

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev256gm004-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Digital Signal Controllers	17
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	83
6.0	Resets	
7.0	Interrupt Controller	
8.0	Direct Memory Access (DMA)	109
9.0	Oscillator Configuration	123
10.0	Power-Saving Features	133
11.0	I/O Ports	143
12.0	Timer1	173
13.0	Timer2/3 and Timer4/5	175
14.0	Deadman Timer (DMT)	181
15.0	Input Capture	189
16.0	Output Compare	193
17.0	High-Speed PWM Module	199
18.0		221
19.0		
20.0	Single-Edge Nibble Transmission (SENT)	237
21.0	Universal Asynchronous Receiver Transmitter (UART)	
22.0	Controller Area Network (CAN) Module (dsPIC33EVXXXGM10X Devices Only)	253
23.0	Charge Time Measurement Unit (CTMU)	279
24.0	10-Bit/12-Bit Analog-to-Digital Converter (ADC)	
25.0	Op Amp/Comparator Module	301
26.0	Comparator Voltage Reference	313
	Special Features	
28.0	Instruction Set Summary	327
29.0		
	High-Temperature Electrical Characteristics	
	Characteristics for Industrial/Extended Temperature Devices (-40°C to +125°C)	
33.0	Characteristics for High-Temperature Devices (+150°C)	439
	Packaging Information	
	endix A: Revision History	
	Х	
	Microchip Web Site	
	omer Change Notification Service	
	omer Support	
Produ	luct Identification System	497

TABLE 1-1: PINO		D DESC	RIPTI	ONS (CONTINUED)
Pin Name	Pin Type	Buffer Type	PPS	Description
SCK2	I/O	ST	Yes	Synchronous serial clock input/output for SPI2.
SDI2	I	ST	Yes	SPI2 data in.
SDO2	0	—	Yes	SPI2 data out.
SS2	I/O	ST	Yes	SPI2 slave synchronization or frame pulse I/O.
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.
C1RX	I	ST	Yes	CAN1 bus receive pin.
C1TX	0	—	Yes	CAN1 bus transmit pin.
SENT1TX	0	—	Yes	SENT1 transmit pin.
SENT1RX	1	—	Yes	SENT1 receive pin.
SENT2TX	0	—	Yes	SENT2 transmit pin.
SENT2RX	I.	—	Yes	SENT2 receive pin.
CVREF	0	Analog	No	Comparator Voltage Reference output.
C1IN1+, C1IN2-, C1IN1-, C1IN3-	I	Analog	No	Comparator 1 inputs.
C1OUT	0	_	Yes	Comparator 1 output.
C2IN1+, C2IN2-, C2IN1-, C2IN3-	I	Analog	No	Comparator 2 inputs.
C2OUT	0	—	Yes	Comparator 2 output.
C3IN1+, C3IN2-, C2IN1-, C3IN3-	I	Analog	No	Comparator 3 inputs.
C3OUT	0		Yes	Comparator 3 output.
C4IN1+, C4IN2-, C4IN1-, C4IN3-	Ι	Analog	No	Comparator 4 inputs.
C4OUT	0	—	Yes	Comparator 4 output.
C5IN1+, C5IN2-, C5IN1-, C5IN3-	I	Analog	No	Comparator 5 inputs.
C5OUT	0	—	Yes	Comparator 5 output.
FLT1-FLT2	1	ST	Yes	PWM Fault Inputs 1 and 2.
FLT3-FLT8	1	ST	NO	PWM Fault Inputs 3 to 8.
FLT32	1	ST	NO	PWM Fault Input 32.
DTCMP1-DTCMP3	1	ST	Yes	PWM Dead-Time Compensation Inputs 1 to 3.
PWM1L-PWM3L	0	_	No	PWM Low Outputs 1 to 3.
PWM1H-PWM3H	0	—	No	PWM High Outputs 1 to 3.
SYNCI1	1	ST	Yes	PWM Synchronization Input 1.
SYNCO1	0	—	Yes	PWM Synchronization Output 1.
PGED1	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 1.
PGEC1	1	ST	No	Clock input pin for Programming/Debugging Communication Channel 1
PGED2	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 2.
PGEC2	1	ST	No	Clock input pin for Programming/Debugging Communication Channel 2
PGED3	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 3.
PGEC3	I	ST	No	Clock input pin for Programming/Debugging Communication Channel
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.
Legend: CMOS = C				or output Analog = Analog input P = Power
ST = Schm	itt Triaa	er input w	/ith CIV	IOS levels O = Output I = Input

TABLE 1-1:	PINOUT I/O DESCRIPTIONS	(CONTINUED))
			1

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select Analog = Analog inputP = PoweO = OutputI = InputTTL = TTL input buffer

	••		•															
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Tim	ner1 Registe	r							0000
PR1	0102								Peri	od Register	1							FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	—	0000
TMR2	0106								Tim	ner2 Registe	r							0000
TMR3HLD	0108						Time	er3 Holdin	ig Register	· (For 32-bit	timer operat	tions only)						0000
TMR3	010A								Tim	ner3 Registe	r							0000
PR2	010C								Peri	od Register	2							FFFF
PR3	010E								Peri	od Register	3							FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	—	0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	—	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000
TMR4	0114								Tim	ner4 Registe	r							0000
TMR5HLD	0116						Т	imer5 Hol	ding Regis	ster (For 32-	bit operation	ns only)						0000
TMR5	0118								Tim	ner5 Registe	r							0000
PR4	011A								Peri	od Register	4							FFFF
PR5	011C		Period Register 5 FFFF								FFFF							
T4CON	011E	TON	_	TSIDL	—	—	—	—	—	—	TGATE	TCKPS1	TCKPS0	T32	—	TCS	—	0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000
Lonondi		nlamantad	1 1-															

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-17: PERIPHERAL INPUT REMAP REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0				INT1F	R<7:0>						—	-	_	_		—	0000
RPINR1	06A2	_	_	_	_	_	_	_	_				INT2R	<7:0>				0000
RPINR3	06A6	_	_	_	_	_	_	_	_	T2CKR<7:0>						0000		
RPINR7	06AE	IC2R7	IC2R6	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0	IC1R7	IC1R6	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	0000
RPINR8	06B0	IC4R7	IC4R6	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0	IC3R7	IC3R6	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0	0000
RPINR11	06B6	_	_	_	_	_	_	_	_				OCFA	R<7:0>				0000
RPINR12	06B8	FLT2R7	FLT2R6	FLT2R5	FLT2R4	FLT2R3	FLT2R2	FLT2R1	FLT2R0	FLT1R7	FLT1R6	FLT1R5	FLT1R4	FLT1R3	FLT1R2	FLT1R1	FLT1R0	0000
RPINR18	06C4	_	_	_	—	_	_	_	_				U1RXF	R<7:0>				0000
RPINR19	06C6	_	_	_	_	_	_	_	_		U2RXR<7:0>						0000	
RPINR22	06CC	SCK2R7	SCK2R6	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0	SDI2R7	SDI2R6	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	0000
RPINR23	06CE	_	_	_	_	_	_	_	_				SS2R	<7:0>				0000
RPINR26	06D4	_	_	_	_	_	_	_	_				C1RXR	<7:0>(1)				0000
RPINR37	06EA				SYNCI	IR<7:0>				_	—	—	_	_	_	_	_	0000
RPINR38	06EC				DTCMP	1R<7:0>					-	_	_	_	_		_	0000
RPINR39	06EE	DTCMP3R7	DTCMP3R6	DTCMP3R5	DTCMP3R4	DTCMP3R3	DTCMP3R2	DTCMP3R1	DTCMP3R0	DTCMP2R7	DTCMP2R6	DTCMP2R5	DTCMP2R4	DTCMP2R3	DTCMP2R2	DTCMP2R1	DTCMP2R0	0000
RPINR44	06F8				SENT1	R<7:0>					-	—	—	—	_		—	0000
RPINR45	06FA	_	_	_	—	—	_	_	—			•	SENT2	R<7:0>			•	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This feature is available only on dsPIC33EVXXXGM10X devices.

TABLE 4-18: DMT REGISTER MAP

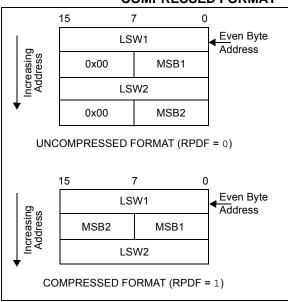
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMTCON	0700	ON		_			-	—		_	_	—	_	—		_	—	0000
DMTPRECLR	0704				STEP1	<7:0>				_	_	_	_	_	_	_	—	0000
DMTCLR	0708	_	_	_	_	_	_	_	_				STEP2	<7:0>				0000
DMTSTAT	070C	_	_	_	_	_	_	_	_	BAD1	BAD2	DMTEVENT		_	_	_	WINOPN	0000
DMTCNTL	0710								COUNTER	<15:0>								0000
DMTCNTH	0712							(COUNTER	<31:16>								0000
DMTHOLDREG	0714								UPRCNT	<15:0>								0000
DMTPSCNTL	0718								PSCNT<	15:0>								0000
DMTPSCNTH	071A								PSCNT<	31:16>								0000
DMTPSINTVL	071C								PSINTV<	15:0>								0000
DMTPSINTVH	071E								PSINTV<	31:16>								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.2 RTSP Operation

RTSP allows the user application to erase a single page of memory, program a row and to program two instruction words at a time. See Table 1 in the "dsPIC33EVXXXGM00X/10X Product Families" section for the page sizes of each device.memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to era

The Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of program memory, which consists of eight rows (512 instructions) at a time, and to program one row or two adjacent words at a time. The 8-row erase pages and single row write rows are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively. Table 30-13 in **Section 30.0 "Electrical Characteristics"** lists the typical erase and programming times.


The basic sequence for RTSP word programming is to use the TBLWTL and TBLWTH instructions to load two of the 24-bit instructions into the write latches found in configuration memory space. See Figure 4-1 to Figure 4-5 for write latch addresses. Programming is performed by unlocking and setting the control bits in the NVMCON register.

Row programming is performed by loading 192 bytes into data memory and then loading the address of the first byte in that row into the NVMSRCADR register. Once the write has been initiated, the device will automatically load the write latches and increment the NVMSRCADR and the NVMADR(U) registers until all bytes have been programmed. The RPDF bit (NVMCON<9>) selects the format of the stored data in RAM to be either compressed or uncompressed. See Figure 5-2 for data formatting. Compressed data helps to reduce the amount of required RAM by using the upper byte of the second word for the MSB of the second instruction.

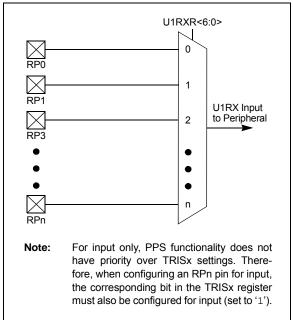
For more information on erasing and programming the Flash memory, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual".

- Note 1: Before reprogramming either of the two words in a double-word pair, the user must erase the Flash memory page in which it is located.
 - 2: Before reprogramming any word in a row, the user must erase the Flash memory page in which it is located.

FIGURE 5-2: UNCOMPRESSED/ COMPRESSED FORMAT

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

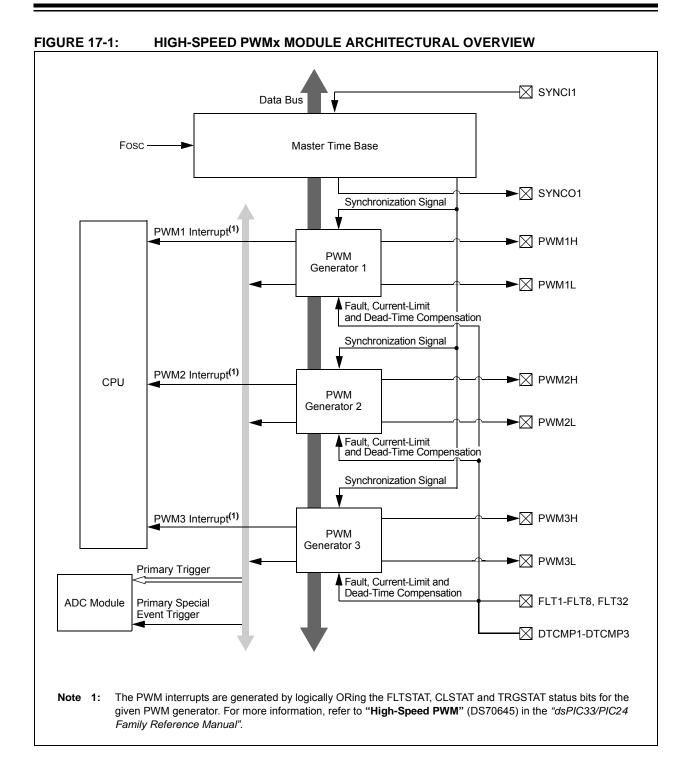

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, erase the page that contains the desired address of the location the user wants to change. For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Refer to **"Flash Programming"** (DS70609) in the *"dsPIC33/PIC24 Family Reference Manual"* for details and code examples on programming using RTSP.

For example, Figure 11-2 shows the remappable pin selection for the U1RX input.

FIGURE 11-2: REMAPPABLE INPUT FOR U1RX


11.5.4.1 Virtual Connections

dsPIC33EVXXXGM00X/10X family devices support virtual (internal) connections to the output of the op amp/comparator module (see Figure 25-1 in Section 25.0 "Op Amp/Comparator Module").

These devices provide six virtual output pins (RPV0-RPV5) that correspond to the outputs of six peripheral pin output remapper blocks (RP176-RP181). The six virtual remapper outputs (RP176-RP181) are not connected to actual pins. The six virtual pins may be read by any of the input remappers as inputs, RP176-RP181. These virtual pins can be used to connect the internal peripherals, whose signals are of significant use to the other peripherals, but these output signals are not present on the device pin.

Virtual connections provide a simple way of interperipheral connection without utilizing a physical pin. For example, by setting the FLT1R<7:0> bits of the RPINR12 register to the value of 'b0000001', the output of the analog comparator, C1OUT, will be connected to the PWM Fault 1 input, which allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

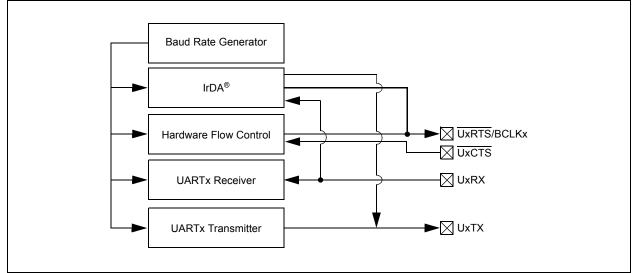
dsPIC33EVXXXGM00X/10X FAMILY

21.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EVXXXGM00X/10X family of devices contains two UART modules.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EVXXXGM00X/10X device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a


hardware flow control option with the $\overline{\text{UxCTS}}$ and $\overline{\text{UxRTS}}$ pins, and also includes an IrDA[®] encoder and decoder.

Note:	Hardware flow control using UxRTS and
	UxCTS is not available on all pin count
	devices. See the "Pin Diagrams" section
	for availability.

The primary features of the UARTx module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop Bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 4.375 Mbps to 67 bps at 16x mode at 70 MIPS
- Baud Rates Ranging from 17.5 Mbps to 267 bps at 4x mode at 70 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for All UART Error Conditions

FIGURE 21-1: UARTX SIMPLIFIED BLOCK DIAGRAM

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0				
0-0	0-0	0-0	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0				
 it 15				FILHITS	FILHI12						
JIL 10							bit				
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0				
	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0				
bit 7	ICODEC	ICODEC	ICODE	ICODEO	ICODEZ	ICODET	bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	i as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15-13	-	ted: Read as '									
bit 12-8		Filter Hit Num	ber bits								
	10000-11111 01111 = Filte										
	•	1 10									
	•										
	• 00001 = Filte	r 1									
	000001 – Filte										
bit 7	Unimplemented: Read as '0'										
bit 6-0	ICODE<6:0>: Interrupt Flag Code bits										
	1000101-111	11111 = Resei	rved								
		IFO almost full									
		eceiver overflo /ake-up interru									
	1000001 = E		P								
	1000000 = N	o interrupt									
	•										
	•										
		11111 = Rese i									
		B15 buffer inte	errupt								
	•										
	•										
		B9 buffer inter									
		B8 buffer inter RB7 buffer inte									
		RB6 buffer inte									
		RB5 buffer inte									
		RB4 buffer inte									
		RB3 buffer inte RB2 buffer inte									
		вых нинегийе									
		RB1 buffer inte									

REGISTER 22-3: CxVEC: CANx INTERRUPT CODE REGISTER

REGISTER 22-14: CxBUFPNT3: CANx FILTERS 8-11 BUFFER POINTER REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F11BP3	F11BP2	F11BP1	F11BP0	F10BP3	F10BP2	F10BP1	F10BP0		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F9BP3	F9BP2	F9BP1	F9BP0	F8BP3	F8BP2	F8BP1	F8BP0		
bit 7						•	bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-12	F11BP<3:0>:	RX Buffer Mas	sk for Filter 11	bits					
		hits received in							
	1110 = Filter	hits received in	RX Buffer 14	ł					
	•								
	•								
	0001 = Filter	hits received in	RX Buffer 1						
	0000 = Filter	hits received in	NRX Buffer 0						
bit 11-8	F10BP<3:0>	RX Buffer Ma	sk for Filter 10) bits (same va	lues as bits 15- [,]	12)			
bit 7-4	F9BP<3:0>:	RX Buffer Masl	c for Filter 9 b	its (same value	es as bits 15-12))			
bit 3-0	F8BP<3:0>:	RX Buffer Masl	c for Filter 8 bi	its (same value	es as bits 15-12))			
				•	,				

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F15MSK1	F15MSK0	F14MSK1	F14MSK0	F13MSK'	F13MSK0	F12MSK1	F12MSK0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F11MSK1	F11MSK0	F10MSK1	F10MSK0	F9MSK1	F9MSK0	F8MSK1	F8MSK0
bit 7						1	bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta	nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg	gisters contain gisters contain gisters contain	the mask the mask the mask			
bit 13-12				,	es as bits 15-14	,	
bit 11-10				-	es as bits 15-14		
bit 9-8					es as bits 15-14		
bit 7-6				-	es as bits 15-14	-	
bit 5-4	F10MSK<1:0	>: Mask Sourc	e for Filter 10	bit (same valu	es as bits 15-14	+)	
bit 3-2	F9MSK<1:0>	: Mask Source	for Filter 9 bit	(same values	as bits 15-14)		

REGISTER 22-19: CxFMSKSEL2: CANx FILTERS 15-8 MASK SELECTION REGISTER 2

bit 1-0 **F8MSK<1:0>:** Mask Source for Filter 8 bit (same values as bits 15-14)

26.2 Comparator Voltage Reference Registers

REGISTER 26-1: CVR1CON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER 1

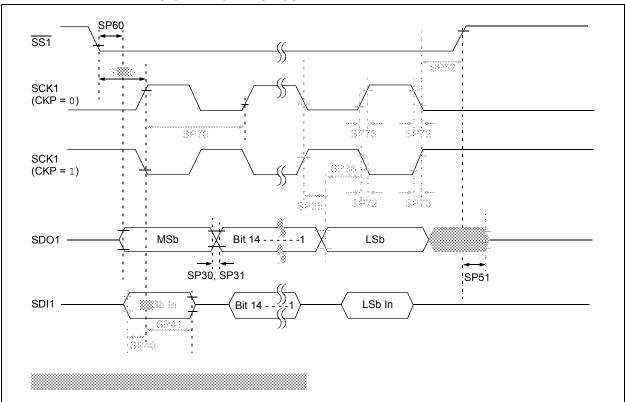
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0
CVREN	CVROE	—	_	CVRSS	VREFSEL	—	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CVR6	CVR5	CVR4	CVR3	CVR2	CVR1	CVR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CVREN: Comparator Voltage Reference Enable bit
	1 = Comparator voltage reference circuit is powered on
	0 = Comparator voltage reference circuit is powered down
bit 14	CVROE: Comparator Voltage Reference Output Enable (CVREF10 Pin) bit
	1 = Voltage level is output on the CVREF10 pin
	0 = Voltage level is disconnected from the CVREF10 pin
bit 13-12	Unimplemented: Read as '0'
bit 11	CVRSS: Comparator Voltage Reference Source Selection bit
	1 = Comparator reference source, CVRSRC = CVREF+ – AVSS
	0 = Comparator reference source, CVRSRC = AVDD – AVSS
bit 10	VREFSEL: Voltage Reference Select bit
	1 = CVREFIN = CVREF+
	0 = CVREFIN is generated by the resistor network
bit 9-7	Unimplemented: Read as '0'
bit 6-0	CVR<6:0>: Comparator Voltage Reference Value Selection bits
	1111111 = 127/128 x VREF input voltage
	•
	•
	•
	0000000 = 0.0 volts

TABLE 30-24: TIMER2 AND TIMER4 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

Standard Operating Conditions: 4.5V to 5.5V


AC CHARACTERISTICS			(unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions
TB10	T⊤xH	TxCK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TB15, N = Prescaler Value (1, 8, 64, 256)
TB11	ΤτxL	TxCK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TB15, N = Prescaler Value (1, 8, 64, 256)
TB15	ΤτχΡ	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_	_	ns	N = Prescaler Value (1, 8, 64, 256)
TB20	TCKEXT- MRL	Delay from External TxCK Clock Edge to Timer Increment		0.75 Tcy + 40		1.75 Tcy + 40	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 30-25: TIMER3 AND TIMER5 (TYPE C TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions
TC10	ТтхН	TxCK High Time	Synchronous	Tcy + 20		_	ns	Must also meet Parameter TC15
TC11	ΤτxL	TxCK Low Time	Synchronous	Tcy + 20	_	—	ns	Must also meet Parameter TC15
TC15	ΤτχΡ	TxCK Input Period	Synchronous, with Prescaler	2 Tcy + 40	_	—	ns	N = Prescaler Value (1, 8, 64, 256)
TC20	TCKEXT- MRL	Delay from External TxCK Clock Edge to Timer Increment		0.75 Tcy + 40	_	1.75 Tcy + 40	ns	

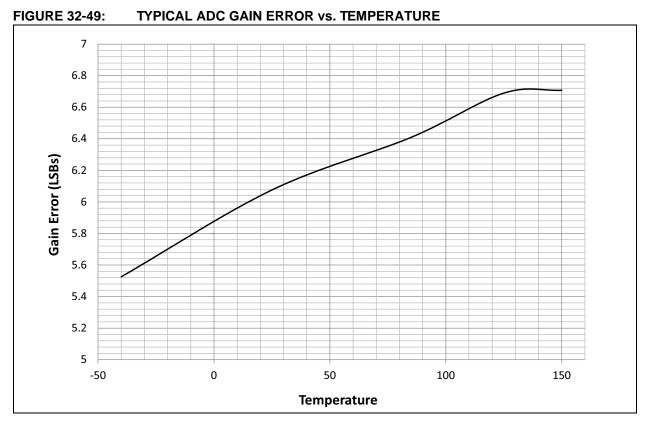
Note 1:	These parameters are characterized but not tested in manufacturing.

FIGURE 30-25: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

31.0 HIGH-TEMPERATURE ELECTRICAL CHARACTERISTICS

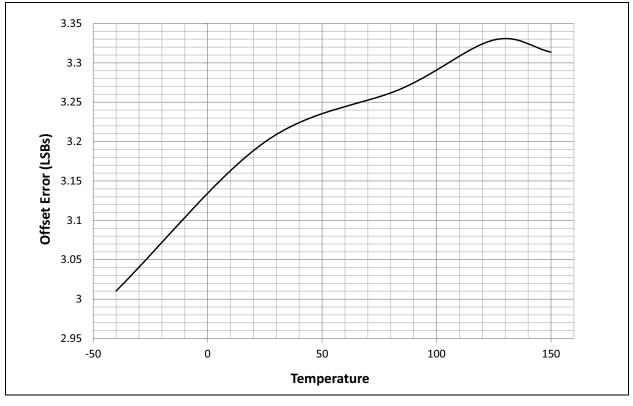
This section provides an overview of the dsPIC33EVXXXGM00X/10X family electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

The specifications between -40° C to $+150^{\circ}$ C are identical to those shown in **Section 30.0** "**Electrical Characteristics**" for operation between -40° C to $+125^{\circ}$ C, with the exception of the parameters listed in this section.


Parameters in this section begin with an H, which denotes High temperature. For example, Parameter DC10 in **Section 30.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the dsPIC33EVXXXGM00X/10X family high-temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings⁽¹⁾


Ambient temperature under bias ⁽²⁾	40°C to +150°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	0.3V to +6.0V
Maximum current out of Vss pin	350 mA
Maximum current into Vod pin ⁽³⁾	350 mA
Maximum junction temperature	
Maximum current sunk by any I/O pin	20 mA
Maximum current sourced by I/O pin	18 mA
Maximum current sunk by all ports combined	200 mA
Maximum current sourced by all ports combined ⁽³⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: AEC-Q100 reliability testing for devices intended to operate at +150°C is 1,000 hours. Any design in which the total operating time from +125°C to +150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 3: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).

32.19 ADC Gain Offset Error

© 2013-2016 Microchip Technology Inc.

34.0 PACKAGING INFORMATION

34.1 Package Marking Information

28-Lead SPDIP (.300")

28-Lead SOIC (.300")

28-Lead SSOP

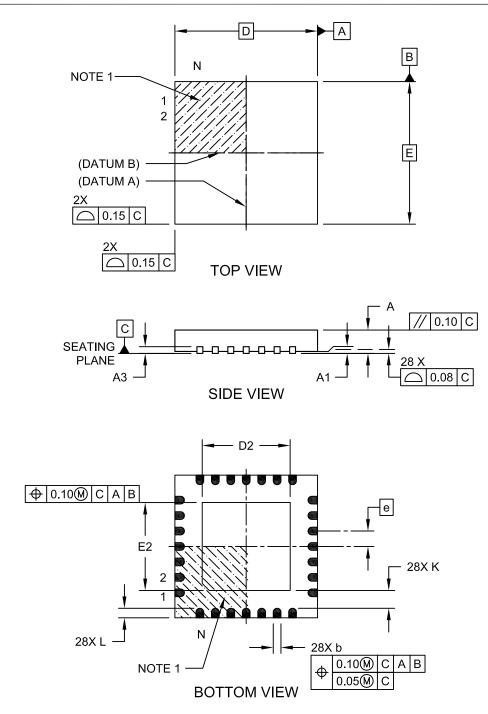
28-Lead QFN-S (6x6x0.9 mm)

Example

Legenc	I: XXX Y YY WW NNN	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	be carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

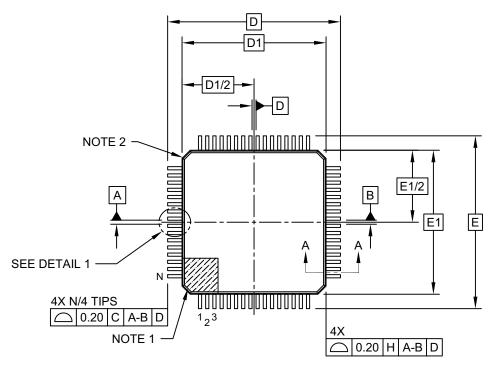
Example

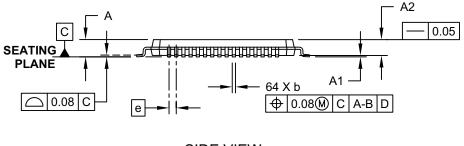
Example



Example

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


Microchip Technology Drawing C04-124C Sheet 1 of 2

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

SIDE VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2013-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0975-5