

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev256gm102-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 3-2: PROGRAMMER'S MODEL

Note 1: Memory areas are not shown to scale.

TABLE 4-33: PORTA REGISTER MAP FOR dsPIC33EVXXXGMX02 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	—	—	—	_	—	_	-	—	—	—	—	TRISA<4:0>				DF9F	
PORTA	0E02	_	—	_	_	_	_	—	—	_	_	_	RA<4:0>			0000		
LATA	0E04		_	_	_	_	_	—	_		—	—	LATA<4:0>				0000	
ODCA	0E06		—	_	_	_	_	—	—		_	_	ODCA<4:0>			0000		
CNENA	0E08		—	_	_	_	_	—	—		_	_	CNIEA<4:0>				0000	
CNPUA	0E0A		—	_	_	_	_	—	—		_	_		C	NPUA<4:0	>		0000
CNPDA	0E0C		—	_	_	_	_	—	—		_	_		C	NPDA<4:0	>		0000
ANSELA	0E0E		—	_	_	_	_	—	—		_	_	ANSA4 — ANSA<2:0>			1813		
SR1A	0E10	_	_	_	_	_	_	_	_	_	_	_	SR1A4	_	_	_	_	0000
SR0A	0E12		_	_	_	_	_	—	—		_	_	SR0A4	—	—	—		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-34: PORTB REGISTER MAP FOR dsPIC33EVXXXGMX06 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E14								TRISB<15	:0>								FFFF
PORTB	0E16		RB<15:0> xxx								xxxx							
LATB	0E18	LATB<15:0> xxx								xxxx								
ODCB	0E1A	ODCB<15:0> 00								0000								
CNENB	0E1C	CNIEB<15:0> 00								0000								
CNPUB	0E1E								CNPUB<1	5:0>								0000
CNPDB	0E20								CNPDB<1	5:0>								0000
ANSELB	0E22	-	-	-	-	—	-		ANSB<9:7	>	—	—	-		ANSE	3<3:0>		038F
SR1B	0E24	_	_	_	_	_	_		SR1B<9:7>	>	_	_	SR1B4	_	_	_	_	0000
SR0B	0E26	_	_	_	_	_	_		SR0B<9:7>	•	_	_	SR0B4		_	_	_	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0		
VAR	—	US1	US0	EDT	DL2	DL1	DL0		
bit 15							bit 8		
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0		
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF		
bit 7							bit 0		
Legend:		C = Clearable) bit						
P = Peadable bit $W = Writable bit$				II = IInimplemented bit read as '0'					

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit 1 = Variable exception processing latency is enabled 0 = Fixed exception processing latency is enabled

bit 3 **IPL3:** CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

R/S-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
FORCE ⁽¹⁾	—	—	—	—	—	—	—			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0			
bit 7							bit 0			
Legend:		S = Settable b	bit							
R = Readable	bit	W = Writable	V = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	x = Bit is unkr	nown				
DIT 15	FORCE: Force DMA Transfer bit'' 1 = Forces a single DMA transfer (Manual mode) 0 = Automatic DMA transfer initiation by DMA request									
bit 14-8	Unimplemented: Read as '0'									
bit 7-0	7-0 IRQSEL<7:0>: DMA Peripheral IRQ Number Select bits 01000110 = TX data request (CAN1) ⁽²⁾ 00100110 = Input Capture 4 (IC4) 00100101 = Input Capture 3 (IC3) 00100010 = RX data ready (CAN1) 00100001 = SPI2 transfer done (SPI2) 00011111 = UART2 Transmitter (UART2TX) 00011100 = Timer5 (TMR5) 0001100 = Timer5 (TMR5) 0001101 = Output Compare 4 (OC4) 00011001 = Output Compare 3 (OC3) 00001101 = UART1 Transmitter (UART1TX) 00001010 = UART1 Transmitter (UART1TX) 0000101 = SPI1 transfer done (SPI1)									
	00000111 = Timer2 (TMR2) 00000110 = Output Compare 2 (OC2) 00000101 = Input Capture 2 (IC2) 00000010 = Output Compare 1 (OC1) 00000001 = Input Capture 1 (IC1) 00000000 = External Interrupt 0 (INT0)									

Note 1: The FORCE bit cannot be cleared by user software. The FORCE bit is cleared by hardware when the forced DMA transfer is complete or the channel is disabled (CHEN = 0).

2: This select bit is only available on dsPIC33EVXXXGM10X devices.

— vit 15	—	RP70R5	RP70R4	RP70R3	RP70R2	RP70R1	RP70R0
oit 15							1.11.0
							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP69R5	RP69R4	RP69R3	RP69R2	RP69R1	RP69R0
oit 7							bit 0
U-0 — vit 7	U-0	R/W-0 RP69R5	R/W-0 RP69R4	R/W-0 RP69R3	R/W-0 RP69R2	R/W-0 RP69R1	R/ RP

REGISTER 11-26: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP70R<5:0>: Peripheral Output Function is Assigned to RP70 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP69R<5:0>: Peripheral Output Function is Assigned to RP69 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: This register is present in dsPIC33EVXXXGM004/104/006/106 devices only.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP118R5	RP118R4	RP118R3	RP118R2	RP118R1	RP118R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	RP97R5	RP97R4	RP97R3	RP97R2	RP97R1	RP97R0
bit 7							bit 0

REGISTER 11-27: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8**RP118R<5:0>:** Peripheral Output Function is Assigned to RP118 Output Pin bits
(see Table 11-3 for peripheral function numbers)bit 7-6**Unimplemented:** Read as '0'

bit 5-0 **RP97R<5:0>:** Peripheral Output Function is Assigned to RP97 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: This register is present in dsPIC33EVXXXGM004/106 devices only.

21.1 UART Helpful Tips

- In multi-node direct connect UART networks, UART receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the Idle state, the default of which is logic high (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a Start bit detection and will cause the first byte received, after the device has been initialized, to be invalid. To avoid this situation, the user should use a pullup or pull-down resistor on the RX pin, depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.

2. The first character received on wake-up from Sleep mode, caused by activity on the UxRX pin of the UART module, will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock, relative to the incoming UxRX bit timing, is no longer synchronized, resulting in the first character being invalid. This is to be expected.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F7BP3	F7BP2	F7BP1	F7BP0	F6BP3	F6BP2	F6BP1	F6BP0		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F5BP3	F5BP2	F5BP1	F5BP0	F4BP3	F4BP2	F4BP1	F4BP0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-12	F7BP<3:0>:	RX Buffer Masl	c for Filter 7 b	its					
	1111 = Filter	hits received in	NRX FIFO bu	ffer					
	1110 = Filter	hits received in	NRX Buffer 14	4					
	•								
	•								
0001 = Filter hits received in RX Buffer 1									
	0000 = Filter hits received in RX Buffer 0								
bit 11-8	F6BP<3:0>:	RX Buffer Masl	k for Filter 6 b	its (same value	es as bits 15-12))			
bit 7-4	F5BP<3:0>: RX Buffer Mask for Filter 5 bits (same values as bits 15-12)								

REGISTER 22-13: CxBUFPNT2: CANx FILTERS 4-7 BUFFER POINTER REGISTER 2

bit 3-0 **F4BP<3:0>:** RX Buffer Mask for Filter 4 bits (same values as bits 15-12)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F15BP3	F15BP2	F15BP1	F15BP0	F14BP3	F14BP2	F14BP1	F14BP0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F13BP3	F13BP2	F13BP1	F13BP0	F12BP3	F12BP2	F12BP1	F12BP0	
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-12	F15BP<3:0>	: RX Buffer Ma	sk for Filter 15	5 bits				
	1111 = Filter	hits received in	n RX FIFO bu	ffer				
	1110 = Filter	hits received in	n RX Buffer 14	4				
	•							
	•							
	•	hite reasived in						
0001 = Filter hits received in RX Buffer 1								
						40)		
DIT 11-8	F14BP<3:0>	: RX Buffer Ma	SK for Filter 14	a bits (same va	liues as bits 15-	12)		
bit 7-4	F13BP<3:0>	: RX Buffer Ma	sk for Filter 13	3 bits (same va	lues as bits 15-	12)		
bit 3-0	F12BP<3:0>: RX Buffer Mask for Filter 12 bits (same values as bits 15-12)							

REGISTER 22-15: CxBUFPNT4: CANx FILTERS 12-15 BUFFER POINTER REGISTER 4

27.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EVXXXGM00X/10X family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard™ Security
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

27.1 Configuration Bits

In dsPIC33EVXXXGM00X/10X family devices, the Configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored at the top of the on-chip program memory space, known as the Flash Configuration bytes. Their specific locations are shown in Table 27-1. The configuration data is automatically loaded from the Flash Configuration bytes to the proper Configuration Shadow registers during device Resets.

Note:	Configuration data is reloaded on all types
	of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration bytes for configuration data in their code for the compiler. This is to ensure that program code is not stored in this address when the code is compiled.

The upper 2 bytes of all Flash Configuration Words in program memory should always be '1111 1111 1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

Note:	Performing a page erase operation on the								
	last page of program memory clears the								
	Flash Configuration bytes, enabling code								
	protection as a result. Therefore, users								
	should avoid performing page erase								
	operations on the last page of program								
	memory.								

The Configuration Flash bytes map is shown in Table 27-1.

29.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

29.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

29.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

29.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

29.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 30-8: OUTPUT COMPARE x (OCx) TIMING CHARACTERISTICS

TABLE 30-27: OUTPUT COMPARE x (OCx) TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
OC10	TccF	OCx Output Fall Time	_	_		ns	See Parameter DO32	
OC11	TccR	OCx Output Rise Time	— — — ns See Parameter DO31					

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-9: OCx/PWMx MODULE TIMING CHARACTERISTICS

TABLE 30-28: OCx/PWMx MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 4.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
OC15	Tfd	Fault Input to PWMx I/O Change	—	—	Tcy + 20	ns	
OC20	TFLT	Fault Input Pulse Width	Tcy + 20	_	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-18: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

DC CHARACTERISTICS			Standard Operating Conditions: 4.5V to 5.5V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
	VIL	Input Low Voltage						
DI10		Any I/O Pins	Vss	—	0.2 Vdd	V		
	VIH	Input High Voltage						
DI20		I/O Pins	0.75 VDD	—	5.5	V		
DI30	ICNPU	Change Notification Pull-up Current	200	375	600	μA	VDD = 5.0V, VPIN = VSS	
DI31	ICNPD	Change Notification Pull-Down Current ⁽⁷⁾	175	400	625	μA	VDD = 5.0V, VPIN = VDD	
	lı∟	Input Leakage Current ^(2,3)						
DI50		I/O Pins	-200	_	200	nA	$Vss \le VPIN \le VDD$, pin at high-impedance	
DI55		MCLR	-1.5	_	1.5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
DI56		OSC1	-300	_	300	nA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$	
DI60a	licl	Input Low Injection Current	0	_	₋₅ (4,6)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP and RB7	
DI60b	Іісн	Input High Injection Current	0	_	₊₅ (5,6)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB7 and all 5V tolerant pins ⁽⁵⁾	
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁷⁾	_	+20 ⁽⁷⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT	

TABLE 31-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ." column is at 5.0V, +25°C unless otherwise stated.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.
- **3:** Negative current is defined as current sourced by the pin.
- 4: VIL source < (Vss 0.3). Characterized but not tested.
- 5: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 6: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.

7: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

dsPIC33EVXXXGM00X/10X FAMILY

FIGURE 32-23: TYPICAL LPRC ACCURACY vs. TEMPERATURE (5.5V VDD)

32.7 Leakage Current

FIGURE 32-31: TYPICAL VOH 4x DRIVER PINS vs. IOH (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

FIGURE 32-32: TYPICAL Vol 8x DRIVER PINS vs. Iol (GENERAL PURPOSE I/Os, TEMPERATURES AS NOTED)

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X28)	X1			0.30
Contact Pad Length (X28)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2085B Sheet 1 of 1

64-Lead Very Thin Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [VQFN] With 7.15 x 7.15 Exposed Pad [Also called QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			S	
Dimension	Dimension Limits			MAX	
Number of Pins	Ν		64		
Pitch	е		0.50 BSC		
Overall Height	A 0.80 0.90			1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E		9.00 BSC		
Exposed Pad Width	E2	7.05	7.15	7.25	
Overall Length	D	9.00 BSC			
Exposed Pad Length	D2	7.05 7.15 7.25			
Contact Width	b	0.18	0.25	0.30	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149D [MR] Sheet 2 of 2

64-Lead Very Thin Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [VQFN] With 7.15 x 7.15 Exposed Pad [Also called QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch		0.50 BSC		
Optional Center Pad Width	X2			7.25
Optional Center Pad Length	Y2			7.25
Contact Pad Spacing	C1		9.00	
Contact Pad Spacing	C2		9.00	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.95
Contact Pad to Center Pad (X64)	G1	0.40		
Spacing Between Contact Pads (X60)	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2149C [MR]