

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 11x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ev256gm102-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-19: NVM REGISTER MAP

									-			-					-	
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0728	WR	WREN	WRERR	NVMSIDL	_	_	RPDF	URERR	_	—	_	_	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000
NVMADR	072A									NVMADR<	15:0>							0000
NVMADRU	072C	_	_	_	_		_	_	_				NVMAD	RU<23:16>				0000
NVMKEY	072E	_	_	_	_		_	_	_				NVMK	EY<7:0>				0000
NVMSRCADRL	0730								NVMSF	RCADR<15:	1>						0	0000
NVMSRCADRH	0732	_	_	_	_		_	_	_				NVMSRC	ADR<23:16>				0000
Lonondy				Desetual	an are chour	a in heaven	d a stress al											

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: SYSTEM CONTROL REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR		_	VREGSF		СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	_	_	OSWEN	Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	PLLPOST1	PLLPOST0	_	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0	0000
PLLFBD	0746	-	—		—	_	_	—				PL	LDIV<8:0>					0000
OSCTUN	0748	-	—		—	_	_	—		_	_			TUN	<5:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the Configuration fuses.

TABLE 4-21: REFERENCE CLOCK REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
REFOCON	074E	ROON	-	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_	_	_	_	_	—	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-29: PWM GENERATOR 2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON2	0C40	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	_	_	CAM	XPRES	IUE	0000
IOCON2	0C42	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON2	0C44	_	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC2	0C46								PDC2	<15:0>								0000
PHASE2	0C48								PHASE	2<15:0>								0000
DTR2	0C4A	-	_							DTR2	<13:0>							0000
ALTDTR2	0C4C									ALTDTR	2<13:0>							0000
TRIG2	0C52								TRGCN	1P<15:0>								0000
TRGCON2	0C54	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	—	—	—	—			TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP2	0C58								PWMCA	.P2<15:0>								0000
LEBCON2	0C5A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	—			BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY2	0C5C	-	_	_							LEB<	:11:0>						0000
AUXCON2	0C5E	-	-	_		BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0		_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000
				(-) D														

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: PWM GENERATOR 3 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON3	0C60	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	—	_	CAM	XPRES	IUE	0000
IOCON3	0C62	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON3	0C64	-	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC3	0C66								PDC	3<15:0>								0000
PHASE3	0C68								PHASI	E3<15:0>								0000
DTR3	0C6A	_	—							DTR3	<13:0>							0000
ALTDTR3	0C6C	_	—							ALTDTF	3<13:0>							0000
TRIG3	0C72								TRGC	/IP<15:0>								0000
TRGCON3	0C74	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0		_		—	—	—	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP3	0C78								PWMCA	AP3<15:0>								0000
LEBCON3	0C7A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	-	_	—	—	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY3	0C7C	_	_	_	_						LEB<	11:0>						0000
AUXCON3	0C7E	_	_	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	—	—	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

10.2.1 SLEEP MODE

The following events occur in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared before entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the internal regulator and the Flash regulator can be configured to go into Standby mode when Sleep mode is entered by clearing the VREGS (RCON<8>) and VREGSF (RCON<11>) bits (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON<8>) and VREGSF (RCON<11>) bits can be set to keep the internal regulator and the Flash regulator active during Sleep mode.

10.2.2 IDLE MODE

The following events occur in Idle mode:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- · A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the Interrupt Service Routine (ISR).

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral; for example, the TSIDL bit in the Timer1 Control register (T1CON<13>).

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up either from Sleep mode or Idle mode.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—		—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0
—	—	—	DMA0MD ⁽¹⁾	—	—	—	—
			DMA1MD ⁽¹⁾	-			
			DMA2MD ⁽¹⁾	-			
			DMA3MD ⁽¹⁾				
bit 7							bit 0
Legend:							
R = Readal		W = Writable		•	nented bit, read		
-n = Value a	at POR	'1' = Bit is se	et	'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15-5	Unimplement						
bit 4	DMA0MD: DN						
	1 = DMA0 mo 0 = DMA0 mo						
	DMA1MD: DN						
	1 = DMA1 mo						
	0 = DMA1 mo						
	DMA2MD: DN	A2 Module I	Disable bit ⁽¹⁾				
	1 = DMA2 mo						
	0 = DMA2 mo	dule is enable	ed				
	DMA3MD: DN	MA3 Module E	Disable bit ⁽¹⁾				
	1 = DMA3 mo 0 = DMA3 mo						
bit 3-0	Unimplement	ted: Read as	' 0 '				

REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7

Note 1: This single bit enables and disables all four DMA channels.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP180R5	RP180R4	RP180R3	RP180R2	RP180R1	RP180R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		RP170R5	RP170R4	RP170R3	RP170R2	RP170R1	RP170R0

REGISTER 11-30: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

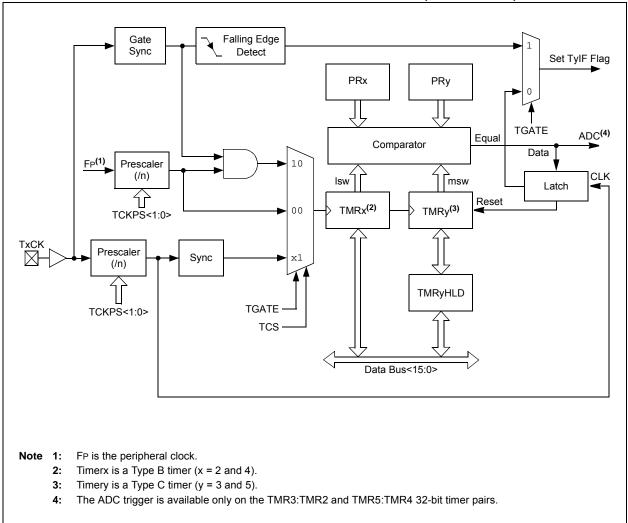
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP180R<5:0>: Peripheral Output Function is Assigned to RP180 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP179R<5:0>: Peripheral Output Function is Assigned to RP179 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-31: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8

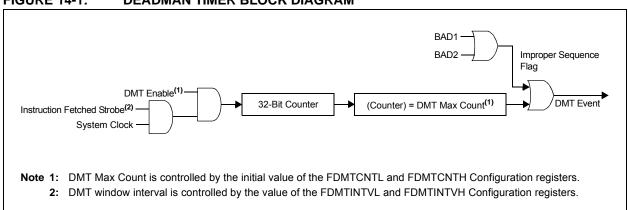

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—		RP181R<5:0>						
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **RP181R<5:0>:** Peripheral Output Function is Assigned to RP181 Output Pin bits (see Table 11-3 for peripheral function numbers)

14.0 DEADMAN TIMER (DMT)


- Note 1: This data sheet summarizes the features of the dsPIC33EVXXXGM00X/10X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Deadman Timer (DMT)" (DS70005155) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The primary function of the Deadman Timer (DMT) is to reset the processor in the event of a software malfunction. The DMT, which works on the system clock, is a free-running instruction fetch timer, which is clocked whenever an instruction fetch occurs, until a count match occurs. Instructions are not fetched when the processor is in Sleep mode.

DMT can be enabled in the Configuration fuse or by software in the DMTCON register by setting the ON bit. The DMT consists of a 32-bit counter with a time-out count match value, as specified by the two 16-bit Configuration Fuse registers: FDMTCNTL and FDMTCNTH.

A DMT is typically used in mission-critical, and safetycritical applications, where any single failure of the software functionality and sequencing must be detected.

Figure 14-1 shows a block diagram of the Deadman Timer module.

FIGURE 14-1: DEADMAN TIMER BLOCK DIAGRAM

R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 R/W-0 **FLTMD FLTOUT FLTTRIEN** OCINV ____ ____ OC32 ____ bit 15 bit 8 R/W-0 R/W-0, HS R/W-0 R/W-0 R/W-1 R/W-1 R/W-0 R/W-0 OCTRIG OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 TRIGSTAT SYNCSEL1 SYNCSEL0 bit 7 bit 0 Legend: HS = Hardware Settable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 FLTMD: Fault Mode Select bit 1 = Fault mode is maintained until the Fault source is removed; the OCFLTA bit is cleared in software and a new PWM period starts 0 = Fault mode is maintained until the Fault source is removed and a new PWM period starts bit 14 FLTOUT: Fault Out bit 1 = PWM output is driven high on a Fault 0 = PWM output is driven low on a Fault bit 13 FLTTRIEN: Fault Output State Select bit 1 = OCx pin is tri-stated on a Fault condition 0 = OCx pin I/O state is defined by the FLTOUT bit on a Fault condition bit 12 **OCINV:** Output Compare x Invert bit 1 = OCx output is inverted 0 = OCx output is not inverted bit 11-9 Unimplemented: Read as '0' bit 8 OC32: Cascade Two OCx Modules Enable bit (32-bit operation) 1 = Cascade module operation is enabled 0 = Cascade module operation is disabled bit 7 OCTRIG: Output Compare x Trigger/Sync Select bit 1 = Triggers OCx from the source designated by the SYNCSELx bits 0 = Synchronizes OCx with the source designated by the SYNCSELx bits bit 6 TRIGSTAT: Timer Trigger Status bit 1 = Timer source has been triggered and is running 0 = Timer source has not been triggered and is being held clear bit 5 OCTRIS: Output Compare x Output Pin Direction Select bit 1 = Output Compare x is tri-stated 0 = Output Compare x module drives the OCx pin

REGISTER 16-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

Note 1: Do not use the OCx module as its own synchronization or trigger source.

2: When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.

18.2 SPI Control Registers

REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
SPIEN	_	SPISIDL		_	SPIBEC2	SPIBEC1	SPIBEC0		
bit 15							bit 8		
R/W-0	R/C-0, HS	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HS, HC	R-0, HS, HC		
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF		
bit 7							bit C		
Legend:		HC = Hardware	e Clearable bit		are Settable b				
R = Readable		W = Writable b	pit	U = Unimple	mented bit, re	ead as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	C = Clearable	e bit		
bit 15	SPIEN SPIX	Enable bit							
bit 10	SPIEN: SPIx Enable bit 1 = Enables the SPIx module and configures SCKx, SDOx, SDIx and SSx as serial port pins								
		the SPIx module	•				it pino		
bit 14	Unimplemen	ted: Read as '0	,						
bit 13	SPISIDL: SP	Ix Stop in Idle M	ode bit						
		ues the SPIx most the SPIx modu			vice enters Idl	e mode			
bit 12-11		ted: Read as '0	-						
bit 10-8	SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode)								
	Master mode: Number of SPIx transfers are pending.								
	Slave mode:	Plx transfers are							
bit 7	SRMPT: SPIx Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode)								
	1 = The SPIx	Shift register is Shift register is	empty and rea	•		-			
bit 6		x Receive Over							
	1 = A new b previous	yte/word is com data in the SPI	pletely receive BUF register	ed and discard	led; the user	application ha	s not read the		
L:4 F		has not occurre		lid in Enhance		-)			
bit 5	1 = RX FIFO	Ix Receive FIFO	D Empty bit (va	lid in Enhance	a Buller mode	e)			
	1 = RX FIFO 0 = RX FIFO								
bit 4-2		SPIx Buffer Inte	errupt Mode bit	s (valid in Enh	anced Buffer	mode)			
		pt when the SP	-			/			
		pt when the las							
	100 = Interru	pt when the las							
		ry location pt when the SP	ly receive buffe	er is full (SPIRI	RF hit is set)				
		pt when the SP							
	001 = Interru	pt when data is	available in the	e SPIx receive	buffer (SRM				
	000 = Interru								

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0
		0 01 11					
Legend:	1.11	C = Clearable			are Clearable bit		
R = Readable		W = Writable	DIT	•	nented bit, read		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN
bit 15,13	 11 = Reserve 10 = Interrupt the trans 01 = Interrupt operatio 00 = Interrupt 	ed; do not use t when a chara smit buffer beco t when the las ns are complet	cter is transf omes empty it character ed cter is transf	is shifted out Ferred to the Tra	election bits ansmit Shift Reg of the Transmit ansmit Shift Reg	t Shift Registe	r; all transmit
bit 14	$\frac{\text{If IREN = 0:}}{1 = \text{UxTX Idle}}$ $0 = \text{UxTX Idle}$ $\frac{\text{If IREN = 1:}}{1 = \text{IrDA}^{\textcircled{B}} \text{ en}}$ $0 = \text{IrDA ence}$	e state is '1' coded UxTX Id oded UxTX Idle	le state is '1' e state is '0'				
bit 12	Unimplemen	ted: Read as ')'				
bit 11	1 = Sends Sy bit; cleare 0 = Sync Bre	ed by hardware ak transmissio	ext transmis upon compl n is disabled		followed by twe	elve '0' bits, foll	lowed by Stop
bit 10	UTXEN: UAR	Tx Transmit Er	nable bit ⁽¹⁾				
	0 = Transmit			ntrolled by UAR ransmission is	Tx aborted and the	e buffer is rese	t; UxTX pin is
bit 9	UTXBF: UAR	Tx Transmit Bu	iffer Full Stat	us bit (read-onl	y)		
	1 = Transmit 0 = Transmit		ll, at least on	e more charact	er can be writte	n	
bit 8	1 = Transmit	Shift Register is	s empty and t		ly) s empty (the last is in progress o		as completed)
bit 7-6	11 = Interrupt 10 = Interrupt 0x = Interrupt	t is set on UxRs t is set on UxRs	SR transfer, i SR transfer, r ny character	naking the rece is received and	on bits eive buffer full (i. eive buffer 3/4 fu d transferred fro	ll (i.e., has 3 da	ita characters)

REGISTER 21-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Note 1: Refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/ PIC24 Family Reference Manual" for information on enabling the UART module for transmit operation.

REGISTER 22-11: CxFEN1: CANx ACCEPTANCE FILTER ENABLE REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			FLTE	N<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			FLTE	N<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit	t	U = Unimpler	mented bit, read	l as '0'	

'0' = Bit is cleared

bit 15-0

-n = Value at POR

FLTEN<15:0>: Enable Filter n to Accept Messages bits

'1' = Bit is set

1 = Enables Filter n

0 = Disables Filter n

REGISTER 22-12: CxBUFPNT1: CANx FILTERS 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F3BP3	F3BP2	F3BP1	F3BP0	F2BP3	F2BP2	F2BP1	F2BP0	
bit 15					·		bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F1BP3	F1BP2	F1BP1	F1BP0	F0BP3	F0BP2	F0BP1	F0BP0	
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-12	F3BP<3:0>:	RX Buffer Mas	k for Filter 3 b	oits				
	1111 = Filter	hits received in	n RX FIFO bu	ffer				
	1110 = Filter	hits received in	n RX Buffer 14	4				
	•							
	•							
	0001 = Filter	hits received in	n RX Buffer 1					
	0000 = Filter	hits received in	n RX Buffer 0					
bit 11-8	F2BP<3:0>:	RX Buffer Mas	k for Filter 2 b	its (same value	es as bits 15-12)		
bit 7-4	F1BP<3:0>:	RX Buffer Mas	k for Filter 1 b	its (same value	es as bits 15-12)		
bit 3-0	F0BP<3:0>:	RX Buffer Mas	k for Filter 0 b	its (same value	es as bits 15-12)		

x = Bit is unknown

Figure 25-2, shows the user-programmable blanking function block diagram.

FIGURE 25-2: USER-PROGRAMMABLE BLANKING FUNCTION BLOCK DIAGRAM

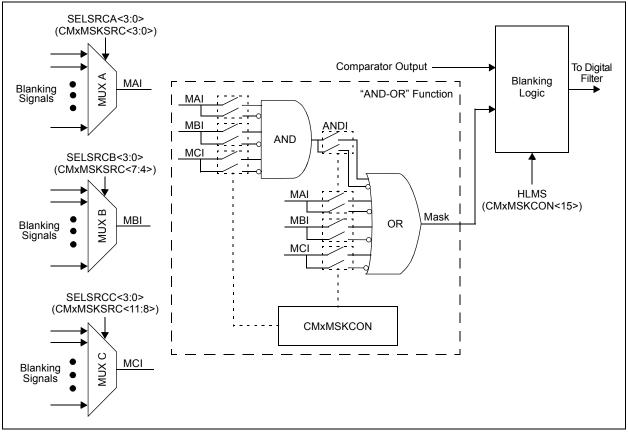
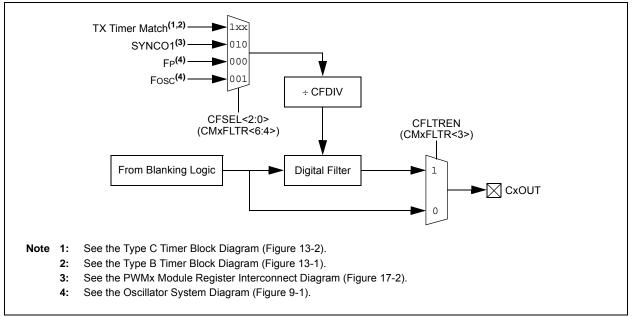



Figure 25-3, shows the digital filter interconnect block diagram.

FIGURE 25-3: DIGITAL FILTER INTERCONNECT BLOCK DIAGRAM

REGISTER 25-5: CMxMSKCON: COMPARATOR x MASK GATING CONTROL REGISTER (CONTINUED)

- bit 3 ABEN: AND Gate B Input Enable bit
 - 1 = MBI is connected to AND gate
 - 0 = MBI is not connected to AND gate
- bit 2 ABNEN: AND Gate B Input Inverted Enable bit 1 = Inverted MBI is connected to AND gate
 - 0 = Inverted MBI is not connected to AND gate
- bit 1 AAEN: AND Gate A Input Enable bit 1 = MAI is connected to AND gate 0 = MAI is not connected to AND gate
- bit 0 AANEN: AND Gate A Input Inverted Enable bit
 - 1 = Inverted MAI is connected to AND gate
 - 0 = Inverted MAI is not connected to AND gate

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed. In

these cases, the execution takes multiple instruction cycles with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157).

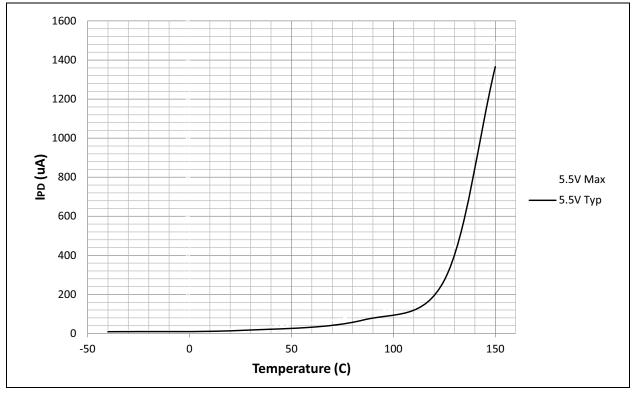
Field	Description				
#text	Means literal defined by "text"				
(text)	Means "content of text"				
[text]	Means "the location addressed by text"				
{}	Optional field or operation				
$a\in\{b,c,d\}$	a is selected from the set of values b, c, d				
<n:m></n:m>	Register bit field				
.b	Byte mode selection				
.d	Double-Word mode selection				
.S	Shadow register select				
.W	Word mode selection (default)				
Acc	One of two accumulators {A, B}				
AWB	Accumulator Write-Back Destination Address register ∈ {W13, [W13]+ = 2}				
bit4	4-bit bit selection field (used in word-addressed instructions) $\in \{015\}$				
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero				
Expr	Absolute address, label or expression (resolved by the linker)				
f	File register address ∈ {0x00000x1FFF}				
lit1	1-bit unsigned literal $\in \{0,1\}$				
lit4	4-bit unsigned literal $\in \{015\}$				
lit5	5-bit unsigned literal $\in \{031\}$				
lit8	8-bit unsigned literal $\in \{0255\}$				
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode				
lit14	14-bit unsigned literal $\in \{016384\}$				
lit16	16-bit unsigned literal ∈ {065535}				
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'				
None	Field does not require an entry, can be blank				
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate				
PC	Program Counter				
Slit10	10-bit signed literal ∈ {-512511}				
Slit16	16-bit signed literal ∈ {-3276832767}				
Slit6	6-bit signed literal ∈ {-1616}				
Wb	Base W register ∈ {W0W15}				
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }				
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }				
Wm,Wn	Dividend, Divisor Working register pair (Direct Addressing)				

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	4	SFA
		CALL	Wn	Call indirect subroutine	1	4	SFA
		CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA, SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	$f = \overline{f}$	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - C)$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
22	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
23	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
24	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
					-	,	

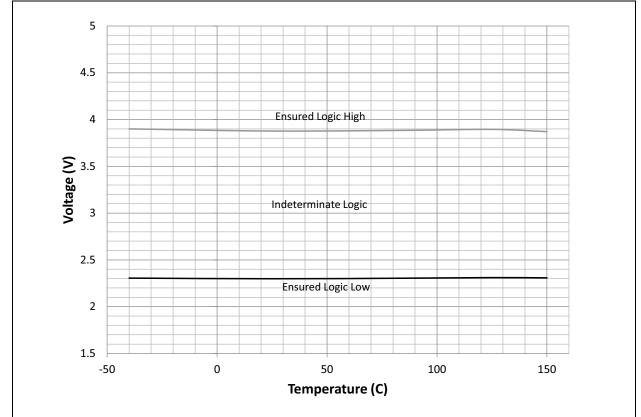

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
53	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
54	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = $f + 1$	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
55	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
56	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
57	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
58	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
59	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
60	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
61	RESET	RESET		Software device Reset	1	1	None
62	RETFIE	RETFIE		Return from interrupt	1	6 (5)	SFA


TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

32.4 IPD



© 2013-2016 Microchip Technology Inc.

NOTES:

NOTES: