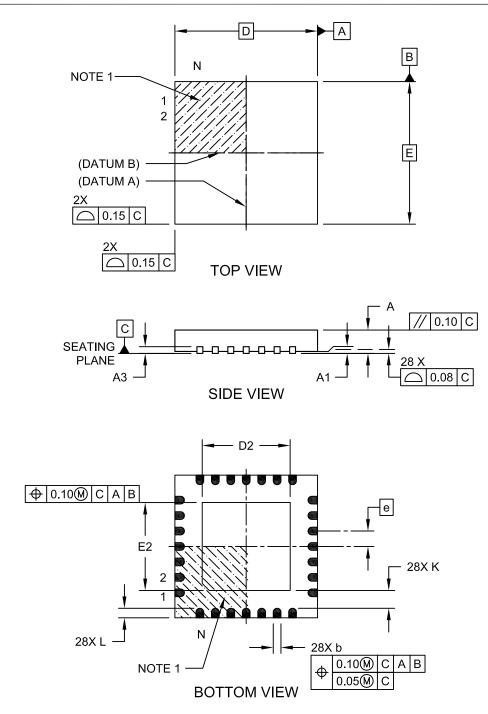

FIGURE 32-32: TYPICAL Vol 8x DRIVER PINS vs. Iol (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)


32.14 Comparator Op Amp Offset



dsPIC33EVXXXGM00X/10X FAMILY

33.4 IPD



28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-124C Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	IILLIMETER	S		
Dimension	Limits	MIN	NOM	MAX	
Number of Leads	Ν		44		
Lead Pitch	е		0.80 BSC		
Overall Height	Α	-	-	1.20	
Standoff	A1	0.05	-	0.15	
Molded Package Thickness	A2	0.95	1.00	1.05	
Overall Width	Е	12.00 BSC			
Molded Package Width	E1		10.00 BSC		
Overall Length	D		12.00 BSC		
Molded Package Length	D1		10.00 BSC		
Lead Width	b	0.30	0.37	0.45	
Lead Thickness	С	0.09	-	0.20	
Lead Length	L	0.45 0.60 0.75			
Footprint	L1	1.00 REF			
Foot Angle	θ	0°	3.5°	7°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Product Group Pin Count Tape and Reel Fla Package		Example: dsPIC33EV256GM006-I/PT: dsPIC33, Enhanced Voltage, 256-Kbyte Program Memory, 64-Pin, Industrial Temperature, TQFP Package.
Architecture:	33 = 16-Bit Digital Signal Controller	
Family:	EV = Enhanced Voltage	
Product Group:	GM = General Purpose plus Motor Control Family	
Pin Count:	02 = 28-Pin 04 = 44-Pin 06 = 64-Pin	
Temperature Range	$ \begin{array}{rcl} & = & -40^{\circ}\text{C to } +85^{\circ}\text{C (Industrial)} \\ \text{E} & = & -40^{\circ}\text{C to } +125^{\circ}\text{C (Extended)} \\ \text{H} & = & -40^{\circ}\text{C to } +150^{\circ}\text{C (High)} \end{array} $	
Package:	MM = Plastic Quad Flat, No Lead Package – (28-pin) 6x6x0.9 mm body (QFN-S) SO = Plastic Small Outline – (28-pin) 7.50 mm body (SOIC) SS = Plastic Shrink Small Outline – (28-pin) 5.30 mm body (SOP) SP = Skinny Plastic Dual In-Line – (28-pin) 300 mil body (SPDIP) ML = Plastic Quad Flat, No Lead Package – (44-pin) 8x8 mm body (QFN) MR = Plastic Quad Flat, No Lead Package – (64-pin) 9x9x0.9 mm body (QFN) PT = Plastic Thin Quad Flatpack – (44-pin) 10x10x1 mm body (TQFP) PT = Plastic Thin Quad Flatpack – (64-pin) 10x10x1 mm body (TQFP)	