

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev256gm004t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

							(•••••							(· /		
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11SID	046C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	EXIDE	—	EID17	EID16	xxxx
C1RXF11EID	046E								E	EID<15:0>								xxxx
C1RXF12SID	0470	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0		EXIDE		EID17	EID16	xxxx
C1RXF12EID	0472					-			E	EID<15:0>								xxxx
C1RXF13SID	0474	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF13EID	0476					-			E	EID<15:0>								xxxx
C1RXF14SID	0478	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF14EID	047A					-			E	EID<15:0>								xxxx
C1RXF15SID	047C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF15EID	047E		•						E	EID<15:0>								xxxx

TABLE 4-11: CAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 FOR dsPIC33EVXXXGM10X DEVICES (CONTINUED)

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: SENT1 RECEIVER REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SENT1CON1	0500	SNTEN	—	SNTSIDL	_	RCVEN	TXM	TXPOL	CRCEN	PPP	SPCEN	_	PS	_	NIBCNT2	NIBCNT1	NIBCNT0	0000
SENT1CON2	0504					TICK	TIME<15:0	> (Transm	it modes)	or SYNCN	IAX<15:0>	(Receive I	mode)					FFFF
SENT1CON3	0508					FRAM	1ETIME<15	:0> (Trans	mit modes) or SYNC	MIN<15:0>	· (Receive	mode)					FFFF
SENT1STAT	050C		_	—		_		—	_	PAUSE	NIB2	NIB1	NIB0	CRCERR	FRMERR	RXIDLE	SYNCTXEN	0000
SENT1SYNC	0510						Synchi	ronization	Time Perio	d Registe	r (Transmit	mode)						0000
SENT1DATL	0514		DATA	4<3:0>			DATA5	<3:0>			DATA	6<3:0>			CRO	C<3:0>		0000
SENT1DATH	0516		STAT	<3:0>			DATA1	<3:0>			DATA2	2<3:0>			DATA	43<3:0>		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: SENT2 RECEIVER REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SENT2CON1	0520	SNTEN	—	SNTSIDL	—	RCVEN	TXM	TXPOL	CRCEN	PPP	SPCEN	—	PS	-	NIBCNT2	NIBCNT1	NIBCNT0	0000
SENT2CON2	0524					TICK	TIME<15:0	> (Transm	it modes)	or SYNCM	1AX<15:0>	(Receive I	node)					FFFF
SENT2CON3	0528					FRAM	/IETIME<15	:0> (Trans	mit modes) or SYNC	MIN<15:0	> (Receive	mode)					FFFF
SENT2STAT	052C	_	_	—	_	_	_	—	_	PAUSE	NIB2	NIB1	NIB0	CRCERR	FRMERR	RXIDLE	SYNCTXEN	0000
SENT2SYNC	0530						Synchi	ronization	Time Perio	d Registe	r (Transmit	mode)		_				0000
SENT2DATL	0534		DATA	4<3:0>			DATA5	<3:0>			DATA	6<3:0>			CR	C<3:0>		0000
SENT2DATH	0536		STAT	<3:0>			DATA1	<3:0>			DATA	2<3:0>			DAT	43<3:0>		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70005144E-page 49

TABLE 4-26: DMAC REGISTER MAP (CONTINUED)

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMALCA	0BF6	I	_	—	_	—	—	—	—	—	—	—	—		LSTC	H<3:0>		000F
DSADRL	0BF8									DSADF	R<15:0>							0000
DSADRH	0BFA	_	_	_	_	_	_		-				DSADF	<23:16>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: PWM REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0C00	PTEN	_	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
PTCON2	0C02	_		—	—	-	—	_	_	_	_	_	_	_	F	PCLKDIV<2:0	>	0000
PTPER	0C04									PTPER•	<15:0>							FFF8
SEVTCMP	0C06									SEVTCM	P<15:0>							0000
MDC	0C0A									MDC<	15:0>							0000
CHOP	0C1A	CHPCLKEN		—	—	-	—	CHOPCLK9	CHOPCLK8	CHOPCLK7	CHOPCLK6	CHOPCLK5	CHOPCLK4	CHOPCLK3	CHOPCLK2	CHOPCLK1	CHOPCLK0	0000
PWMKEY	0C1E									PWMKEY	/<15:0>							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: PWM GENERATOR 1 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0C20	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	_	—	CAM	XPRES	IUE	0000
IOCON1	0C22	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON1	0C24	_	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC1	0C26								PDC	1<15:0>								0000
PHASE1	0C28								PHAS	E1<15:0>								0000
DTR1	0C2A	_	_							DTR1	<13:0>							0000
ALTDTR1	0C2C	_	_							ALTDTI	R1<13:0>							0000
TRIG1	0C32								TRGC	MP<15:0>								0000
TRGCON1	0C34	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	-	_	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP1	0C38								PWMC	AP1<15:0>								0000
LEBCON1	0C3A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	-	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY1	0C3C	_	_		_						LEB<	:11:0>						0000
AUXCON1	0C3E	_	_		—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	—	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-29: PWM GENERATOR 2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON2	0C40	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	_	_	CAM	XPRES	IUE	0000
IOCON2	0C42	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON2	0C44	—	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC2	0C46								PDC2	2<15:0>								0000
PHASE2	0C48								PHASE	2<15:0>								0000
DTR2	0C4A	—	-							DTR2	<13:0>							0000
ALTDTR2	0C4C	—	-							ALTDTF	2<13:0>							0000
TRIG2	0C52								TRGCM	/IP<15:0>								0000
TRGCON2	0C54	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	_	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP2	0C58								PWMCA	AP2<15:0>								0000
LEBCON2	0C5A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY2	0C5C	—	-	_	_						LEB<	:11:0>						0000
AUXCON2	0C5E	—	—	—	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	—	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: PWM GENERATOR 3 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON3	0C60	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	—	—	CAM	XPRES	IUE	0000
IOCON3	0C62	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON3	0C64	_	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC3	0C66								PDC	3<15:0>								0000
PHASE3	0C68								PHAS	E3<15:0>								0000
DTR3	0C6A	_	_							DTR3	<13:0>							0000
ALTDTR3	0C6C	_	_							ALTDTF	3<13:0>							0000
TRIG3	0C72								TRGC	MP<15:0>								0000
TRGCON3	0C74	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	_	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP3	0C78								PWMC	AP3<15:0>								0000
LEBCON3	0C7A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	—		BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY3	0C7C	_	_	_	_						LEB<	:11:0>						0000
AUXCON3	0C7E	_	_	—	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	—	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

FIGURE 4-11: PAGED DATA MEMORY SPACE

DS70005144E-page 70

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

r							
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMKE	Y<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: NVM Key Register bits (write-only)

7.3 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EVXXXGM00X/10X family devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

7.4 Interrupt Control and Status Registers

dsPIC33EVXXXGM00X/10X family devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- IFSx
- IECx
- IPCx
- INTTREG

7.4.1 INTCON1 THROUGH INTCON4

Global interrupt control functions are controlled from the INTCON1, INTCON2, INTCON3 and INTCON4 registers.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS), as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior and also contains the Global Interrupt Enable bit (GIE).

INTCON3 contains the status flags for the DMT (Deadman Timer), DMA and ${\tt DO}$ stack overflow status trap sources.

The INTCON4 register contains the ECC Double-Bit Error (ECCDBE) and Software-Generated Hard Trap (SGHT) status bit.

7.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared through software.

7.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into Vector Number (VECNUM<7:0>) and Interrupt Priority Level bit (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

7.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers, refer to **"CPU"** (DS70359) in the *"dsPIC33/PIC24 Family Reference Manual"*.

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU Interrupt Priority Level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-3 to Register 7-7.

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this may not be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation. For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps, based on this device operating speed. If the device is placed in Doze mode, with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled, using the appropriate PMDx control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have any effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMDx register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMDx register by default.

Note: If a PMDx bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMDx bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment	Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment
011 0001	I/O	RP49	101 1110	I	RPI94
110 0000	I	RPI96	101 1111	I	RPI95
110 0001	I/O	RP97	111 0011	—	—
110 0010	_	—	111 0100		—
110 0011	—	—	111 0101	—	_
110 0100	_	—	111 0110	I/O	RP118
110 0101	_	—	111 0111	Ι	RPI119
110 0110	—	—	111 1000	I/O	RP120
110 0111	_	—	111 1001	I	RPI121
110 1000	—	—	111 1010	—	—
110 1001	_	—	111 1011		—
110 1010		—	111 1100	I	RPI124
110 1011	—	—	111 1101	I/O	RP125
101 0101	—	—	111 1110	I/O	RP126
101 0110		—	111 1111	I/O	RP127
101 0111	_	—	10110000	I/O	RP176 ⁽¹⁾
110 1100	_	—	10110001	I/O	RP177 ⁽¹⁾
110 1101		_	10110010	I/O	RP178 ⁽¹⁾
110 1110	_		10110011	I/O	RP179 ⁽¹⁾
110 1111	_	_	10110100	I/O	RP180 ⁽¹⁾
111 0010			10110101	I/O	RP181 ⁽¹⁾

TABLE 11-2. IN OT THE SELECTION FOR SELECTABLE IN OT SOUNCES (CONTINUED

Legend: Shaded rows indicate the PPS Input register values that are unimplemented.

Note 1: These are virtual pins. See Section 11.5.4.1 "Virtual Connections" for more information on selecting this pin assignment.

11.5.5 OUTPUT MAPPING

In contrast to inputs, the outputs of the PPS options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 11-18 to Register 11-31). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-3 and Figure 11-3).

A null output is associated with the Output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 11-3: MULTIPLEXING REMAPPABLE OUTPUT FOR RPn

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
—		—	—	—	—	—	—						
bit 15							bit 8						
r													
R-0, HC	R-0, HC	R-0, HC	U-0	U-0	U-0	U-0	R-0						
BAD1	BAD2	DMTEVENT	—	—	—	_	WINOPN						
bit 7							bit 0						
Legend:		HC = Hardware	IC = Hardware Clearable bit										
R = Readable	e bit	W = Writable bi	t	U = Unimple	mented bit, re	ad as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	it is unknown						
bit 15-8	Unimpleme	nted: Read as '0	,										
bit 7	BAD1: Dead	Iman Timer Bad S	STEP1<7:0> V	alue Detect bi	t								
	1 = Incorrect	STEP1<7:0> va	lue was detect	ed									
	0 = Incorrect	STEP1<7:0> va	lue was not de	etected									
bit 6	BAD2: Dead	Iman Timer Bad S	STEP2<7:0> V	alue Detect bi	t								
	1 = Incorrect	STEP2<7:0> va	lue was detect	ed									
hit E		Doodmon Timor		Recieu									
DIL 5		Deauman niner	Eveni bil	untor ovpirod	or bad STED	1<7.0> or STE							
	⊥ – Deauma was ent	ered prior to cour	ter increment))	OF DAU STEF	1<7.020131E							
	0 = Deadma	an Timer event wa	as not detected	d									
bit 4-1	Unimpleme	nted: Read as '0	,										
bit 0	WINOPN: D	eadman Timer Cl	ear Window bi	it									
	1 = Deadma	n Timer clear win	dow is open										
	0 = Deadma	n Timer clear win	dow is not ope	en									

REGISTER 14-4: DMTSTAT: DEADMAN TIMER STATUS REGISTER

21.1 UART Helpful Tips

- In multi-node direct connect UART networks, UART receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the Idle state, the default of which is logic high (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a Start bit detection and will cause the first byte received, after the device has been initialized, to be invalid. To avoid this situation, the user should use a pullup or pull-down resistor on the RX pin, depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.

2. The first character received on wake-up from Sleep mode, caused by activity on the UxRX pin of the UART module, will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock, relative to the incoming UxRX bit timing, is no longer synchronized, resulting in the first character being invalid. This is to be expected.

REGISTER 24-2: ADxCON2: ADCx CONTROL REGISTER 2 (CONTINUED)

bit 1	 BUFM: Buffer Fill Mode Select bit 1 = Starts buffer filling the first half of the buffer on the first interrupt and the second half of the buffer on the next interrupt 0 = Always starts filling the buffer from the Start address
bit 0	ALTS: Alternate Input Sample Mode Select bit 1 = Uses channel input selects for Sample MUX A on the first sample and Sample MUX B on the next sample 0 = Always uses channel input selects for Sample MUX A

Note 1: The ADCx VREFH Input is connected to AVDD and the VREFL input is connected to AVss.

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ADRC	—	_	SAMC4 ⁽¹⁾	SAMC3 ⁽¹⁾	SAMC2 ⁽¹⁾	SAMC1 ⁽¹⁾	SAMC0 ⁽¹⁾			
bit 15				•			bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ADCS7 ⁽²⁾	ADCS6 ⁽²⁾	ADCS5 ⁽²⁾	ADCS4 ⁽²⁾	ADCS3 ⁽²⁾	ADCS2 ⁽²⁾	ADCS1 ⁽²⁾	ADCS0 ⁽²⁾			
bit 7							bit 0			
Legend:										
R = Readab	ole bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown				
DIUIS	ADRC: ADCx Conversion Clock Source bit									
	0 = Clock der	ived from svste	m clock							
bit 14-13	Unimplemen	ted: Read as '()'							
bit 12-8	SAMC<4:0>:	Auto-Sample 1	īme bits ⁽¹⁾							
	11111 = 31 T	AD								
	•									
	•									
	00001 = 1 TA	D								
	00000 = 0 TA	D								
bit 7-0	ADCS<7:0>:	ADCx Convers	ion Clock Sele	ect bits ⁽²⁾						
	11111111 = '	TP • (ADCS<7	0> + 1) = TP •	256 = Tad						
	•									
	•									
	00000010 =	TP • (ADCS<7	0> + 1) = TP •	3 = TAD						
	00000001 =	TP • (ADCS<7:	0> + 1) = TP •	2 = TAD						
	00000000 =	IP • (ADCS<7:	U> + 1) = IP •	1 = IAD						
Note 1: 7	These bits are only	/ used if SSRC	<2:0> (ADxCC	N1<7:5>) = 11	11 and SSRCG	(ADxCON1<4	>)=0.			
2: 7	These bits are not	used if ADRC (ADxCON3<15	5>)=1.						

REGISTER 24-3: ADxCON3: ADCx CONTROL REGISTER 3

26.0 COMPARATOR VOLTAGE REFERENCE

- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Op Amp/Comparator" (DS70000357) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

26.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRxCON registers (Register 26-1 and Register 26-2). The comparator voltage reference provides a range of output voltages with 128 distinct levels. The comparator reference supply voltage can come from either VDD and Vss, or the external CVREF+ and AVss pins. The voltage source is selected by the CVRSS bit (CVRxCON<11>). The settling time of the comparator voltage reference must be considered when changing the CVREF output.

File Name	Address	Device Memory Size (Kbytes)	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FSEC	005780	32																	
	00AB80	64						0000	0001	0990		0991	0880			DOEN	DCC1	Reco	
	015780	128		AIVIDI5	_	_	_	0352	6351	0350	CWRP	6551	G330	GSS0 GWRP	_	BSEN	8991	BSS0	BWKP
	02AB80	256																	
FBSLIM	005790	32																	
	00AB90	64						BSI IM<12:0>											
	015790	128	_	_	_	_							DOLIN	1512.02					
	02AB90	256																	
Reserved	005794	32																	
	00AB94	64	—	Reserved ⁽¹⁾		-	_				-	-	-	_	_	_	—	-	—
	015794	128			—			_	_										
	02AB94	256																	
FOSCSEL	005798	32																	
	00AB98	64										1500					ENOSCO		
	015798	128	_	_	_	_	_	_	_	_	_	IESU	_	_	_	_	FNUSCZ	FNUSCI	1100000
	02AB98	256																	
FOSC	00579C	32				-					PLLKEN	FCKSM1 FCK							
	00AB9C	64					-						FOKOMO	SM0 IOI 1WAY			OSCIOENC	POSCMD1	POSCMD0
	01579C	128		_					_				FCKSIVIU IUL	IOLIWAT			USCIOFING		
	02AB9C	256																	
FWDT	0057A0	32																	
	00ABA0	64													WDTDDE				
	0157A0	128	_	_	_	-	_	_	_			WINDIS	FWDIENI	FVUTENU	WDIPRE	WDIP55	WDIP52	WDIP51	WD1P50
	02ABA0	256																	
FPOR	0057A4	32																	
	00ABA4	64																	
	0157A4	128	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	BUREN
	02ABA4	256																	
FICD	0057A8	32																	
	00ABA8	64										D						1004	ICS0
	0157A8	128	—	_	_	-	—	—	_	_	_	Keserved(2)	_	_	_	_	—	ICS1	
	02ABA8	256																	

TABLE 27-1: CONFIGURATION WORD REGISTER MAP

Legend: — = unimplemented, read as '1'.

Note 1:This bit is reserved and must be programmed as '0'.2:This bit is reserved and must be programmed as '1'.

File Name	Address	Device Memory Size (Kbytes)	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FDMTINTVL	0057AC	32																	
	00ABAC	64											45.0						
	0157AC	128	_								DMTIV1<15:0>								
	02ABAC	256																	
FDMTINTVH	0057B0	32																	
	00ABB0	64			DMTIV/T<31:16>														
	0157B0	128	_																
	02ABB0	256																	
FDMTCNTL	0057B4	32																	
	00ABB4 64																		
	128	_									DIVITCINT	<15:0>							
	02ABB4	256																	
FDMTCNTH	0057B8	32																	
	00AB8	64																	
	0157B8	128	_		DIMI CN 1<31:10>														
	02ABB8	256																	
FDMT	0057BC	32																	
	00ABBC	64																	DIATEN
	0157BC	128	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	DMITEN
	02ABBC	256																	
FDEVOPT	0057C0	32																	
	00ABC0	64															D (2)		
	0157C0	128		_	_	_	_	-	_	—	_	_	_	_	_	ALTI2C1	Reserved-	—	PWWLOCK
	02ABC0	256																	
FALTREG	0057C4	32												•	•				
	00ABC4	64																	
	0157C4	128	_	_	_	-	_		_	_	_	_	CTXT2<2:0>			—		CIXI1<2:0>	
l	02ABC4	256																	

CONFIGURATION WORD DECISTED MAD (CONTINUED) ~ ~ 4

Legend: — = unimplemented, read as '1'.

Note 1: This bit is reserved and must be programmed as '0'.
2: This bit is reserved and must be programmed as '1'.

FIGURE 30-21: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 30-39:	SPI1 MASTER MODE	(HALF-DUPLEX,	TRANSMIT ONLY	TIMING REQUIREMENTS
--------------	------------------	---------------	---------------	---------------------

АС СНА	ARACTERIST	TICS	Standard Operating Conditions: 4.5V to 5.5V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions		
SP10	FscP	Maximum SCK1 Frequency	—	_	25	MHz	See Note 3		
SP20	TscF	SCK1 Output Fall Time	—	—		ns	See Parameter DO32 and Note 4		
SP21	TscR	SCK1 Output Rise Time	-	-	_	ns	See Parameter DO31 and Note 4		
SP30	TdoF	SDO1 Data Output Fall Time	-	-	_	ns	See Parameter DO32 and Note 4		
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	_	6	20	ns			
SP36	TdiV2scH, TdiV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	_	_	ns			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK1 is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI1 pins.

TABLE 30-41:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

АС СНА	RACTERIST	ICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions		
SP10	FscP	Maximum SCK1 Frequency	—	—	25	MHz	-40°C to +125°C and see Note 3		
SP20	TscF	SCK1 Output Fall Time	—	_		ns	See Parameter DO32 and Note 4		
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4		
SP30	TdoF	SDO1 Data Output Fall Time	—	—		ns	See Parameter DO32 and Note 4		
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns			
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	—	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	—	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	20	—	—	ns			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

АС СНА	ARACTER	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 2): 4.5V to 5.5V \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$										
Param No.	Symbol	Characteristic	Min.	Тур. ⁽⁴⁾	Max.	Units	Conditions						
	Clock Parameters												
AD50	TAD	ADC Clock Period	117.6		_	ns							
AD51	tRC	ADC Internal RC Oscillator Period	—	250	_	ns							
Conversion Rate													
AD55	tCONV	Conversion Time	_	14		TAD							
AD56	FCNV	Throughput Rate	_		500	ksps							
AD57a	TSAMP	Sample Time when Sampling Any ANx Input	3	—		Tad							
AD57b	TSAMP	Sample Time when Sampling the Op Amp Outputs	3	—	-	Tad							
		Timin	g Parame	ters									
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2		3	Tad	Auto-convert trigger is not selected						
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2	—	3	Tad							
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾	—	0.5	_	Tad							
AD63	tDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾	_	_	20	μs	See Note 3						

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but is not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 30-12 for the minimum and maximum BOR values.

3: The parameter, tDPU, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (ADxCON1<15>) = 1). During this time, the ADC result is indeterminate.

4: These parameters are characterized but not tested in manufacturing.

NOTES: